当前位置:首页 » 操作系统 » bp网络学习算法

bp网络学习算法

发布时间: 2022-08-19 07:30:12

㈠ 什么是BP神经网络

BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出处理,使误差减小。经反复学习,最终使误差减小到可接受的范围。具体步骤如下:
1、从训练集中取出某一样本,把信息输入网络中。
2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。
3、计算网络实际输出与期望输出的误差。
4、将误差逐层反向回传至之前各层,并按一定原则将误差信号加载到连接权值上,使整个神经网络的连接权值向误差减小的方向转化。
5、対训练集中每一个输入—输出样本对重复以上步骤,直到整个训练样本集的误差减小到符合要求为止。

㈡ BP人工神经网络方法

(一)方法原理

人工神经网络是由大量的类似人脑神经元的简单处理单元广泛地相互连接而成的复杂的网络系统。理论和实践表明,在信息处理方面,神经网络方法比传统模式识别方法更具有优势。人工神经元是神经网络的基本处理单元,其接收的信息为x1,x2,…,xn,而ωij表示第i个神经元到第j个神经元的连接强度或称权重。神经元的输入是接收信息X=(x1,x2,…,xn)与权重W={ωij}的点积,将输入与设定的某一阈值作比较,再经过某种神经元激活函数f的作用,便得到该神经元的输出Oi。常见的激活函数为Sigmoid型。人工神经元的输入与输出的关系为

地球物理勘探概论

式中:xi为第i个输入元素,即n维输入矢量X的第i个分量;ωi为第i个输入与处理单元间的互联权重;θ为处理单元的内部阈值;y为处理单元的输出。

常用的人工神经网络是BP网络,它由输入层、隐含层和输出层三部分组成。BP算法是一种有监督的模式识别方法,包括学习和识别两部分,其中学习过程又可分为正向传播和反向传播两部分。正向传播开始时,对所有的连接权值置随机数作为初值,选取模式集的任一模式作为输入,转向隐含层处理,并在输出层得到该模式对应的输出值。每一层神经元状态只影响下一层神经元状态。此时,输出值一般与期望值存在较大的误差,需要通过误差反向传递过程,计算模式的各层神经元权值的变化量

。这个过程不断重复,直至完成对该模式集所有模式的计算,产生这一轮训练值的变化量Δωij。在修正网络中各种神经元的权值后,网络重新按照正向传播方式得到输出。实际输出值与期望值之间的误差可以导致新一轮的权值修正。正向传播与反向传播过程循环往复,直到网络收敛,得到网络收敛后的互联权值和阈值。

(二)BP神经网络计算步骤

(1)初始化连接权值和阈值为一小的随机值,即W(0)=任意值,θ(0)=任意值。

(2)输入一个样本X。

(3)正向传播,计算实际输出,即根据输入样本值、互联权值和阈值,计算样本的实际输出。其中输入层的输出等于输入样本值,隐含层和输出层的输入为

地球物理勘探概论

输出为

地球物理勘探概论

式中:f为阈值逻辑函数,一般取Sigmoid函数,即

地球物理勘探概论

式中:θj表示阈值或偏置;θ0的作用是调节Sigmoid函数的形状。较小的θ0将使Sigmoid函数逼近于阈值逻辑单元的特征,较大的θ0将导致Sigmoid函数变平缓,一般取θ0=1。

(4)计算实际输出与理想输出的误差

地球物理勘探概论

式中:tpk为理想输出;Opk为实际输出;p为样本号;k为输出节点号。

(5)误差反向传播,修改权值

地球物理勘探概论

式中:

地球物理勘探概论

地球物理勘探概论

(6)判断收敛。若误差小于给定值,则结束,否则转向步骤(2)。

(三)塔北雅克拉地区BP神经网络预测实例

以塔北雅克拉地区S4井为已知样本,取氧化还原电位,放射性元素Rn、Th、Tc、U、K和地震反射

构造面等7个特征为识别的依据。

构造面反映了局部构造的起伏变化,其局部隆起部位应是油气运移和富集的有利部位,它可以作为判断含油气性的诸种因素之一。在该地区投入了高精度重磁、土壤微磁、频谱激电等多种方法,一些参数未入选为判别的特征参数,是因为某些参数是相关的。在使用神经网络方法判别之前,还采用K-L变换(Karhaem-Loeve)来分析和提取特征。

