载干比算法
❶ LTE干扰有哪些,如何处理
TD-LTE组网干扰分内部干扰和外部干扰,内部干扰包括同频组网干扰和异频干扰,外部干扰又包括系统间干扰及其它随机干扰。
1. 邻频干扰:如果不同的系统工作在相邻的频率,由于发射机的邻道泄漏和接收机邻道选择性的性能的限制,就会发生邻道干扰。
2. 杂散辐射:由于发射机中的功放、混频器和滤波器等器件的非线性,会在工作频带以外很宽的范围内产生辐射信号分量, 包括热噪声、谐波、寄生辐射、频率转换产物和互调产物等。当这些发射机产生的干扰信号落在被干扰系统接收机的工作带内时,抬高了接收机的噪底,从而减低了 收灵敏度。
3. 互调干扰:主要是由接收机的非线性引起的,后果也是抬高底噪,降低接收灵敏度。种类包括多干扰源形成的互调、发射分量与干扰源形成的互调和交调干扰。
4. 阻塞干扰:阻塞干扰并不是落在被干扰系统接收带内的,但由于干扰信号过强,超出了接收机的线性范围,导致接收机饱和而无法工作。为了防止接收机过载,收信号的功率一定要低于它的1dB压缩点。 4.10 LTE的小区间干扰抑制技术
传统的蜂窝移动通信技术在小区中心和小区边缘有着差距很大的数据率。以UMTS为例,小区中心的数据率和小区边缘的数据率,影响了系统的覆盖范围和容量,同时小区边缘的用户体验质量亟待提高。
LTE已经后LTE技术都把提高小区边缘数据速率作为一个重要的目标。
在第一代移动通信系统中,就存在了小区间频干扰的问题,于是第一代移动通信系统采用了频率规划,在不同的小区间复用频率来实现频率资源的有效利用。
一般来说,频率复用指数有几个固定的选择,比如传统的三扇区小区划分用的就是频率复用指数因子为3。除此之外,频率复用因子还有1、7等。
当复用因子为1的时候,则网内的所有小区用的频率都是一样的,随之而来的是严重的小区间干扰。
选择较大的复用因子造成的负面影响是频谱效率变小,比如复用因子为3的时候,频谱效率是1/3,复用因子为7的时候,频谱效率是1/7,依此类推。
类比:
说不同语言的互相之间不打扰?
由于3.9G、4G对频谱效率要求很高,因此LTE和LTE-Advanced都希望频谱效率接近1是最好的。
与3G相比,LTE和LTE-Advanced的小区内干扰得到了很好的解决,但是小区间干扰却非常的严重。
参考以下的http://wenku..com/link?url=-
❷ 请问谁有分组调度算法matlab仿真代码
你好,请问你现在找到了吗,有的话可以给我分享下吗?有偿的
❸ CDMA是什么
CDMA专业定义
CDMA是码分多址的英文缩写(Code Division Multiple Access),它是在数字技术的分支--扩频通信技术上发展起来的一种崭新而成熟的无线通信技术。CDMA技术的原理是基于扩频技术,即将需传送的具有一定信号带宽信息数据,用一个带宽远大于信号带宽的高速伪随机码进行调制,使原数据信号的带宽被扩展,再经载波调制并发送出去。接收端使用完全相同的伪随机码,与接收的带宽信号作相关处理,把宽带信号换成原信息数据的窄带信号即解扩,以实现信息通信。
CDMA技术背景
CDMA技术的出现源自于人类对更高质量无线通信的需求。第二次世界大战期间因战争的需要而研究开发出CDMA技术,其思想初衷是防止敌方对己方通讯的干扰,在战争期间广泛应用于军事抗干扰通信,后来由美国高通公司更新成为商用蜂窝电信技术。1995年,第一个CDMA商用系统运行之后,CDMA技术理论上的诸多优势在实践中得到了检验,从而在北美、南美和亚洲等地得到了迅速推广和应用。全球许多国家和地区,包括中国香港、韩国、日本、美国都已建有CDMA商用网络。在美国和日本,CDMA成为国内的主要移动通信技术。在美国,10个移动通信运营公司中有7家选用CDMA。到今年4月,韩国有60%的人口成为CDMA用户。在澳大利亚主办的第28届奥运会中,CDMA技术更是发挥了重要作用。
CDMA技术标准
CDMA技术的标准化经历了几个阶段。IS-95是cdmaONE系列标准中最先发布的标准,真正在全球得到广泛应用的第一个CDMA标准是IS-95A,这一标准支持8K编码话音服务。其后又分别出版了13K话音编码器的TSB74标准,支持1.9GHz的CDMA PCS系统的STD-008标准,其中13K编码话音服务质量已非常接近有线电话的话音质量。随着移动通信对数据业务需求的增长,1998年2月,美国高通公司宣布将IS-95B标准用于CDMA基础平台上。IS-95B可提供CDMA系统性能,并增加用户移动通信设备的数据流量,提供对64kbps数据业务的支持。其后,cdma2000成为窄带CDMA系统向第三代系统过渡的标准。cdma2000在标准研究的前期,提出了1X和3X的发展策略,但随后的研究表明,1X和1X增强型技术代表了未来发展方向。
