当前位置:首页 » 操作系统 » 遗传算法的迭代次数

遗传算法的迭代次数

发布时间: 2022-05-31 19:13:31

1. 遗传算法的迭代次数是怎么确定的,与什么有关

1. 遗传算法简介

遗传算法是用于解决最优化问题的一种搜索算法,算法的整体思路是建立在达尔文生物进化论“优胜劣汰”规律的基础上。它将生物学中的基因编码、染色体交叉、基因变异以及自然选择等概念引入最优化问题的求解过程中,通过不断的“种群进化”,最终得到问题的最优解。

2. 遗传算法实现步骤

在讲下面几个基于生物学提出的概念之前,首先我们需要理解为什么需要在最优化问题的求解中引入生物学中的各种概念。

假设我们需要求一个函数的最大值,但这个函数异常复杂以至于无法套用一般化的公式,那么就会想到:如果可以将所有可能的解代入方程,那么函数最大值所对应的那个解就是问题的最优解。但是,对于较复杂的函数来说,其可能的解的个数的数量级是我们所无法想象的。因此,我们只好退而求其次,只代入部分解并在其中找到最优解。那么这样做的核心就在于如何设定算法确定部分解并去逼近函数的最优解或者较好的局部最优解。

遗传算法就是为了解决上述问题而诞生的。假设函数值所对应的所有解是一个容量超级大的种群,而种群中的个体就是一个个解,接下去遗传算法的工作就是让这个种群中的部分个体去不断繁衍,在繁衍的过程中一方面会发生染色体交叉而产生新的个体。另一方面,基因变异也会有概率会发生并产生新的个体。接下去,只需要通过自然选择的方式,淘汰质量差的个体,保留质量好的个体,并且让这个繁衍的过程持续下去,那么最后就有可能进化出最优或者较优的个体。这么看来原来最优化问题居然和遗传变异是相通的,而且大自然早已掌握了这样的机制,这着实令人兴奋。为了将这种机制引入最优化问题并利用计算机求解,我们需要将上述提到的生物学概念转化为计算机能够理解的算法机制。

下面介绍在计算机中这种遗传变异的机制是如何实现的:

基因编码与解码:

在生物学中,交叉与变异能够实现是得益于染色体上的基因,可以想象每个个体都是一串超级长的基因编码,当两个个体发生交叉时,两条基因编码就会发生交换,产生的新基因同时包含父亲和母亲的基因编码。在交叉过程中或者完成后,某些基因点位又会因为各种因素发生突变,由此产生新的基因编码。当然,发生交叉和变异之后的个体并不一定优于原个体,但这给了进化(产生更加优秀的个体)发生的可能。

因此,为了在计算机里实现交叉和变异,就需要对十进制的解进行编码。对于计算机来说其最底层的语言是由二进制0、1构成的,而0、1就能够被用来表示每个基因点位,大量的0、1就能够表示一串基因编码,因此我们可以用二进制对十进制数进行编码,即将十进制的数映射到二进制上。但是我们并不关心如何将十进制转换为二进制的数,因为计算机可以随机生成大量的二进制串,我们只需要将办法将二进制转化为十进制就可以了。

二进制转换为十进制实现方式:

假设,我们需要将二进制映射到以下范围:

首先,将二进制串展开并通过计算式转化为[0,1]范围内的数字:

将[0,1]范围内的数字映射到我们所需要的区间内:

交叉与变异:

在能够用二进制串表示十进制数的基础上,我们需要将交叉与变异引入算法中。假设我们已经获得两条二进制串(基因编码),一条作为父亲,一条作为母亲,那么交叉指的就是用父方一半的二进制编码与母方一半的二进制编码组合成为一条新的二进制串(即新的基因)。变异则指的是在交叉完成产生子代的过程中,二进制串上某个数字发生了变异,由此产生新的二进制串。当然,交叉与变异并不是必然发生的,其需要满足一定的概率条件。一般来说,交叉发生的概率较大,变异发生的概率较小。交叉是为了让算法朝着收敛的方向发展,而变异则是为了让算法有几率跳出某种局部最优解。

自然选择:

在成功将基因编码和解码以及交叉与变异引入算法后,我们已经实现了让算法自动产生部分解并优化的机制。接下去,我们需要解决如何在算法中实现自然选择并将优秀的个体保留下来进而进化出更优秀的个体。

首先我们需要确定个体是否优秀,考虑先将其二进制串转化为十进制数并代入最初定义的目标函数中,将函数值定义为适应度。在这里,假设我们要求的是最大值,则定义函数值越大,则其适应度越大。那是否在每一轮迭代过程中只需要按照适应度对个体进行排序并选出更加优秀的个体就可以了呢?事实上,自然选择的过程中存在一个现象,并没有说优秀的个体一定会被保留,而差劲的个体就一定被会被淘汰。自然选择是一个概率事件,越适应环境则生存下去的概率越高,反之越低。为了遵循这样的思想,我们可以根据之前定义的适应度的大小给定每个个体一定的生存概率,其适应度越高,则在筛选时被保留下来的概率也越高,反之越低。

