当前位置:首页 » 操作系统 » linux命名规范

linux命名规范

发布时间: 2022-07-03 18:19:30

1. 请教:linux 下的so文件的命名有规范吗

数字的规范,例如 3.2.10,大意是这样说的:
第三位数字的升位是指程序修改了bug;
第二位数字的升位是指增加了新的功能,但还是和老的版本兼容.
第一位数字的升位是指增加了新的功能,且与老的版本不兼容了.

2. 什么是linux操作系统

1991年, 芬兰赫而辛基的学生Linus Torvalds为了自己使用与学习的需要,他开发了类Unix且运行在80386平台上运行的操作系统,命名为Linux。为了使每个需要它的人都能够容易的得到它,Linus Torvalds把它变成了"自由"软件。

感谢Internet的飞速发展使得全世界的程序开发员有了一种全新的有效沟通方法。还要感谢在数年之前由Richard Stallman主持的GNU项目。Linux在几年后变成了一个完整的操作系统。它的能量特到了释放,它变得非常可靠,并且每天都会有新的改进加入进去。

为了使Linux变的容易使用,Linux也有了许多发布版本,发布版实际上就是一整套完整的程序组合。现在已经有许多不同的Linux发行版和各自的版本号,为了不产生混淆,我们先解释一些常提到的术语。

当我们提到的Linux时,一般是指"Real Linux",即内核,是所有UNIX操作系统的“心脏”。但光有linux并不能成为一个可用的操作系统。还需要许多软件包,编译器,程序库文件,Xwindow系统等等。因为组合方式不同,面向用户对象不同,所以这就是为什么有许多不同的Linux发行版的原因。

Linux操作系统在短短的几年之内得到了非常迅猛的发展,这与Linux具有的良好特性是分不开的。Linux包含了Unix的全部功能和特性。简单的说,Linux具有以下主要特性:

1 开放性
开放性是指系统遵循世界标准规范,特别是遵循开放系统互连(OSI)国际标准。凡遵循国际标准所开发的硬件和软件,都能彼此兼容,可方便地实现互连。
2 多用户
多用户是指系统资源可以被不同用户各自拥有使用,即每个用户对自己的资源(例如:文件、设备)有特定的权限,互不影响。Linux和Unix都具有多用户的特性。
3 多任务
多任务是现代计算机的最主要的一个特点。它是指计算机同时执行多个程序,而且各个程序的运行互相独立。Linux系统调度每一个进程平等地访问微处理器。由于CPU的处理速度非常快,其结果是,启动的应用程序看起来好像在并行运行。事实上,从处理器执行一个应用程序中的一组指令到Linux调度微处理器再次运行这个程序之间只有很短的时间延迟,用户是感觉不出来的。
4 良好的用户界面
Linux向用户提供了两种界面:用户界面和系统调用。Linux的传统用户界面是基于文本的命令行界面,即shell,它既可以联机使用,又可存在文件上脱机使用。shell有很强的程序设计能力,用户可方便地用它编制程序,从而为用户扩充系统功能提供了更高级的手段。可编程Shell是指将多条命令组合在一起,形成一个Shell程序,这个程序可以单独运行,也可以与其他程序同时运行。
系统调用给用户提供编程时使用的界面。用户可以在编程时直接使用系统提供的系统调用命令。系统通过这个界面为用户程序提供低级、高效率的服务。
Linux还为用户提供了图形用户界面。它利用鼠标、菜单、窗口、滚动条等设施,给用户呈现一个直观、易操作、交互性强的友好的图形化界面。
5 设备独立性
设备独立性是指操作系统把所有外部设备统一当作成文件来看待,只要安装它们的驱动程序,任何用户都可以象使用文件一样,操纵、使用这些设备,而不必知道它们的具体存在形式。
具有设备独立性的操作系统,通过把每一个外围设备看作一个独立文件来简化增加新设备的工作。当需要增加新设备时、系统管理员就在内核中增加必要的连接。这种连接(也称作设备驱动程序)保证每次调用设备提供服务时,内核以相同的方式来处理它们。当新的及更好的外设被开发并交付给用户时,操作允许在这些设备连接到内核后,就能不受限制地立即访问它们。设备独立性的关键在于内核的适应能力。其他操作系统只允许一定数量或一定种类的外部设备连接。而设备独立性的操作系统能够容纳任意种类及任意数量的设备,因为每一个设备都是通过其与内核的专用连接独立进行访问。
Linux是具有设备独立性的操作系统,它的内核具有高度适应能力,随着更多的程序员加入Linux编程,会有更多硬件设备加入到各种Linux内核和发行版本中。另外,由于用户可以免费得到Linux的内核源代码,因此,用户可以修改内核源代码,以便适应新增加的外部设备。
6 供了丰富的网络功能
完善的内置网络是Linux的一大特点。 Linux在通信和网络功能方面优于其他操作系统。其他操作系统不包含如此紧密地和内核结合在一起的连接网络的能力,也没有内置这些联网特性的灵活性。而Linux为用户提供了完善的、强大的网络功能。
支持Internet是其网络功能之一。Linux免费提供了大量支持Internet的软件,Internet是在Unix领域中建立并繁荣起来的,在这方面使用Linux是相当方便的,用户能用Linux与世界上的其他人通过Internet网络进行通信。
文件传输是其网络功能之二。用户能通过一些Linux命令完成内部信息或文件的传输。
远程访问是其网络功能之三。Linux不仅允许进行文件和程序的传输,它还为系统管理员和技术人员提供了访问其他系统的窗口。通过这种远程访问的功能,一位技术人员能够有效地为多个系统服务,即使那些系统位于相距很远的地方。
7 可靠的系统安全
Linux采取了许多安全技术措施,包括对读、写进行权限控制、带保护的子系统、审计跟踪、核心授权等,这为网络多用户环境中的用户提供了必要的安全保障。
8 良好的可移植性
可移植性是指将操作系统从一个平台转移到另一个平台使它仍然能按其自身的方式运行的能力。
Linux是一种可移植的操作系统,能够在从微型计算机到大型计算机的任何环境中和任何平台上运行。可移植性为运行Linux的不同计算机平台与其他任何机器进行准确而有效的通信提供了手段,不需要另外增加特殊的和昂贵的通信接口。

