java运行时和编译时
编译只是编译成了字节码,就是可执行的.class文件
运行时识别,主要是java的RTTI(运行时类型识别)机制和反射机制,而两者之间的区别在于:
”对RTTI来说,编译器在编译期打开和检查.class文件。(换句话说,我们可以用“普通”的方式调用一个对象的所有方法。),而对于反射机制来说,.class文件在编译期是不可获取的,所以是在运行期打开和检查.class文件。“
但是同样的,反射也需要加载这个类的Class对象,所以那个类的class对象对于jvm必须是可取的的,比如在本地机器上,或者通过网络取得,比如取得一串字节串。
具体的内容可以参考《Thinking in java》的”类型识别“那一章,讲的比较详细的
‘贰’ Java编译时注解和运行时注解有什么区别
区别如下:
1)编译时注解,注解内容只存在源文件,在编译期间将被丢弃,不能通过JVM获取注解信息;
2)运行时注解,编译时被存储在.class字节码文件,可以通过JVM运行时获取注解信息(且只限于被RUNTIME注解的注解)。
‘叁’ 请问java程序在编译和运行时有什么区别,系统分别都会做什么
Java程序的编译
使用命令: javac *.java
编译时,会将写的.java文件(高级语言),生成相应的字节码文件.class文件(二进制代码)
Java程序的执行
使用命令:java *
流程: 加载到 -- 连接 ---- 初始化 ...
运行时,首先会由将相应的.class文件,加载到内存中,并验证.class文件的有效性,将相应类的Class加载到内存中,并对类中的静态变量进行初始化操作,然后就由 主 类开始执行
具体的可以看一下 JVM 类加载过程,以及jVM的内存分配机制
‘肆’ 简述JAVA程序的编辑编译和运行过程
第一步(编译): 创建完源文件之后,程序会先被编译为.class文件。Java编译一个类时,如果这个类所依赖的类还没有被编译,编译器就会先编译这个被依赖的类,然后引用,否则直接引用,这个有点象make。
如果java编译器在指定目录下找不到该类所其依赖的类的.class文件或者.java源文件的话,编译器话报“cant find symbol”的错误。
第二步(运行):java类运行的过程大概可分为两个过程:1、类的加载 2、类的执行。需要说明的是:JVM主要在程序第一次主动使用类的时候,才会去加载该类。也就是说,JVM并不是在一开始就把一个程序就所有的类都加载到内存中,而是到不得不用的时候才把它加载进来,而且只加载一次。
特别说明:java类中所有public和protected的实例方法都采用动态绑定机制,所有私有方法、静态方法、构造器及初始化方法<clinit>都是采用静态绑定机制。而使用动态绑定机制的时候会用到方法表,静态绑定时并不会用到。
(4)java运行时和编译时扩展阅读:
Java整个编译以及运行的过程相当繁琐,本文通过一个简单的程序来简单的说明整个流程。
Java代码编译:是由Java源码编译器来完成;
Java字节码的执行:是由JVM执行引擎来完成
Java程序从源文件创建到程序运行要经过两大步骤:
1、源文件由编译器编译成字节码(ByteCode)
2、字节码由java虚拟机解释运行。因为java程序既要编译同时也要经过JVM的解释运行,所以说Java被称为半解释语言( "semi-interpreted" language)。
‘伍’ Java创建对象是在编译时还是在运行时
运行期。编译好的java程序(即.class文件)需要运行在JVM中。程序,无论代码还是数据,都需要存储在内存中。JVM为java程序提供并管理所需要的内存空间。JVM内存分为"堆"、"栈"、"方法区"三个区域,分别用于存储不同数据。首先JVM会检查创建这个对象的类是否是一个以前从没有见过的类型,如果不是,JVM将为其分配内存,如果是,java虚拟机将调用具体的ClassLoader找到对应的.class文件,并将这个文件的内容读到内存中去。
1)堆:
1.1)用于存储所有new出来的对象(包括成员变量)。
1.2)垃圾:没有任何引用所指向的对象。
垃圾回收器(GC)不定时到内存中清扫垃圾,
并不一定一发现垃圾就立刻回收,
回收过程是透明的(看不到的),
通过调用System.gc()可以建议虚拟机尽快调度GC来回收。
1.3)内存泄漏:不再使用的内存没有被及时的回收。
建议:不再使用的对象,及时将引用设置为null。
1.4)成员变量的生命周期:
创建对象时存储在堆中,对象被回收时一并被回收。
2)栈:
2.1)用于存储正在调用的方法中的所有局部变量(包括参数)
2.2)JVM会为每一个正在调用的方法分配一块对应的栈帧,
栈帧中存储方法中的局部变量(包括参数),
方法调用结束时,栈帧被清除,局部变量一并被清除。
2.3)局部变量的生命周期:
调用方法时存在栈中,方法结束时与栈帧一并被清除。
3)方法区:
3.1)用于存储.class字节码文件(包括方法)。
3.2)方法只有一份,通过this来区分具体的对象。
既然对象在堆中创建,因此Java创建对象是在运行时,而不是编译时。
‘陆’ java编译时类型和运行时类型该如何理解
编译期只会检查实例声明的类型和强制转化的类型是否存在extend/implement关系,因为从声明变量类型,到强制转化变量的类型之间可能存在编译期无法解析的代码,虽然示例中只是一个简单的赋值,肉眼就可以判断实际类型,但是对于编译器来说是无法判断的,举个简单的例子:
public static void foo(boolean flag) {
Useful xx = flag ? new Useful() : new MoreUseful();
((MoreUseful)xx).g(); // 编译器如何判断此处是否有错误?