那么问题就来了,如何定义这种生存概率,一般来说,我们可以将个体适应度与全部个体适应度之和的比率作为生存概率。但我们在定义适应度时使用函数值进行定义的,但函数值是有可能为负的,但概率不能为负。因此,我们需要对函数值进行正数化处理,其处理方式如下:

定义适应度函数:

定义生存概率函数:

注:最后一项之所以加上0.0001是因为不能让某个个体的生存概率变为0,这不符合自然选择中包含的概率思想。

3. 遗传算例

在这里以一个比较简单的函数为例,可以直接判断出函数的最小值为0,最优解为(0,0)

若利用遗传算法进行求解,设定交叉概率为0.8,变异概率为0.005,种群内个体数为2000,十进制数基因编码长度为24,迭代次数为500次。

从遗传算法收敛的动态图中可以发现,遗传算法现实生成了大量的解,并对这些解进行试错,最终收敛到最大值,可以发现遗传算法的结果大致上与最优解无异,结果图如下:

4. 遗传算法优缺点

优点:

1、 通过变异机制避免算法陷入局部最优,搜索能力强

2、 引入自然选择中的概率思想,个体的选择具有随机性

3、 可拓展性强,易于与其他算法进行结合使用

缺点:

1、 遗传算法编程较为复杂,涉及到基因编码与解码

2、 算法内包含的交叉率、变异率等参数的设定需要依靠经验确定

3、 对于初始种群的优劣依赖性较强

2. 遗传算法迭代次数比较小比如10,是不是比较不会陷入局部

在优化问题本身是凸优化问题的情况下,局部最优等于全局最优。在非凸优化的情况下,理论上是无法保证找到全局最优解的,但是可以通过例如改变初始值等方法找到尽量接近全局最优解的局部最优解。

3. 遗传算法迭代次数比较多比如100,是不是会陷入局部!

迭代次数一般设置为你能承受的次数,此外还要看你的可行解的空间大小,空间大的需要次方的迭代次数。解决方案:一般设置迭代次数多一点,然后设置结束误差,达到允许的误差之后跳出就行了

4. 遗传算法的问题。

遗传算法主要是用来求解最优化问题的。
一般来讲可以求解函数的最大、最小值问题,还可以结合其它一些方法解决(非)线性回归、分类问题等等。

但遗传算法有两个缺点,一是时间长,二是初值的选择会影响收敛的效果。

它的本质,实际上还是随机搜索算法,还是属于所谓的蒙特卡罗式的方法。

5. 遗传算法

遗传算法实例:

也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。
对于初学者,尤其是还没有编程经验的非常有用的一个文件
遗传算法实例

% 下面举例说明遗传算法 %
% 求下列函数的最大值 %
% f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] %
% 将 x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为 (10-0)/(2^10-1)≈0.01 。 %
% 将变量域 [0,10] 离散化为二值域 [0,1023], x=0+10*b/1023, 其中 b 是 [0,1023] 中的一个二值数。 %
% %
%--------------------------------------------------------------------------------------------------------------%
%--------------------------------------------------------------------------------------------------------------%

% 编程
%-----------------------------------------------
% 2.1初始化(编码)
% initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),
% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。
%遗传算法子程序
%Name: initpop.m
%初始化
function pop=initpop(popsize,chromlength)
pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为 {0,1} 行数为popsize,列数为chromlength的矩阵,
% roud对矩阵的每个单元进行圆整。这样产生的初始种群。

% 2.2 计算目标函数值
% 2.2.1 将二进制数转化为十进制数(1)
%遗传算法子程序
%Name: decodebinary.m
%产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制
function pop2=decodebinary(pop)
[px,py]=size(pop); %求pop行和列数
for i=1:py
pop1(:,i)=2.^(py-i).*pop(:,i);
end
pop2=sum(pop1,2); %求pop1的每行之和

% 2.2.2 将二进制编码转化为十进制数(2)
% decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置
% (对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1),
% 参数1ength表示所截取的长度(本例为10)。
%遗传算法子程序
%Name: decodechrom.m
%将二进制编码转换成十进制
function pop2=decodechrom(pop,spoint,length)
pop1=pop(:,spoint:spoint+length-1);
pop2=decodebinary(pop1);