3. linux内核版本号命名的规则以及去哪下载内核源码

内核官方命名规则只有 例如 2.6.23 , 表明属于内核2.6 , 23rd release

然后对于各发行版 ,则存在一些针对发行版的优化 ,比如在这里的 2.6.23只有的 9-85 , 通常约定是 当前版本的第9版内核patch 而85则作为 这个当前版本的第85次微调patch , 而FC8很明显的就指出了当前内核是为FC8特别调校的

至于 2.6.23.9-85.fc8 的内核源码,fedora官方已经提供了编译好的源码rpm包 下载地址为

http://download.fedora.redhat.com/pub/fedora/linux/releases/8/Fedora/source/SRPMS/

然后安装源码

$sudo rpm -ivh kernel-2.6.23.9-85.fc8.src.rpm

安装后还需要一步转换过程

转换源码:
在转换之前,请确保/usr/src/目录下有redhat目录(一般/usr/src/是空目录)。
$sudo rpmbuild -bp --target=$(uname -m) /usr/src/redhat/SPECS/kernel.spec
这样会将源码放置在/usr/src/redhat/BUILD/kernel-2.6.23/。
这里有两个有用的文件夹:.
A、linux-2.6.23.ARCH——这个是kernel.org 提供的包经过Fedora 补丁和升级得到的。也就是 2.6.23.9-85.fc8 这个打过补丁的内核
ARCH 与uname-m 的输出结果一致,通常为i686。如果你想得到不同的输出,你可以使用
“--target=”这个选项来进行指定。
B、vanilla——这个是标准的、由kernel.org 提供的没有经过补丁和升级的源码。

---------------------------------------------------------

至于i686之类的,就不必解释了吧 呵呵

另外反驳楼上的这个说法
"在网上下载内核源码的话,可以直接到官网:http://www.kernel.org
至于rpm包就不用考虑了,因为内核源码,你总要编译安装的。 "