CDMA技术的标准化,推进了这项技术在世界范围的应用。目前,在美国、韩国、日本等国家,CDMA技术已获得了较大规模的应用。在一些欧洲国家,一些运营商也建起了CDMA网络。据CDG(世界CDMA发展集团)统计,1996年底CDMA用户仅为100万;到1998年3月已迅速增长到1000万;截至1999年9月,用户数量已超过4000万。2000年初全球CDMA移动电话用户的总数已突破5000万,在一年内用户数量增长率达到118%。CDG表示,目前亚洲已经成为CDMA市场增长的主要动力,亚洲地区CDMA用户数量比一年前增长88%,达到2800万。美国地区的增长率更是高达143%,达到1650万,但用户绝对数量要低于亚洲,在亚太地区,中国香港、日本、韩国、澳大利亚、泰国、印度、菲律宾、新西兰、孟加拉国等许多国家和地区都已建有CDMA商用网络,用户数量已超过2100万户。增长率位于第三的是中美洲和南美洲,CDMA用户数量达到500万。CDG还表示,今后全球CDMA市场中,中国大陆地区的增长潜力最大,估计2003年中国大陆市场的用户数量可以达到4000万。
CDMA是移动通信技术的发展方向。在2G阶段,CDMA增强型IS95A与GSM在技术体制上处于同一代产品,提供大致相同的业务。但CDMA技术有其独到之处,在通话质量好、掉话少、低辐射、健康环保等方面具有显着特色。在2.5G阶段,CDMA2000 1X RTT 与GPRS在技术上已有明显不同,在传输速率上1X RTT高于GPRS,在新业务承载上1X RTT比GPRS成熟,可提供更多的中高速率的新业务。从2.5G向3G技术体制过渡上, CDMA2000 1.X向CDMA20003.X过渡比GPRS向WCDMA过渡更为平滑。
CDMA所具优势
(1) 系统容量大
理论上,在使用相同频率资源的情况下,CDMA移动网比模拟网容量大20倍,实际使用中比模拟网大10倍,比GSM要大4-5倍。
(2) 系统容量的配置灵活
在CDMA系统中,用户数的增加相当于背景噪声的增加,造成话音质量的下降。但对用户数并无限制,操作者可在容量和话音质量之间折衷考虑。另外,多小区之间可根据话务量和干扰情况自动均衡。
这一特点与CDMA的机理有关。CDMA是一个自扰系统,所有移动用户都占用相同带宽和频率,打个比方,将带宽想象成一个大房子,所有的人将进入惟一的大房子。如果他们使用完全不同的语言,他们就可以清楚地听到同伴的声音而只受到一些来自别人谈话的干扰。在这里,屋里的空气可以被想象成宽带的载波,而不同的语言即被当作编码,我们可以不断地增加用户直到整个背景噪音限制住了我们。如果能控制住用户的信号强度,在保持高质量通话的同时,我们就可以容纳更多的用户。
(3) 通话质量更佳
TDMA的信道结构最多只能支持4Kb的语音编码器,它不能支持8Kb以上的语音编码器。而CDMA的结构可以支持13kb的语音编码器。因此可以提供更好的通话质量。CDMA系统的声码器可以动态地调整数据传输速率,并根据适当的门限值选择不同的电平级发射。同时门限值根据背景噪声的改变而变,这样即使在背景噪声较大的情况下,也可以得到较好的通话质量。另外,TDMA采用一种硬移交的方式,用户可以明显地感觉到通话的间断,在用户密集、基站密集的城市中,这种间断就尤为明显,因为在这样的地区每分钟会发生2至4次移交的情形。而CDMA系统“掉话”的现象明显减少,CDMA系统采用软切换技术,“先连接再断开”,这样完全克服了硬切换容易掉话的缺点。
(4) 频率规划简单
用户按不同的序列码区分,所以不相同CDMA载波可在相邻的小区内使用,网络规划灵活,扩展简单。
(5)建网成本低
CDMA技术通过在每个蜂窝的每个部分使用相同的频率,简化了整个系统的规划,在不降低话务量的情况下减少所需站点的数量从而降低部署和操作成本。CDMA网络覆盖范围大,系统容量高,所需基站少,降低了建网成本。
CDMA数字移动技术与现在众所周知的GSM数字移动系统不同。模拟技术被称为第一代移动电话技术,GSM是第二代,CDMA是属于移动通讯第二代半技术,比GSM更先进。
CDMA技术持点
1.CDMA是扩频通信的一种,他具有扩频通信的以下特点:
(1)抗干扰能力强。这是扩频通信的基本特点,是所有通信方式无法比拟的。
(2)宽带传输,抗衰落能力强。
(3)由于采用宽带传输,在信道中传输的有用信号的功率比干扰信号的功率低得多,因此信号好像隐蔽在噪声中;即功率话密度比较低,有利于信号隐蔽。
(4)利用扩频码的相关性来获取用户的信息,抗截获的能力强。
(5)多个用户同时接收,同时发送.