% 2.2.3 计算目标函数值
% calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。
%遗传算法子程序
%Name: calobjvalue.m
%实现目标函数的计算
function [objvalue]=calobjvalue(pop)
temp1=decodechrom(pop,1,10); %将pop每行转化成十进制数
x=temp1*10/1023; %将二值域 中的数转化为变量域 的数
objvalue=10*sin(5*x)+7*cos(4*x); %计算目标函数值

% 2.3 计算个体的适应值
%遗传算法子程序
%Name:calfitvalue.m
%计算个体的适应值
function fitvalue=calfitvalue(objvalue)
global Cmin;
Cmin=0;
[px,py]=size(objvalue);
for i=1:px
if objvalue(i)+Cmin>0
temp=Cmin+objvalue(i);
else
temp=0.0;
end
fitvalue(i)=temp;
end
fitvalue=fitvalue';

% 2.4 选择复制
% 选择或复制操作是决定哪些个体可以进入下一代。程序中采用赌轮盘选择法选择,这种方法较易实现。
% 根据方程 pi=fi/∑fi=fi/fsum ,选择步骤:
% 1) 在第 t 代,由(1)式计算 fsum 和 pi
% 2) 产生 {0,1} 的随机数 rand( .),求 s=rand( .)*fsum
% 3) 求 ∑fi≥s 中最小的 k ,则第 k 个个体被选中
% 4) 进行 N 次2)、3)操作,得到 N 个个体,成为第 t=t+1 代种群
%遗传算法子程序
%Name: selection.m
%选择复制
function [newpop]=selection(pop,fitvalue)
totalfit=sum(fitvalue); %求适应值之和
fitvalue=fitvalue/totalfit; %单个个体被选择的概率
fitvalue=cumsum(fitvalue); %如 fitvalue=[1 2 3 4],则 cumsum(fitvalue)=[1 3 6 10]
[px,py]=size(pop);
ms=sort(rand(px,1)); %从小到大排列
fitin=1;
newin=1;
while newin<=px
if(ms(newin))<fitvalue(fitin)
newpop(newin)=pop(fitin);
newin=newin+1;
else
fitin=fitin+1;
end
end

% 2.5 交叉
% 交叉(crossover),群体中的每个个体之间都以一定的概率 pc 交叉,即两个个体从各自字符串的某一位置
% (一般是随机确定)开始互相交换,这类似生物进化过程中的基因分裂与重组。例如,假设2个父代个体x1,x2为:
% x1=0100110
% x2=1010001
% 从每个个体的第3位开始交叉,交又后得到2个新的子代个体y1,y2分别为:
% y1=0100001
% y2=1010110
% 这样2个子代个体就分别具有了2个父代个体的某些特征。利用交又我们有可能由父代个体在子代组合成具有更高适合度的个体。
% 事实上交又是遗传算法区别于其它传统优化方法的主要特点之一。
%遗传算法子程序
%Name: crossover.m
%交叉
function [newpop]=crossover(pop,pc)
[px,py]=size(pop);
newpop=ones(size(pop));
for i=1:2:px-1
if(rand<pc)
cpoint=round(rand*py);
newpop(i,:)=[pop(i,1:cpoint),pop(i+1,cpoint+1:py)];
newpop(i+1,:)=[pop(i+1,1:cpoint),pop(i,cpoint+1:py)];
else
newpop(i,:)=pop(i);
newpop(i+1,:)=pop(i+1);
end
end

% 2.6 变异
% 变异(mutation),基因的突变普遍存在于生物的进化过程中。变异是指父代中的每个个体的每一位都以概率 pm 翻转,即由“1”变为“0”,
% 或由“0”变为“1”。遗传算法的变异特性可以使求解过程随机地搜索到解可能存在的整个空间,因此可以在一定程度上求得全局最优解。
%遗传算法子程序
%Name: mutation.m
%变异
function [newpop]=mutation(pop,pm)
[px,py]=size(pop);
newpop=ones(size(pop));
for i=1:px
if(rand<pm)
mpoint=round(rand*py);
if mpoint<=0
mpoint=1;
end
newpop(i)=pop(i);
if any(newpop(i,mpoint))==0
newpop(i,mpoint)=1;
else
newpop(i,mpoint)=0;
end
else
newpop(i)=pop(i);
end
end

% 2.7 求出群体中最大得适应值及其个体
%遗传算法子程序
%Name: best.m
%求出群体中适应值最大的值
function [bestindivial,bestfit]=best(pop,fitvalue)
[px,py]=size(pop);
bestindivial=pop(1,:);
bestfit=fitvalue(1);
for i=2:px
if fitvalue(i)>bestfit
bestindivial=pop(i,:);
bestfit=fitvalue(i);
end
end