这对于任何内核做过特殊优化调校的发行版都是不合适的,尤其是fedora ubuntu 这一类的,毕竟他们在内核中打了大量的补丁,做了很多优化,如果直接使用官方源码 ,你就无法享受到这些东西 , 内核不是越新越好的 越合适越好

4. linux系统中,用户自定义变量的定义和使用方法与c语言有何异同

变量定义和使用基本相同。都是按照C语言标准的。命名规范可能有点差别,linux系统中,通常用小写的字母、单词, Windows中C语言通常首字母大写。

5. linux中,设备文件命名有什么规则

比如/dev/hda1这个IDE设备。hd是Hard Disk(硬盘)的意思,sd是SCSI Device,fd是Floppy Device(或是Floppy Disk?)。a则是代表第一个设备,通常IDE接口可以接上四个IDE设备(例如四块硬盘)。所以要识别IDE硬盘的方法分别就
是:hda、hdb、hdc、hdd。此外,hda1中的"1"代表hda的第一个硬盘分区
(partition),hda2代表hda的第二个分割区,依此类推。
此外,你可以直接检查/var/log/messages这个文件,在该文件中可以找到计算机开机后,系统已辨认出来的设备代号。

6. Linux内核设计与实现的目录

译者序
序言
前言
作者简介
第1章Linux内核简介1
1.1Unix的历史1
1.2追寻Linus足迹:Linux简介2
1.3操作系统和内核简介3
1.4Linux内核和传统Unix内核的比较5
1.5Linux内核版本7
1.6Linux内核开发者社区8
1.7小结8
第2章从内核出发10
2.1获取内核源码10
2.1.1使用Git10
2.1.1安装内核源代码10
2.1.3使用补丁11
2.2内核源码树11
2.3编译内核12
2.3.1配置内核12
2.3.2减少编译的垃圾信息14
2.3.3衍生多个编译作业 14
2.3.4安装新内核14
2.4内核开发的特点15
2.4.1无libc库抑或无标准头文件15
2.4.2GNU C16
2.4.3没有内存保护机制18
2.4.4不要轻易在内核中使用浮点数18
2.4.5容积小而固定的栈18
2.4.6同步和并发18
2.4.7可移植性的重要性19
2.5小结19
第3章进程管理20
3.1进程20
3.2进程描述符及任务结构 21
3.2.1分配进程描述符22
3.2.2进程描述符的存放23
3.2.3进程状态23
3.2.4设置当前进程状态25
3.2.5进程上下文25
3.2.6进程家族树25
3.3进程创建26
3.3.1写时拷贝27
3.3.2fork()27
3.3.3vfork()28
3.4线程在Linux中的实现28
3.4.1创建线程29
3.4.2内核线程30
3.5进程终结31
3.5.1删除进程描述符32
3.5.2孤儿进程造成的进退维谷32
3.6小结34
第4章进程调度35
4.1多任务35
4.2Linux 的进程调度36
4.3策略36
4.3.1I/O消耗型和处理器消耗型的进程36
4.3.2进程优先级37
4.3.3时间片38
4.3.4调度策略的活动38
4.4Linux调度算法39
4.4.1调度器类39
4.4.2Unix 系统中的进程调度40
4.4.3公平调度41
4.5Linux调度的实现42
4.5.1时间记账42
4.5.2进程选择44
4.5.3调度器入口48
4.5.4睡眠和唤醒49
4.6抢占和上下文切换51
4.6.1用户抢占53
4.6.2内核抢占53
4.7实时调度策略54
4.8与调度相关的系统调用54
4.8.1与调度策略和优先级相关的系统调用55
4.8.2与处理器绑定有关的系统调用55
4.8.3放弃处理器时间56
4.9小结56
第5章系统调用57
5.1与内核通信57
5.2API、POSIX和C库57
5.3系统调用58
5.3.1系统调用号59
5.3.2系统调用的性能59
5.4系统调用处理程序60
5.4.1指定恰当的系统调用60
5.4.2参数传递60
5.5系统调用的实现61
5.5.1实现系统调用61
5.5.2参数验证62
5.6系统调用上下文64
5.6.1绑定一个系统调用的最后步骤65
5.6.2从用户空间访问系统调用67
5.6.3为什么不通过系统调用的方式实现68
5.7小结68
第6章内核数据结构69
6.1链表69
6.1.1单向链表和双向链表69
6.1.2环形链表70
6.1.3沿链表移动71
6.1.4Linux 内核中的实现71
6.1.5操作链表73
6.1.6遍历链表75
6.2队列78
6.2.1kfifo79
6.2.2创建队列79
6.2.3推入队列数据79
6.2.4摘取队列数据80
6.2.5获取队列长度80
6.2.6重置和撤销队列80
6.2.7队列使用举例 81
6.3映射 81
6.3.1初始化一个idr82
6.3.2分配一个新的UID82
6.3.3查找UID83
6.3.4删除UID84
6.3.5撤销idr84
6.4二叉树84
6.4.1二叉搜索树84
6.4.2自平衡二叉搜索树 85
6.5数据结构以及选择 87
6.6算法复杂度88
6.6.1算法88
6.6.2大o 符号88