S4井位于测区西南部5线25点,是区内唯一已知井。该井在5390.6m的侏罗系地层获得40.6m厚的油气层,在5482m深的震旦系地层中获58m厚的油气层。取S4井周围9个点,即4~6线的23~25 点作为已知油气的训练样本;由于区内没有未见油的钻井,只好根据地质资料分析,选取14~16线的55~57点作为非油气的训练样本。BP网络学习迭代17174次,总误差为0.0001,学习效果相当满意。以学习后的网络进行识别,得出结果如图6-2-4所示。

图6-2-4 塔北雅克拉地区BP神经网络聚类结果

(据刘天佑等,1997)

由图6-2-4可见,由预测值大于0.9可得5个大封闭圈远景区,其中测区南部①号远景区对应着已知油井S4井;②、③号油气远景区位于地震勘探所查明的托库1、2号构造,该两个构造位于沙雅隆起的东段,其西段即为1984年钻遇高产油气流的Sch2井,应是含油气性好的远景区;④、⑤号远景区位于大涝坝构造,是yh油田的组成部分。

㈢ bp是什么

电子游戏竞技里的一种专业比赛术语。

b指的是ban,p指的是pick,对于不同游戏,会引申到不同的细节含义,一般是禁止和选择。

在电子游戏竞技中,bp是一种战略意义上的博弈,通过好的bp,能获得优势的赢面。

ban:

一、如果对手队伍中有一名选手对某个英雄非常擅长,对手拿到后将会对自己队伍产生非常大的威胁或者在比赛中很难以处理,那么这个英雄就必定要Ban。

二、对手有一套非常擅长的战术体系自己暂时还不能破解这套战术,然后知道某个英雄是他们那个战术的核心,那么Ban掉这个英雄就可以破掉对手的那套战术。

三、针对某个选手的英雄池来Ban人,如果对手队伍中有个选手存在英雄池太浅这个明显短板问题,Ban掉那名选手仅仅能用的那几个英雄,这也等于废掉了对手一根手指。

四、当前比赛版本最强势可以扭转比赛局势的英雄,这种不用说一定要Ban。

五、Ban人时候故意放出某个英雄,然后诱惑对手先抢,但是自己Ban掉这个英雄最好搭配的英雄,或者Pick的时候再来进行针对。

pick:

进入Pick阶段,蓝色方队伍拥有优先首选权,那么无论是任何一支队伍在蓝色方都会首先选择自己最心仪的那个英雄,也就是比赛版本最强势未被Ban掉的TOP1英雄。

接下来红色方首选的两个英雄是对手首选其他四个位置当中的两个最佳选择的英雄,这四个位置中的英雄如果有一个位置是可以搭配对方首选的英雄,那么一定要先拿到自己手中不能给对手接下来拿到,比如像ADC和辅助这两个位置复仇之矛和牛头的搭配,或者中野联动的关键搭配。

蓝色方第二选一般会是先选择拿打野和辅助,因为这个两个点拿出来不会暴露太多自己之后战术上的东西,而对手接下来第二选必将暴露出他们完整大致的战术形态。

而红色方第二选一般不会先选择中单这个位置,而是选择Counter对手已经暴露的位置,或者选择两个同类型的英雄放出一个烟雾弹让对手分不清自己是用来打什么位置。

第三选,蓝色方将会根据对方四个已经选择的英雄来做出自己大致的判断,然后选择自己有信心可以拿出的一套阵容,而红色方第三选一般情况下是Counter对手中单的位置。

㈣ bp神经网络用啥算法

自己找个例子算一下,推导一下,这个回答起来比较复杂

神经网络对模型的表达能力依赖于优化算法,优化是一个不断计算梯度并调整可学习参数的过程,Fluid中的优化算法可参考优化器。

在网络的训练过程中,梯度计算分为两个步骤:前向计算与反向传播。

  • 前向计算会根据您搭建的网络结构,将输入单元的状态传递到输出单元。

  • 反向传播借助链式法则,计算两个或两个以上复合函数的导数,将输出单元的梯度反向传播回输入单元,根据计算出的梯度,调整网络的可学习参数。

BP算法

隐层的引入使网络具有很大的潜力。但正像Minskey和Papert当时所指出的.虽然对所有那些能用简单(无隐层)网结解决的问题有非常简单的学习规则,即简单感知器的收敛程序(主要归功于Widrow和HMf于1960年提出的Delta规刚),