// flag=false的时候可以正常运行,就不能说这里有编译期错误}public static void main(String[] args) {
foo(true);
foo(false);
}
‘柒’ 请问java中的编译期和运行期有什么区别
编译时是调用检查你的源程序是否有语法错误,如果没有就将其翻译成字节码文件。即.class文件。
运行时是java虚拟机解释执行字节码文件。
‘捌’ Java之运行时异常与编译时异常区别
Java中用2种方法处理异常:
1.在发生异常的地方直接处理;
2.将异常抛给调用者,让调用者处理。
Java常见的异常:
(1)编译时异常:Java.lang.Exception
(2)运行期异常:Java.lang.RuntimeException
Java.lang.Exception和Java.lang.Error继承自Java.lang.Throwable;
Java.lang.RuntimeException继承自Java.lang.Exception.
编译时异常: 程序正确,但因为外在的环境条件不满足引发。例如:用户错误及I/O问题----程序试图打开一个并不存在的远程Socket端口。这不是程序本身的逻辑错误,而很可能是远程机器名字错误(用户拼写错误)。对商用软件系统,程序开发者必须考虑并处理这个问题。Java编译器强制要求处理这类异常,如果不捕获这类异常,程序将不能被编译。
运行期异常: 这意味着程序存在bug,如数组越界,0被除,入参不满足规范.....这类异常需要更改程序来避免,Java编译器强制要求处理这类异常。
‘玖’ java运行时类型和编译时类型都是什么意思
运行时类型是 程序运行过程中再判断是什么类型,
编译时类型是 在写好代码后,编译时已经确定是什么类型了
‘拾’ java 运行时调用方法和编译时调用方法有什么不同
一个是在编译时就确定一个是在运行过程调用中才确定的 -- 转载以前看过的一个解释,获取能对你有帮助吧=====运行时类型识别(Run-time Type Identification, RTTI)主要有两种方式,一种是我们在编译时和运行时已经知道了所有的类型,另外一种是功能强大的“反射”机制。
要理解RTTI在Java中的工作原理,首先必须知道类型信息在运行时是如何表示的,这项工作是由“Class对象”完成的,它包含了与类有关的信息。类是程序的重要组成部分,每个类都有一个Class对象,每当编写并编译了一个新类就会产生一个Class对象,它被保存在一个同名的.class文件中。在运行时,当我们想生成这个类的对象时,运行这个程序的Java虚拟机(JVM)会确认这个类的Class对象是否已经加载,如果尚未加载,JVM就会根据类名查找.class文件,并将其载入,一旦这个类的Class对象被载入内存,它就被用来创建这个类的所有对象。一般的RTTI形式包括三种:
1.传统的类型转换。如“(Apple)Fruit”,由RTTI确保类型转换的正确性,如果执行了一个错误的类型转换,就会抛出一个ClassCastException异常。
2.通过Class对象来获取对象的类型。如
Class c = Class.forName(“Apple”);
Object o = c.newInstance();
3.通过关键字instanceof或Class.isInstance()方法来确定对象是否属于某个特定类型的实例,准确的说,应该是instanceof / Class.isInstance()可以用来确定对象是否属于某个特定类及其所有基类的实例,这和equals() / ==不一样,它们用来比较两个对象是否属于同一个类的实例,没有考虑继承关系。
反射
如果不知道某个对象的类型,可以通过RTTI来获取,但前提是这个类型在编译时必须已知,这样才能使用RTTI来识别。即在编译时,编译器必须知道所有通过RTTI来处理的类。
使用反射机制可以不受这个限制,它主要应用于两种情况,第一个是“基于构件的编程”,在这种编程方式中,将使用某种基于快速应用开发(RAD)的应用构建工具来构建项目。这是现在最常见的可视化编程方法,通过代表不同组件的图标拖动到图板上来创建程序,然后设置构件的属性值来配置它们。这种配置要求构件都是可实例化的,并且要暴露其部分信息,使得程序员可以读取和设置构件的值。当处理GUI时间的构件时还必须暴露相关方法的细细,以便RAD环境帮助程序员覆盖这些处理事件的方法。在这里,就要用到反射的机制来检查可用的方法并返回方法名。Java通过JavaBeans提供了基于构件的编程架构。
第二种情况,在运行时获取类的信息的另外一个动机,就是希望能够提供在跨网络的远程平台上创建和运行对象的能力。这被成为远程调用(RMI),它允许一个Java程序将对象分步在多台机器上,这种分步能力将帮助开发人员执行一些需要进行大量计算的任务,充分利用计算机资源,提高运行速度。
Class支持反射,java.lang.reflect中包含了Field/Method/Constructor类,每个类都实现了Member接口。这些类型的对象都是由JVM在运行时创建的,用来表示未知类里对应的成员。如可以用Constructor类创建新的对象,用get()和set()方法读取和修改与Field对象关联的字段,用invoke()方法调用与Method对象关联的方法。同时,还可以调用getFields()、getMethods()、getConstructors()等方法来返回表示字段、方法以及构造器的对象数组。这样,未知的对象的类信息在运行时就能被完全确定下来,而在编译时不需要知道任何信息。
另外,RTTI有时能解决效率问题。当程序中使用多态给程序的运行带来负担的时候,可以使用RTTI编写一段代码来提高效率