6.6.3大θ符号89
6.6.4时间复杂度89
6.7小结 90
第7章中断和中断处理91
7.1中断91
7.2中断处理程序92
7.3上半部与下半部的对比93
7.4注册中断处理程序93
7.4.1中断处理程序标志94
7.4.2一个中断例子95
7.4.3释放中断处理程序95
7.5编写中断处理程序96
7.5.1共享的中断处理程序97
7.5.2中断处理程序实例97
7.6中断上下文99
7.7中断处理机制的实现100
7.8/proc/interrupts102
7.9中断控制103
7.9.1禁止和激活中断103
7.9.2禁止指定中断线105
7.9.3中断系统的状态105
7.10小结106
第8章下半部和推后执行的工作107
8.1下半部107
8.1.1为什么要用下半部108
8.1.2下半部的环境108
8.2软中断110
8.2.1软中断的实现111
8.2.2使用软中断113
8.3tasklet114
8.3.1tasklet的实现114
8.3.2使用tasklet116
8.3.3老的BH机制119
8.4工作队列120
8.4.1工作队列的实现121
8.4.2使用工作队列124
8.4.3老的任务队列机制126
8.5下半部机制的选择127
8.6在下半部之间加锁128
8.7禁止下半部128
8.8小结129
第9章内核同步介绍131
9.1临界区和竞争条件131
9.1.1为什么我们需要保护132
9.1.2单个变量133
9.2加锁134
9.2.1造成并发执行的原因135
9.2.2了解要保护些什么136
9.3死锁137
9.4争用和扩展性138
9.5小结140
第10章内核同步方法141
10.1原子操作141
10.1.1原子整数操作142
10.1.264位原子操作144
10.1.3原子位操作145
10.2自旋锁147
10.2.1自旋锁方法148
10.2.2其他针对自旋锁的操作149
10.2.3自旋锁和下半部150
10.3读-写自旋锁150
10.4信号量152
10.4.1计数信号量和二值信号量153
10.4.2创建和初始化信号量154
10.4.3使用信号量154
10.5读-写信号量155
10.6互斥体156
10.6.1信号量和互斥体158
10.6.2自旋锁和互斥体158
10.7完成变量158
10.8BLK:大内核锁159
10.9顺序锁160
10.10禁止抢占161
10.11顺序和屏障162
10.12小结165
第11章定时器和时间管理166
11.1内核中的时间概念166
11.2节拍率:HZ167
11.2.1理想的HZ值168
11.2.2高HZ的优势169
11.2.3高HZ的劣势169
11.3jiffies170
11.3.1jiffies的内部表示171
11.3.2jiffies 的回绕172
11.3.3用户空间和HZ173
11.4硬时钟和定时器174
11.4.1实时时钟174
11.4.2系统定时器174
11.5时钟中断处理程序174
11.6实际时间176
11.7定时器178
11.7.1使用定时器178
11.7.2定时器竞争条件180
11.7.3实现定时器180
11.8延迟执行181
11.8.1忙等待181
11.8.2短延迟182
11.8.3schele_timeout()183
11.9小结185
第12章内存管理186
12.1页186
12.2区187
12.3获得页189
12.3.1获得填充为0的页190
12.3.2释放页191
12.4kmalloc()191
12.4.1gfp_mask标志192
12.4.2kfree()195
12.5vmalloc()196
12.6slab层197
12.6.1slab层的设计198
12.6.2slab分配器的接口200
12.7在栈上的静态分配203
12.7.1单页内核栈203
12.7.2在栈上光明正大地工作203
12.8高端内存的映射204
12.8.1永久映射204
12.8.2临时映射204
12.9每个CPU的分配20512.10新的每个CPU接口206
12.10.1编译时的每个CPU数据206
12.10.2运行时的每个CPU数据207
12.11使用每个CPU数据的原因208
12.12分配函数的选择209
12.13小结209
第13章虚拟文件系统210
13.1通用文件系统接口210
13.2文件系统抽象层211
13.3Unix文件系统212
13.4VFS 对象及其数据结构213
13.5超级块对象214
13.6超级块操作215
13.7索引节点对象217
13.8索引节点操作219
13.9目录项对象222
13.9.1目录项状态222
13.9.2目录项缓存223
13.10目录项操作224
13.11文件对象225
13.12文件操作226
13.13和文件系统相关的数据结构230
13.14和进程相关的数据结构232
13.15小结233
第14章块I/O层234
14.1剖析一个块设备234
14.2缓冲区和缓冲区头235
14.3bio结构体237
14.3.1I/O向量238
14.3.2新老方法对比239
14.4请求队列240
14.5I/O调度程序240