BP算法

但当时并没有找到同样有技的含隐层的同培的学习规则。对此问题的研究有三个基本的结果。一种是使用简单无监督学习规则的竞争学习方法.但它缺乏外部信息.难以确定适台映射的隐层结构。第二条途径是假设一十内部(隐层)的表示方法,这在一些先约条件下是台理的。另一种方法是利用统计手段设计一个学习过程使之能有技地实现适当的内部表示法,Hinton等人(1984年)提出的Bolzmann机是这种方法的典型例子.它要求网络在两个不同的状态下达到平衡,并且只局限于对称网络。Barto和他的同事(1985年)提出了另一条利用统计手段的学习方法。但迄今为止最有教和最实用的方瑶是Rumelhart、Hinton和Williams(1986年)提出的一般Delta法则,即反向传播(BP)算法。Parter(1985年)也独立地得出过相似的算法,他称之为学习逻辑。此外, Lecun(1985年)也研究出大致相似的学习法则。

㈤ bp代表什么呀

BP神经网络 BP (Back Propagation)神经网络是一种神经网络学习算法,全称基于误差反向传播算法的人工神经网络。
如图所示拓扑结构的单隐层前馈网络,一般称为三层前馈网或三层感知器,即:输入层、中间层(也称隐层)和输出层。它的特点是:各层神经元仅与相邻层神经元之间相互全连接,同层内神经元之间无连接,各层神经元之间无反馈连接,够成具有层次结构的前馈型神经网络系统。单计算层前馈神经网络只能求解线性可分问题,能够求解非线性问题的网络必须是具有隐层的多层神经网络。
在人工神经网络发展历史中,很长一段时间里没有找到隐层的连接权值调整问题的有效算法。直到误差反向传播算法(BP算法)的提出,成功地解决了求解非线性连续函数的多层前馈神经网络权重调整问题。
BP (Back Propagation)神经网络,即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成。输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果。当实际输出与期望输出不符时,进入误差的反向传播阶段。误差通过输出层,按误差梯度下降的方式修正各层权值,向隐层、输入层逐层反传。周而复始的信息正向传播和误差反向传播过程,是各层权值不断调整的过程,也是神经网络学习训练的过程,此过程一直进行到网络输出的误差减少到可以接受的程度,或者预先设定的学习次数为止。
神经网络
神经网络是:
思维学普遍认为,人类大脑的思维分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维三种基本方式。
逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。
人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。
神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。目前,主要的研究工作集中在以下几个方面:
(1)生物原型研究。从生理学、心理学、解剖学、脑科学、病理学等生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。
(2)建立理论模型。根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。
(3)网络模型与算法研究。在理论模型研究的基础上构作具体的神经网络模型,以实现计算机馍拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。
(4)人工神经网络应用系统。在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人等等。
纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。
【人工神经网络的工作原理】
人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。
所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。
如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。
“人脑是如何工作的?”
“人类能否制作模拟人脑的人工神经元?”
多少年以来,人们从医学、生物学、生理学、哲学、信息学、计算机科学、认知学、组织协同学等各个角度企图认识并解答上述问题。在寻找上述问题答案的研究过程中,近年来逐渐形成了一个新兴的多学科交叉技术领域,称之为“神经网络”。神经网络的研究涉及众多学科领域,这些领域互相结合、相互渗透并相互推动。不同领域的科学家又从各自学科的兴趣与特色出发,提出不同的问题,从不同的角度进行研究。
心理学家和认知科学家研究神经网络的目的在于探索人脑加工、储存和搜索信息的机制,弄清人脑功能的机理,建立人类认知过程的微结构理论。
生物学、医学、脑科学专家试图通过神经网络的研究推动脑科学向定量、精确和理论化体系发展,同时也寄希望于临床医学的新突破;信息处理和计算机科学家研究这一问题的目的在于寻求新的途径以解决目前不能解决或解决起来有极大困难的大量问题,构造更加逼近人脑功能的新一代计算机。
人工神经网络是由大量的简单基本元件——神经元相互联接而成的自适应非线性动态系统。每个神经元的结构和功能比较简单,但大量神经元组合产生的系统行为却非常复杂。
人工神经网络反映了人脑功能的若干基本特性,但并非生物系统的逼真描述,只是某种模仿、简化和抽象。
与数字计算机比较,人工神经网络在构成原理和功能特点等方面更加接近人脑,它不是按给定的程序一步一步地执行运算,而是能够自身适应环境、总结规律、完成某种运算、识别或过程控制。
