当前位置:首页 » 云服务器 » 自己搭建高校爬虫服务器

自己搭建高校爬虫服务器

发布时间: 2023-02-03 15:12:51

⑴ 爬虫代理服务器怎么用

我们都知道数据信息是很重要的,当我们进行数据采集的时候直接去别人的网站住区数据的话,是会被网站的反爬虫限制,如果我们是不使用代理ip,在数据采集的时候可能就不能顺利地完成工作。代理ip可以帮助我们隐藏真实的ip地址,我们就像一个真实的用户在浏览网页。可以放心的进行数据抓取。
因为互联网的发展很多的HTTP代理开始出现,很多的人不知道选择什么用哪个代理商。我们在选择的时候要看自己从事的什么业务,不能随便的选择。我自己使用过的HTTP代理有极光HTTP,稳定性比较高。操作也很简单。
1、使用HTTP代理-登录注册
2、提取代理ip-生成生成API链接生-打开链接
3、可以使用打开360安全浏览器,并点击【打开菜单-工具-代理服务器-代理服务器设置】
4、粘贴提取的代理IP地址至代理服务器列表,即完成设置

⑵ 使用树莓派搭建爬虫服务器

先安装散热片

在固定到底板上,一共有四个螺丝

查SD卡的那一侧先不安装

固定好风扇

完成!

⑶ 爬虫代理服务器怎么用

如何使用SOCKS代理服务器

这里就到重点内容了,SOCKS代理是目前功能最为全面,使用最为稳定的代理服务器,我目前上网就只用SSH搭建SOCKS代理服务器上网,访问网络没有任何限制。下面我就着重讲一下如何使用SOCKS代理服务器。

用SSH搭建SOCKS代理上网,建议使用Firefox浏览器,因为Firefox支持SOCKS代理远程域名解析,而IE只能通过类似SocksCap这样的第三方软件实现,不是很方便。

配置Firefox浏览器

在Firefox设置SOCKS远程域名解析,主要是为了防止DNS污染,具体设置方法是,在Firefox地址栏中,输入 about:config ,按确认,修改里面的一项数值,

python 爬虫 ip池怎么做

Python爬虫采集信息都是采用IP进行更改,不然就不能快速的爬取信息,可以加入采用这类方式,就失去了快速抓取的意义。
所以,如果要大批量的抓取信息,就不能避免的使用IP池,针对Python爬虫使用的IP池,是如何搭建起来的呢?接下来和大家说明一下如何建爬虫IP池的问题。
第一步:找IP资源
IP资源并不丰富,换句话说是供不应求的,因此一般是使用动态IP。
免费方法,直接在网络上找,在搜索引擎中一搜索特别多能够提供IP资源的网站,进行采集即可。
付费方法,通过购买芝麻代理上的IP资源,并进行提取,搭建IP池。
第二步,检测可用IP保存
提取到的IP,可以进一步进行检测是否可用,比如访问某个固定的网站,找出访问成功的IP进行保存。
第三步,随机调用IP
在爬虫需要使用IP时,可用读取保存IP的文件,进行随机调用IP。
本文介绍了如何建爬虫的IP池方法,可以说搭建IP池很容易,可有些IP的时效性很短,使用之前还可以再测试一次的。如果考虑免费IP,那么对于IP的效果性要做好心理准备的。

⑸ python爬虫 如何自己用云服务器上搭建代理服务器 并使用requests测试代理

1、简介
使用同一个ip频繁爬取一个网站,久了之后会被该网站的服务器屏蔽。所以这个时候需要使用代理服务器。通过ip欺骗的方式去爬取网站

可以使用http://yum.iqianyue.com.com/proxy中找到很多服务器代理地址

2、应用
# *-*coding:utf-8*-*
from urllib import request
def use_porxy(porxy_addr,url):
porxy = request.ProxyHandler({'http':porxy_addr})
opener = request.build_opener(porxy, request.ProxyHandler)
request.install_opener(opener)
data = request.urlopen(url).read().decode('utf-8')
return data
data = use_porxy("114.115.182.59:128","http://www..com")
print(len(data))