14.5.1I/O调度程序的工作241
14.5.2Linus 电梯241
14.5.3最终期限I/O调度程序242
14.5.4预测I/O调度程序244
14.5.5完全公正的排队I/O调度程序244
14.5.6空操作的I/O调度程序245
14.5.7I/O调度程序的选择245
14.6小结246
第15章进程地址空间247
15.1地址空间247
15.2内存描述符248
15.2.1分配内存描述符249
15.2.2撤销内存描述符250
15.2.3mm_struct 与内核线程250
15.3虚拟内存区域251
15.3.1VMA标志251
15.3.2VMA 操作253
15.3.3内存区域的树型结构和内存区域的链表结构254
15.3.4实际使用中的内存区域254
15.4操作内存区域255
15.4.1find_vma()256
15.4.2find_vma_prev()257
15.4.3find_vma_intersection()257
15.5mmap()和do_mmap():创建地址区间258
15.6mummap()和do_mummap():删除地址区间259
15.7页表260
15.8小结261
第16章页高速缓存和页回写262
16.1缓存手段262
16.1.1写缓存262
16.1.2缓存回收263
16.2Linux 页高速缓存264
16.2.1address_space对象264
16.2.2address_space 操作266
16.2.3基树267
16.2.4以前的页散列表268
16.3缓冲区高速缓存268
16.4flusher线程268
16.4.1膝上型计算机模式270
16.4.2历史上的bdflush、kupdated 和pdflush270
16.4.3避免拥塞的方法:使用多线程271
16.5小结271
第17章设备与模块273
17.1设备类型273
17.2模块274
17.2.1Hello,World274
17.2.2构建模块275
17.2.3安装模块277
17.2.4产生模块依赖性277
17.2.5载入模块278
17.2.6管理配置选项279
17.2.7模块参数280
17.2.8导出符号表282
17.3设备模型283
17.3.1kobject283
17.3.2ktype284
17.3.3kset285
17.3.4kobject、ktype和kset的相互关系285
17.3.5管理和操作kobject286
17.3.6引用计数287
17.4sysfs288
17.4.1sysfs中添加和删除kobject 290
17.4.2向sysfs中添加文件291
17.4.3内核事件层293
17.5小结294
第18章调试295
18.1准备开始295
18.2内核中的bug296
18.3通过打印来调试296
18.3.1健壮性296
18.3.2日志等级297
18.3.3记录缓冲区298
18.3.4syslogd和klogd298
18.3.5从printf()到printk()的转换298
18.4oops298
18.4.1ksymoops300
18.4.2kallsyms300
18.5内核调试配置选项301
18.6引发bug并打印信息301
18.7神奇的系统请求键302
18.8内核调试器的传奇303
18.8.1gdb303
18.8.2kgdb304
18.9探测系统304
18.9.1用UID作为选择条件304
18.9.2使用条件变量305
18.9.3使用统计量305
18.9.4重复频率限制305
18.10用二分查找法找出引发罪恶的变更306
18.11使用Git进行二分搜索307
18.12当所有的努力都失败时:社区308
18.13小结308
第19章可移植性309
19.1可移植操作系统309
19.2Linux移植史310
19.3字长和数据类型311
19.3.1不透明类型313
19.3.2指定数据类型314
19.3.3长度明确的类型314
19.3.4char型的符号问题315
19.4数据对齐315
19.4.1避免对齐引发的问题316
19.4.2非标准类型的对齐316
19.4.3结构体填补316
19.5字节顺序318
19.6时间319
19.7页长度320
19.8处理器排序320
19.9SMP、内核抢占、高端内存321
19.10小结321
第20章补丁、开发和社区322
20.1社区322
20.2Linux编码风格322
20.2.1缩进323
20.2.2switch 语句323
20.2.3空格324
20.2.4花括号325
20.2.5每行代码的长度326
20.2.6命名规范326
20.2.7函数326
20.2.8注释326
20.2.9typedef327
20.2.10多用现成的东西328
20.2.11在源码中减少使用ifdef328
20.2.12结构初始化328
20.2.13代码的事后修正329
20.3管理系统329
20.4提交错误报告329
20.5补丁330
20.5.1创建补丁330
20.5.2用Git创建补丁331
20.5.3提交补丁331
20.6小结332
参考资料333