人工神经元的研究起源于脑神经元学说。19世纪末,在生物、生理学领域,Waldeger等人创建了神经元学说。人们认识到复杂的神经系统是由数目繁多的神经元组合而成。大脑皮层包括有100亿个以上的神经元,每立方毫米约有数万个,它们互相联结形成神经网络,通过感觉器官和神经接受来自身体内外的各种信息,传递至中枢神经系统内,经过对信息的分析和综合,再通过运动神经发出控制信息,以此来实现机体与内外环境的联系,协调全身的各种机能活动。
神经元也和其他类型的细胞一样,包括有细胞膜、细胞质和细胞核。但是神经细胞的形态比较特殊,具有许多突起,因此又分为细胞体、轴突和树突三部分。细胞体内有细胞核,突起的作用是传递信息。树突是作为引入输入信号的突起,而轴突是作为输出端的突起,它只有一个。
树突是细胞体的延伸部分,它由细胞体发出后逐渐变细,全长各部位都可与其他神经元的轴突末梢相互联系,形成所谓“突触”。在突触处两神经元并未连通,它只是发生信息传递功能的结合部,联系界面之间间隙约为(15~50)×10米。突触可分为兴奋性与抑制性两种类型,它相应于神经元之间耦合的极性。每个神经元的突触数目正常,最高可达10个。各神经元之间的连接强度和极性有所不同,并且都可调整、基于这一特性,人脑具有存储信息的功能。利用大量神经元相互联接组成人工神经网络可显示出人的大脑的某些特征。下面通过人工神经网络与通用的计算机工作特点来对比一下:
若从速度的角度出发,人脑神经元之间传递信息的速度要远低于计算机,前者为毫秒量级,而后者的频率往往可达几百兆赫。但是,由于人脑是一个大规模并行与串行组合处理系统,因而,在许多问题上可以作出快速判断、决策和处理,其速度则远高于串行结构的普通计算机。人工神经网络的基本结构模仿人脑,具有并行处理特征,可以大大提高工作速度。
人脑存贮信息的特点为利用突触效能的变化来调整存贮内容,也即信息存贮在神经元之间连接强度的分布上,存贮区与计算机区合为一体。虽然人脑每日有大量神经细胞死亡 (平均每小时约一千个),但不影响大脑的正常思维活动。
普通计算机是具有相互独立的存贮器和运算器,知识存贮与数据运算互不相关,只有通过人编出的程序使之沟通,这种沟通不能超越程序编制者的预想。元器件的局部损坏及程序中的微小错误都可能引起严重的失常。
人类大脑有很强的自适应与自组织特性,后天的学习与训练可以开发许多各具特色的活动功能。如盲人的听觉和触觉非常灵敏;聋哑人善于运用手势;训练有素的运动员可以表现出非凡的运动技巧等等。
普通计算机的功能取决于程序中给出的知识和能力。显然,对于智能活动要通过总结编制程序将十分困难。
人工神经网络也具有初步的自适应与自组织能力。在学习或训练过程中改变突触权重值,以适应周围环境的要求。同一网络因学习方式及内容不同可具有不同的功能。人工神经网络是一个具有学习能力的系统,可以发展知识,以致超过设计者原有的知识水平。通常,它的学习训练方式可分为两种,一种是有监督或称有导师的学习,这时利用给定的样本标准进行分类或模仿;另一种是无监督学习或称无为导师学习,这时,只规定学习方式或某些规则,则具体的学习内容随系统所处环境 (即输入信号情况)而异,系统可以自动发现环境特征和规律性,具有更近似人脑的功能。
人工神经网络早期的研究工作应追溯至本世纪40年代。下面以时间顺序,以着名的人物或某一方面突出的研究成果为线索,简要介绍人工神经网络的发展历史。
1943年,心理学家W·Mcculloch和数理逻辑学家W·Pitts在分析、总结神经元基本特性的基础上首先提出神经元的数学模型。此模型沿用至今,并且直接影响着这一领域研究的进展。因而,他们两人可称为人工神经网络研究的先驱。
1945年冯·诺依曼领导的设计小组试制成功存储程序式电子计算机,标志着电子计算机时代的开始。1948年,他在研究工作中比较了人脑结构与存储程序式计算机的根本区别,提出了以简单神经元构成的再生自动机网络结构。但是,由于指令存储式计算机技术的发展非常迅速,迫使他放弃了神经网络研究的新途径,继续投身于指令存储式计算机技术的研究,并在此领域作出了巨大贡献。虽然,冯·诺依曼的名字是与普通计算机联系在一起的,但他也是人工神经网络研究的先驱之一。
50年代末,F·Rosenblatt设计制作了“感知机”,它是一种多层的神经网络。这项工作首次把人工神经网络的研究从理论探讨付诸工程实践。当时,世界上许多实验室仿效制作感知机,分别应用于文字识别、声音识别、声纳信号识别以及学习记忆问题的研究。然而,这次人工神经网络的研究高潮未能持续很久,许多人陆续放弃了这方面的研究工作,这是因为当时数字计算机的发展处于全盛时期,许多人误以为数字计算机可以解决人工智能、模式识别、专家系统等方面的一切问题,使感知机的工作得不到重视;其次,当时的电子技术工艺水平比较落后,主要的元件是电子管或晶体管,利用它们制作的神经网络体积庞大,价格昂贵,要制作在规模上与真实的神经网络相似是完全不可能的;另外,在1968年一本名为《感知机》的着作中指出线性感知机功能是有限的,它不能解决如异感这样的基本问题,而且多层网络还不能找到有效的计算方法,这些论点促使大批研究人员对于人工神经网络的前景失去信心。60年代末期,人工神经网络的研究进入了低潮。
另外,在60年代初期,Widrow提出了自适应线性元件网络,这是一种连续取值的线性加权求和阈值网络。后来,在此基础上发展了非线性多层自适应网络。当时,这些工作虽未标出神经网络的名称,而实际上就是一种人工神经网络模型。
随着人们对感知机兴趣的衰退,神经网络的研究沉寂了相当长的时间。80年代初期,模拟与数字混合的超大规模集成电路制作技术提高到新的水平,完全付诸实用化,此外,数字计算机的发展在若干应用领域遇到困难。这一背景预示,向人工神经网络寻求出路的时机已经成熟。美国的物理学家Hopfield于1982年和1984年在美国科学院院刊上发表了两篇关于人工神经网络研究的论文,引起了巨大的反响。人们重新认识到神经网络的威力以及付诸应用的现实性。随即,一大批学者和研究人员围绕着 Hopfield提出的方法展开了进一步的工作,形成了80年代中期以来人工神经网络的研究热潮。