% 2.8 主程序
%遗传算法主程序
%Name:genmain05.m
clear
clf
popsize=20; %群体大小
chromlength=10; %字符串长度(个体长度)
pc=0.6; %交叉概率
pm=0.001; %变异概率

pop=initpop(popsize,chromlength); %随机产生初始群体
for i=1:20 %20为迭代次数
[objvalue]=calobjvalue(pop); %计算目标函数
fitvalue=calfitvalue(objvalue); %计算群体中每个个体的适应度
[newpop]=selection(pop,fitvalue); %复制
[newpop]=crossover(pop,pc); %交叉
[newpop]=mutation(pop,pc); %变异
[bestindivial,bestfit]=best(pop,fitvalue); %求出群体中适应值最大的个体及其适应值
y(i)=max(bestfit);
n(i)=i;
pop5=bestindivial;
x(i)=decodechrom(pop5,1,chromlength)*10/1023;
pop=newpop;
end

fplot('10*sin(5*x)+7*cos(4*x)',[0 10])
hold on
plot(x,y,'r*')
hold off

[z index]=max(y); %计算最大值及其位置
x5=x(index)%计算最大值对应的x值
y=z

【问题】求f(x)=x 10*sin(5x) 7*cos(4x)的最大值,其中0<=x<=9
【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08
【程序清单】
%编写目标函数
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x 10*sin(5*x) 7*cos(4*x);
%把上述函数存储为fitness.m文件并放在工作目录下
initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代
运算借过为:x =
7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)
注:遗传算法一般用来取得近似最优解,而不是最优解。
遗传算法实例2
【问题】在-5<=Xi<=5,i=1,2区间内,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2 x2.^2)))-exp(0.5*(cos(2*pi*x1) cos(2*pi*x2))) 22.71282的最小值。
【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3
【程序清单】
%源函数的matlab代码
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv) 22.71282;
%适应度函数的matlab代码
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遗传算法的matlab代码
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')
注:前两个文件存储为m文件并放在工作目录下,运行结果为
p =
0.0000 -0.0000 0.0055
大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:
fplot('x 10*sin(5*x) 7*cos(4*x)',[0,9])
evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。xoverops是传递给交叉函数的参数。mutops是传递给变异函数的参数。

【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9
【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08
【程序清单】
%编写目标函数
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x+10*sin(5*x)+7*cos(4*x);
%把上述函数存储为fitness.m文件并放在工作目录下
initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代
运算借过为:x =
7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)
注:遗传算法一般用来取得近似最优解,而不是最优解。
遗传算法实例2
【问题】在-5<=Xi<=5,i=1,2区间内,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。
【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3
【程序清单】
%源函数的matlab代码
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;
%适应度函数的matlab代码
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遗传算法的matlab代码
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')
注:前两个文件存储为m文件并放在工作目录下,运行结果为
p =
0.0000 -0.0000 0.0055
大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:
fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])
evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。xoverops是传递给交叉函数的参数。mutops是传递给变异函数的参数。
打字不易,如满意,望采纳。

6. 遗传算法中有一个最大迭代次数的概念,我想请问一下,这个是由自己根据题目要求自己制定的吗!

是的.达到优化值可以停止,所以一般都有两个退出条件.

7. 遗传算法迭代次数过多会怎么样!

迭代次数一般设置为你能承受的次数,此外还要看你的可行解的空间大小,空间大的需要更多次方的迭代次数。
解决方案:一般设置迭代次数多一点,然后设置结束误差,达到允许的误差之后跳出就行了

8. 遗传算法的停止代数是迭代次数吗

是的~

9. 遗传算法m次迭代,比迭代50次应该会比较好吧

这个用算时间不算慢了,还可以,为了提高全局寻优,避免陷入局部最优解你可以尝试增加种群个数NIND,最好不要让迭代次数过大,这往往会将低算法的泛化性能

10. 遗传算法中有一个最大迭代次数的概念,我想请问一下,这个是由自己根据题目要求自己制定的吗!

是的。达到优化值可以停止,所以一般都有两个退出条件。

热点内容
cbs加密 发布:2024-05-19 06:29:56 浏览:200
ssis存储过程 发布:2024-05-19 06:21:31 浏览:630
怎样删除小视频文件夹 发布:2024-05-19 05:49:29 浏览:589
开启php短标签 发布:2024-05-19 05:44:12 浏览:473
android各国语言 发布:2024-05-19 05:42:54 浏览:247
微信什么资料都没怎么找回密码 发布:2024-05-19 05:35:34 浏览:907
填志愿密码是什么 发布:2024-05-19 05:30:23 浏览:318
城堡争霸自动掠夺脚本 发布:2024-05-19 05:22:06 浏览:204
asp编程工具 发布:2024-05-19 05:20:36 浏览:143
insertpython 发布:2024-05-19 05:12:26 浏览:244