⑹ 如何使用爬虫做一个网站

做法:传统爬虫从一个或若干初始网页的URL开始,获得初始网页上的URL,在抓取网页的过程中,不断从当前页面上抽取新的URL放入队列,直到满足系统的一定停止条件。聚焦爬虫的工作流程较为复杂,需要根据一定的网页分析算法过滤与主题无关的链接,保留有用的链接并将其放入等待抓取的URL队列。

然后,它将根据一定的搜索策略从队列中选择下一步要抓取的网页URL,并重复上述过程,直到达到系统的某一条件时停止。另外,所有被爬虫抓取的网页将会被系统存贮,进行一定的分析、过滤,并建立索引,以便之后的查询和检索;对于聚焦爬虫来说,这一过程所得到的分析结果还可能对以后的抓取过程给出反馈和指导。

⑺ 如何用Python写一个分布式爬虫

本文将会以PC端微博进行讲解,因为移动端微博数据不如PC短全面,而且抓取和解析难度都会小一些。文章比较长,由于篇幅所限,文章并没有列出所有代码,只是讲了大致流程和思路。

要抓微博数据,第一步便是模拟登陆,因为很多信息(比如用户信息,用户主页微博数据翻页等各种翻页)都需要在登录状态下才能查看。关于模拟登陆进阶,我写过两篇文章,一篇是模拟登陆微博的,是从小白的角度写的。另外一篇是模拟登陆网络云的,是从有一定经验的熟手的角度写的。读了这两篇文章,并且根据我写的过程自己动手实现过的同学,应该对于模拟登陆PC端微博是没有太大难度的。那两篇文章没有讲如何处理验证码,这里我简单说一下,做爬虫的同学不要老想着用什么机器学习的方法去识别复杂验证码,真的难度非常大,这应该也不是一个爬虫工程师的工作重点,当然这只是我的个人建议。工程化的项目,我还是建议大家通过打码平台来解决验证码的问题。我在分布式微博爬虫中就是直接调用打码平台的接口来做的大规模微博账号的模拟登陆,效果还不错,而且打码成本很低。

说完模拟登陆(具体请参见我写的那两篇文章,篇幅所限,我就不过来了),我们现在正式进入微博的数据抓取。这里我会以微博用户信息抓取为例来进行分析和讲解。

关于用户信息抓取,可能我们有两个目的。一个是我们只想抓一些指定用户,另外一个是我们想尽可能多的抓取更多数量的用户的信息。我的目的假定是第二种。那么我们该以什么样的策略来抓取,才能获得尽可能多的用户信息呢?如果我们初始用户选择有误,选了一些不活跃的用户,很可能会形成一个环,这样就抓不了太多的数据。这里有一个很简单的思路:我们把一些大V拿来做为种子用户,我们先抓他们的个人信息,然后再抓大V所关注的用户和粉丝,大V关注的用户肯定也是类似大V的用户,这样的话,就不容易形成环了。

策略我们都清楚了。就该是分析和编码了。

我们先来分析如何构造用户信息的URL。这里我以微博名为一起神吐槽的博主为例进行分析。做爬虫的话,一个很重要的意识就是爬虫能抓的数据都是人能看到的数据,反过来,人能在浏览器上看到的数据,爬虫几乎都能抓。这里用的是几乎,因为有的数据抓取难度特别。我们首先需要以正常人的流程看看怎么获取到用户的信息。我们先进入该博主的主页,如下图

根据唯一性判断

我们在页面源码中搜索,只发现一个script中有该字符串,那么就是那段script是页面相关信息。我们可以通过正则表达式把该script提取出来,然后把其中的html也提取出来,再保存到本地,看看信息是否全面。这里我就不截图了。感觉还有很多要写的,不然篇幅太长了。