㈥ (1)BP算法的学习过程中有两个过程是什么(2)写出BP神经网络的数学模型,并以20

bp(back propagation)网络是1986年由rumelhart和mccelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。bp网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。bp神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。
人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。

人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对手写“a”、“b”两个字母的识别为例进行说明,规定当“a”输入网络时,应该输出“1”,而当输入为“b”时,输出为“0”。

所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“a”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“a”模式输入时,仍然能作出正确的判断。

如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“a”模式输入时,减小犯同样错误的可能性。如此操作调整,当给网络轮番输入若干个手写字母“a”、“b”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。

如图所示拓扑结构的单隐层前馈网络,一般称为三层前馈网或三层感知器,即:输入层、中间层(也称隐层)和输出层。它的特点是:各层神经元仅与相邻层神经元之间相互全连接,同层内神经元之间无连接,各层神经元之间无反馈连接,构成具有层次结构的前馈型神经网络系统。单计算层前馈神经网络只能求解线性可分问题,能够求解非线性问题的网络必须是具有隐层的多层神经网络。
神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。主要的研究工作集中在以下几个方面:

(1)生物原型研究。从生理学、心理学、解剖学、脑科学、病理学等生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。

(2)建立理论模型。根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。

(3)网络模型与算法研究。在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。

(4)人工神经网络应用系统。在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人等等。

纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。
神经网络可以用作分类、聚类、预测等。神经网络需要有一定量的历史数据,通过历史数据的训练,网络可以学习到数据中隐含的知识。在你的问题中,首先要找到某些问题的一些特征,以及对应的评价数据,用这些数据来训练神经网络。