7. linux文件名的命名遵行什么规则

cp命令用于复制文件或目录,格式为:“cp [选项] 源文件 目标文件”。
复制命令的三种情况:
目标文件是一个目录,会将源文件复制到该目录中。
目标文件是一个文件,会将源文件覆盖该文件。
目标文件不存在,将会复制源文件并修改为目标文件的名称(重命名)。
参数 作用
-p 保留原始文件的属性
-d 若对象为"链接文件",则保留该"链接文件"的属性
-r 递归持续复制(用于目录)
-i 若目标文件存在则询问是否覆盖
-a 相当于-pdr(p,d,r为上述的参数)

创建一个名为install.log的文件:
[root@linuxprobe ~]# touch install.log

将install.log复制为x.log:
[root@linuxprobe ~]# cp install.log x.log

查看到确实出现了文件x.log
[root@linuxprobe ~]# ls
install.log x.log

mv命令用于移动文件或改名,格式为:“mv [选项] 文件名 [目标路径|目标文件名]”。
将文件aaa重命名为bbb:
[root@linuxprobe ~]# mv aaa bbb

网络搜索《linux就该这么学》,
第2章 新手必须掌握的Linux命令,有最基本的命令,可以看下。

8. linux 下目录命名规则的含义如:/etc/cron.d/ , ".d" 是什么含义

学习 linux 的文件系统规则,首先要从 Windows 的某些习惯中跳出来,比如 Windows 中后缀名比较重要,但 linux 中后缀几乎无关紧要,或者可以理解为纯粹为了方便辨认、使用、分类等。其次,“目录”是一种文件,里面记录(“包含”)了一些其他文件的信息,你可以用 vi 等文本编辑器打开目录文件,然后修改其中的一些信息(比如删除、重命名 “里面的” 文件等)。最后,如果想了解linux 习惯上的组织、命名方式,建议你找本基础类书籍,比如《Unix/Linux 大学教程》 Harley hahn 着, 张杰良 译,清华大学出版社。