另外,对于具体页面的解析,我也不做太多的介绍了。太细的东西还是建议读读源码。我只讲一下,我觉得的一种处理异常的比较优雅的方式。微博爬虫的话,主要是页面样式太多,如果你打算包含所有不同的用户的模版,那么我觉得几乎不可能,不同用户模版,用到的解析规则就不一样。那么出现解析异常如何处理?尤其是你没有catch到的异常。很可能因为这个问题,程序就崩掉。其实对于Python这门语言来说,我们可以通过装饰器来捕捉我们没有考虑到的异常,比如我这个装饰器

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

def parse_decorator(return_type):

"""

:param return_type: 用于捕捉页面解析的异常, 0表示返回数字0, 1表示返回空字符串, 2表示返回[],3表示返回False, 4表示返回{}, 5返回None

:return: 0,'',[],False,{},None

"""

def page_parse(func):

@wraps(func)

def handle_error(*keys):

try:

return func(*keys)

except Exception as e:

parser.error(e)

if return_type == 5:

return None

elif return_type == 4:

return {}

elif return_type == 3:

return False

elif return_type == 2:

return []

elif return_type == 1:

return ''

else:

return 0

return handle_error

return page_parse

上面的代码就是处理解析页面发生异常的情况,我们只能在数据的准确性、全面性和程序的健壮性之间做一些取舍。用装饰器的话,程序中不用写太多的try语句,代码重复率也会减少很多。

页面的解析由于篇幅所限,我就讲到这里了。没有涉及太具体的解析,其中一个还有一个比较难的点,就是数据的全面性,读者可以去多观察几个微博用户的个人信息,就会发现有的个人信息,有的用户有填写,有的并没有。解析的时候要考虑完的话,建议从自己的微博的个人信息入手,看到底有哪些可以填。这样可以保证几乎不会漏掉一些重要的信息。

最后,我再切合本文的标题,讲如何搭建一个分布式的微博爬虫。开发过程中,我们可以先就做单机单线程的爬虫,然后再改成使用celery的方式。这里这样做是为了方便开发和测试,因为你单机搭起来并且跑得通了,那么分布式的话,就很容易改了,因为celery的API使用本来就很简洁。

我们抓取的是用户信息和他的关注和粉丝uid。用户信息的话,我们一个请求大概能抓取一个用户的信息,而粉丝和关注我们一个请求可以抓取18个左右(因为这个抓的是列表),显然可以发现用户信息应该多占一些请求的资源。这时候就该介绍理论篇没有介绍的关于celery的一个高级特性了,它叫做任务路由。直白点说,它可以规定哪个分布式节点能做哪些任务,不能做哪些任务。它的存在可以让资源分配更加合理,分布式微博爬虫项目初期,就没有使用任务路由,然后抓了十多万条关注和分析,结果发现用户信息抓几万条,这就是资源分配得不合理。那么如何进行任务路由呢?

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

# coding:utf-8

import os

from datetime import timedelta

from celery import Celery

from kombu import Exchange, Queue

from config.conf import get_broker_or_backend

from celery import platforms

# 允许celery以root身份启动

platforms.C_FORCE_ROOT = True

worker_log_path = os.path.join(os.path.dirname(os.path.dirname(__file__))+'/logs', 'celery.log')

beat_log_path = os.path.join(os.path.dirname(os.path.dirname(__file__))+'/logs', 'beat.log')

tasks = ['tasks.login', 'tasks.user']

# include的作用就是注册服务化函数

app = Celery('weibo_task', include=tasks, broker=get_broker_or_backend(1), backend=get_broker_or_backend(2))

app.conf.update(

CELERY_TIMEZONE='Asia/Shanghai',

CELERY_ENABLE_UTC=True,

CELERYD_LOG_FILE=worker_log_path,

CELERYBEAT_LOG_FILE=beat_log_path,

CELERY_ACCEPT_CONTENT=['json'],

CELERY_TASK_SERIALIZER='json',

CELERY_RESULT_SERIALIZER='json',

CELERY_QUEUES=(

Queue('login_queue', exchange=Exchange('login', type='direct'), routing_key='for_login'),