虽然bp网络得到了广泛的应用,但自身也存在一些缺陷和不足,主要包括以下几个方面的问题。

首先,由于学习速率是固定的,因此网络的收敛速度慢,需要较长的训练时间。对于一些复杂问题,bp算法需要的训练时间可能非常长,这主要是由于学习速率太小造成的,可采用变化的学习速率或自适应的学习速率加以改进。

其次,bp算法可以使权值收敛到某个值,但并不保证其为误差平面的全局最小值,这是因为采用梯度下降法可能产生一个局部最小值。对于这个问题,可以采用附加动量法来解决。

再次,网络隐含层的层数和单元数的选择尚无理论上的指导,一般是根据经验或者通过反复实验确定。因此,网络往往存在很大的冗余性,在一定程度上也增加了网络学习的负担。

最后,网络的学习和记忆具有不稳定性。也就是说,如果增加了学习样本,训练好的网络就需要从头开始训练,对于以前的权值和阈值是没有记忆的。但是可以将预测、分类或聚类做的比较好的权值保存。

㈦ 如何理解BP学习算法 追加悬赏

又称为BP网络.BP学习算法是一种有效的学习方法,但由于在权值调整上采用梯度下降法作为优化算法,容易陷入局部最小,不能保证得到全局最优解。

㈧ BP学习算法是什么类型的学习算法它主要有哪些不足

BP算法是由学习过程由信号的正向传播与误差的反向传播两个过程组成。由于多层前馈网络的训练经常采用误差反向传播算法,人们也常把将多层前馈网络直接称为BP网络。

虽然BP算法得到广泛的应用,但它也存在不足,其主要表现在训练过程不确定上,具体如下。

1,训练时间较长。对于某些特殊的问题,运行时间可能需要几个小时甚至更长,这主要是因为学习率太小所致,可以采用自适应的学习率加以改进。

2,完全不能训练。训练时由于权值调整过大使激活函数达到饱和,从而使网络权值的调节几乎停滞。为避免这种情况,一是选取较小的初始权值,二是采用较小的学习率。

3,易陷入局部极小值。BP算法可以使网络权值收敛到一个最终解,但它并不能保证所求为误差超平面的全局最优解,也可能是一个局部极小值。

这主要是因为BP算法所采用的是梯度下降法,训练是从某一起始点开始沿误差函数的斜面逐渐达到误差的最小值,故不同的起始点可能导致不同的极小值产生,即得到不同的最优解。如果训练结果未达到预定精度,常常采用多层网络和较多的神经元,以使训练结果的精度进一步提高,但与此同时也增加了网络的复杂性与训练时间。

4,“喜新厌旧”。训练过程中,学习新样本时有遗忘旧样本的趋势。

(8)bp网络学习算法扩展阅读:

BP算法最早由Werbos于1974年提出,1985年Rumelhart等人发展了该理论。BP网络采用有指导的学习方式,其学习包括以下4个过程。

1,组成输入模式由输入层经过隐含层向输出层的“模式顺传播”过程。

2,网络的期望输出与实际输出之差的误差信号由输出层经过隐含层逐层休整连接权的“误差逆传播”过程。

3,由“模式顺传播”与“误差逆传播”的反复进行的网络“记忆训练”过程。

4,网络趋向收敛即网络的总体误差趋向极小值的“学习收敛”过程。

㈨ BP神经网络算法的介绍

BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。

㈩ 深入浅出BP神经网络算法的原理

深入浅出BP神经网络算法的原理
相信每位刚接触神经网络的时候都会先碰到BP算法的问题,如何形象快速地理解BP神经网络就是我们学习的高级乐趣了(画外音:乐趣?你在跟我谈乐趣?)
本篇博文就是要简单粗暴地帮助各位童鞋快速入门采取BP算法的神经网络。
BP神经网络是怎样的一种定义?看这句话:一种按“误差逆传播算法训练”的多层前馈网络。
BP的思想就是:利用输出后的误差来估计输出层前一层的误差,再用这层误差来估计更前一层误差,如此获取所有各层误差估计。这里的误差估计可以理解为某种偏导数,我们就是根据这种偏导数来调整各层的连接权值,再用调整后的连接权值重新计算输出误差。直到输出的误差达到符合的要求或者迭代次数溢出设定值。
说来说去,“误差”这个词说的很多嘛,说明这个算法是不是跟误差有很大的关系?
没错,BP的传播对象就是“误差”,传播目的就是得到所有层的估计误差。
它的学习规则是:使用最速下降法,通过反向传播(就是一层一层往前传)不断调整网络的权值和阈值,最后使全局误差系数最小。
它的学习本质就是:对各连接权值的动态调整。