9. linux系统中设备文件命名的规则是什么

你说的是磁盘吧,我给你一个资料看看。Linux硬盘分区简介磁盘命名 相对Solaris来说,Linux磁盘命名的概念就简单多了,而且和我们平常使用的Windows系统多少有些瓜葛。和Solaris一样,在Linux中,每个硬件设备都有一个称为设备名称的特别名字,例如,接在IDE1的第一个硬盘(master主硬盘),其设备名称为/dev/hda,也就是说我们可以用“/dev/hda”来代表此硬盘,下面的信息相信大家看了以后会有“一目了然”的感觉: 磁盘 设备名称 IDE1的第1个硬盘(master) /dev/hda IDE1的第2个硬盘(slave) /dev/hdb IDE2的第1个硬盘(master) /dev/hdc IDE2的第2个硬盘(slave) /dev/hdd SCSI的第1个硬盘 /dev/sda SCSI的第2个硬盘 /dev/sdb 这么看来,是不是比Solaris的硬盘命名容易理解多了? 分区命名 分区的目的,是为了让数据能够分类存放。每一个分割出来的区域,就称为一个“分区”(partition),在Solaris中,也常常用“slice”(片)的概念,例如我们前面所讲过的c0t0d0s0中的s0,就是指代第一个分区。在Linux中,分区的概念和Windows得更加接近,硬盘分区按照功能的不同,可以分为以下几类: 1. 主分区(primary) 2. 扩展分区(extended) 3. 逻辑分区(logical) 主分区(primary) 通常在划分硬盘的第1个分区时,会指定为主分区。但是和Windows不同的是,windows中一个硬盘最多只允许有1个主分区,而Linux最多可以让用户创建4个主分区。 扩展分区(extended) 由于Linux中一个硬盘最多只允许有4个主分区,如果想要创建更多的分区,怎么办?于是就有了扩展分区的概念。用户可以创建一个扩展分区,然后在扩展分区上创建多个逻辑分区。从理论上来说,逻辑分区没有数量上的限制。 需要注意的是,创建扩展分区的时候,会占用一个主分区的位置,因此,如果创建了扩展分区,一个硬盘上便最多只能创建3个主分区和一个扩展分区。而且,扩展分区不是用来存放数据的,它的主要功能是为了创建逻辑分区。这个概念,和Windows可说是一模一样。 逻辑分区(logical) 逻辑分区不能够直接创建,它必须依附在扩展分区下,容量受到扩展分区大小的限制。通常逻辑分区是存放文件和数据的地方。 有了磁盘命名和分区命名的概念,理解诸如/dev/hda1之类的分区名称,应该就不是难事了。具体的,可以看下面的表示: 分区 分区名称 IDE1的第1个硬盘(master)的第1个主分区 /dev/hda1 IDE1的第1个硬盘(master)的第2个主分区 /dev/hda2 IDE1的第1个硬盘(master)的第3个主分区 /dev/hda3 IDE1的第1个硬盘(master)的第4个主分区 /dev/hda4 IDE1的第1个硬盘(master)的第1个逻辑分区 /dev/hda5 IDE1的第1个硬盘(master)的第2个逻辑分区 /dev/hda6 ...... ...... IDE1的第2个硬盘(slave)的第1个主分区 /dev/hdb1 IDE1的第2个硬盘(slave)的第2个主分区 /dev/hdb2 ...... ...... SCSI的第1个硬盘的第1个主分区 /dev/sda1 SCSI的第1个硬盘的第2个主分区 /dev/sda2

热点内容
地铁逃生怎么进入游戏安卓 发布:2024-05-03 17:49:35 浏览:992
aws云存储 发布:2024-05-03 17:48:50 浏览:954
安卓微信王者号怎么转成苹果 发布:2024-05-03 17:44:38 浏览:745
原子类源码 发布:2024-05-03 17:44:19 浏览:165
安卓浏览图片如何全屏 发布:2024-05-03 17:24:08 浏览:104
传奇仓库脚本 发布:2024-05-03 17:23:56 浏览:541
2010数据库技术及应用 发布:2024-05-03 17:21:51 浏览:921
小米账号密码忘了怎么 发布:2024-05-03 17:17:44 浏览:780
皇家农场脚本 发布:2024-05-03 16:46:41 浏览:458
顺序存储链式存储 发布:2024-05-03 16:46:41 浏览:879