Queue('user_crawler', exchange=Exchange('user_info', type='direct'), routing_key='for_user_info'),

Queue('fans_followers', exchange=Exchange('fans_followers', type='direct'), routing_key='for_fans_followers'),

)

上述代码我指定了有login_queue、user_crawler、fans_followers三个任务队列。它们分别的作用是登录、用户信息抓取、粉丝和关注抓取。现在假设我有三台爬虫服务器A、B和C。我想让我所有的账号登录任务分散到三台服务器、让用户抓取在A和B上执行,让粉丝和关注抓取在C上执行,那么启动A、B、C三个服务器的celery worker的命令就分别是

Python

1

2

3

celery -A tasks.workers -Q login_queue,user_crawler worker -l info -c 1 # A服务器和B服务器启动worker的命令,它们只会执行登录和用户信息抓取任务

celery -A tasks.workers -Q login_queue,fans_followers worker -l info -c 1 # C服务器启动worker的命令,它只会执行登录、粉丝和关注抓取任务

然后我们通过命令行或者代码(如下)就能发送所有任务给各个节点执行了

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

4

⑻ 4.python爬虫之新建 scrapy 爬虫项目(抓取和保存)

1.win10 下 win + r 打开cmd 切换新项目的目录
2.新建scrapy项目的命令:

可以利用pycharm 打开项目文件夹编辑项目
3.items.py
声明爬取的字段

4.新建scrapy 爬虫

用命令 scrapy genspider doubanmovie "movie.douban.com" 创建爬虫。

5.运行爬虫

5.1 创建运行脚本
(一)、在 scrapy.cfg 同级目录下创建 pycharm 调试脚本 run.py,避免每次运行爬虫输入密码,内容如下:

6.修改robottxt协议
修改 settings 中的 ROBOTSTXT_OBEY = True 参数为 False,因为默认为 True,就是要遵守 robots.txt 的规则, robots.txt 是遵循 Robot协议 的一个文件,它保存在网站的服务器中,它的作用是,告诉搜索引擎爬虫,本网站哪些目录下的网页不希望你进行爬取收录。在 Scrapy 启动后,会在第一时间访问网站的 robots.txt 文件,然后决定该网站的爬取范围。查看 robots.txt 可以直接网址后接 robots.txt 即可。

一般构建爬虫系统,建议自己编写Item Pipeline,就可以在open(path)选择自己的保存路径
参考: # scrapy爬虫事件以及数据保存为txt,json,mysql

7.1保存为json格式时出现乱码的解决方式:
scrapy抓取豆瓣书籍保存json文件乱码问题
中文默认是Unicode,如:

\u5317\u4eac\u5927\u5b66
在setting文件settings.py中设置:

就可以解决了
第二种解决办法
或在cmd中传入 -s FEED_EXPORT_ENCODING='utf-8'

参考: https://www.cnblogs.com/tinghai8/p/9700300.html

热点内容
php地址正则表达式 发布:2025-05-16 19:44:01 浏览:466
oracle存储过程优点 发布:2025-05-16 19:41:36 浏览:613
无法访问g盘拒绝访问 发布:2025-05-16 19:32:57 浏览:118
阿里云服务器如何把c盘变成d盘 发布:2025-05-16 19:12:36 浏览:496
unix环境高级编程学习 发布:2025-05-16 19:11:49 浏览:421
如何将20的硝酸配置成5的 发布:2025-05-16 19:04:42 浏览:971
怎么给一个文件夹设置时间开锁 发布:2025-05-16 18:58:00 浏览:823
脚本存放目录 发布:2025-05-16 18:57:20 浏览:566
cs16制作脚本 发布:2025-05-16 18:44:25 浏览:444
分油算法 发布:2025-05-16 18:36:19 浏览:691