拓扑结构如上图:输入层(input),隐藏层(hide layer),输出层(output)
BP网络的优势就是能学习和储存大量的输入输出的关系,而不用事先指出这种数学关系。那么它是如何学习的?
BP利用处处可导的激活函数来描述该层输入与该层输出的关系,常用S型函数δ来当作激活函数。

我们现在开始有监督的BP神经网络学习算法:
1、正向传播得到输出层误差e
=>输入层输入样本=>各隐藏层=>输出层
2、判断是否反向传播
=>若输出层误差与期望不符=>反向传播
3、误差反向传播
=>误差在各层显示=>修正各层单元的权值,直到误差减少到可接受程度。
算法阐述起来比较简单,接下来通过数学公式来认识BP的真实面目。
假设我们的网络结构是一个含有N个神经元的输入层,含有P个神经元的隐层,含有Q个神经元的输出层。

这些变量分别如下:

认识好以上变量后,开始计算:
一、用(-1,1)内的随机数初始化误差函数,并设定精度ε,最多迭代次数M
二、随机选取第k个输入样本及对应的期望输出

重复以下步骤至误差达到要求:
三、计算隐含层各神经元的输入和输出

四、计算误差函数e对输出层各神经元的偏导数,根据输出层期望输出和实际输出以及输出层输入等参数计算。

五、计算误差函数对隐藏层各神经元的偏导数,根据后一层(这里即输出层)的灵敏度(稍后介绍灵敏度)δo(k),后一层连接权值w,以及该层的输入值等参数计算
六、利用第四步中的偏导数来修正输出层连接权值

七、利用第五步中的偏导数来修正隐藏层连接权值

八、计算全局误差(m个样本,q个类别)

比较具体的计算方法介绍好了,接下来用比较简洁的数学公式来大致地概括这个过程,相信看完上述的详细步骤都会有些了解和领悟。
假设我们的神经网络是这样的,此时有两个隐藏层。
我们先来理解灵敏度是什么?
看下面一个公式:

这个公式是误差对b的一个偏导数,这个b是怎么?它是一个基,灵敏度δ就是误差对基的变化率,也就是导数。
因为?u/?b=1,所以?E/?b=?E/?u=δ,也就是说bias基的灵敏度?E/?b=δ等于误差E对一个节点全部输入u的导数?E/?u。
也可以认为这里的灵敏度等于误差E对该层输入的导数,注意了,这里的输入是上图U级别的输入,即已经完成层与层权值计算后的输入。
每一个隐藏层第l层的灵敏度为:

这里的“?”表示每个元素相乘,不懂的可与上面详细公式对比理解
而输出层的灵敏度计算方法不同,为:

而最后的修正权值为灵敏度乘以该层的输入值,注意了,这里的输入可是未曾乘以权值的输入,即上图的Xi级别。

对于每一个权值(W)ij都有一个特定的学习率ηIj,由算法学习完成。

热点内容
扁桃玩的服务器地址 发布:2025-05-17 12:18:25 浏览:508
u盘上传歌 发布:2025-05-17 12:14:51 浏览:613
入门c语言设计 发布:2025-05-17 12:08:31 浏览:41
c3算法 发布:2025-05-17 12:04:19 浏览:365
phprecv 发布:2025-05-17 11:55:00 浏览:611
福建时钟监控网关服务器云主机 发布:2025-05-17 11:54:28 浏览:249
c数据库压缩 发布:2025-05-17 11:39:22 浏览:963
安卓手机如何连接音响功放 发布:2025-05-17 11:37:48 浏览:962
破解exe加密视频 发布:2025-05-17 11:23:41 浏览:979
我的世界服务器圈太大了怎么办 发布:2025-05-17 11:15:21 浏览:617