2.在扩频CDMA通信系统中,由于采用了新的关键技术而具有一些新的特点:
(1)采用了多种分集方式。除了传统的空间分集外。由于是宽带传输起到了频率分集的作用,同时在基站和移动台采用了RAKE接收机技术,相当于时间分集的作用。
(2)采用了话音激活技术和扇区化技术。因为CDMA系统的容量直接与所受的干扰有关,采用话音激活和扇区化技术可以减少干扰,可以使整个系统的容量增大。
(3)采用了移动台辅助的软切换。通过它可以实现无缝切换,保证了通话的连续性,减少了掉话的可能性。处于切换区域的移动台通过分集接收多个基站的信号,可以减低自身的发射功率,从而减少了对周围基站的干扰,这样有利于提高反向联路的容量和覆盖范围。
(4)采用了功率控制技术,这样降低了平准发射功率。
(5)具有软容量特性。可以在话务量高峰期通过提高误帧率来增加可以用的信道数。当相邻小区的负荷一轻一重时,负荷重的小区可以通过减少导频的发射功率,使本小区的边缘用户由于导频强度的不足而切换到相临小区,使负担分担。
(6)兼容性好。由于CDMA的带宽很大,功率分布在广阔的频谱上,功率话密度低,对窄带模拟系统的干扰小,因此两者可以共存。即兼容性好。
(7)COMA的频率利用率高,不需频率规划,这也是CDMA的特点之一。
(8)CDMA高效率的OCELP话音编码。话音编码技术是数字通信中的一个重要课题。OCELP是利用码表矢量量化差值的信号,并根据语音激活的程度产生一个输出速率可变的信号。这种编五马方式被认为是目前效率最高的编码技术,在保证有较好话音质量的前提下,大大提高了系统的容量。这种声码器具有8kbit/S和13kbit/S两种速率的序列。8kbit/S序列从1.2kbit/s到9.6kbit/s可变,13kbit/S序列则从1.8kbt/s到14.4kbt/S可变。最近,又有一种8kbit/sEVRC型编码器问世,也具有8kbit/s声码器容量大的特点,话音质量也有了明显的提高。
移动通讯技术分类
移动通信系统有多种分类方法。例如按信号性质分,可分为模拟、数字;按调制方式分,可分为调频、调相、调幅;按多址连接方式分,可分为:
频分多址(FDMA)、时分多址(TDMA)、码分多址(CDMA)。
目前中国联通、中国移动所使用的GSM移动电话网采用的便是FDMA和TDMA两种方式的结合。GSM比模拟移动电话有很大的优势,但是,在频谱效率上仅是模拟系统的3倍,容量有限;在话音质量上也很难达到有线电话水平;TDMA终端接入速率最高也只能达到9.6kbit/s;TDMA系统无软切换功能,因而容易掉话,影响服务质量。因此,TDMA并不是现代蜂窝移动通信的最佳无线接入,而CDMA多址技术完全适合现代移动通信网所要求的大容量、高质量、综合业务、软切换等,正受到越来越多的运营商和用户的青睐。
目前,中国联通拥有了CDMA业务。
关于GSM与CDMA手机辐射问题
众所周知,由于CDMA (IS-95) 系统中采用快速的反向功率控制、软切换、语音激活等技术,以及IS-95规范对手机最大发射功率的限制,使CDMA手机在通信过程中辐射功率很小而享有"绿色手机"的美誉。但最近有一些报导对"绿色手机"提出了质疑,认为GSM手机与CDMA手机辐射相当,其基本
观点是GSM手机只有八分之一的时间产生辐射,因此GSM手机与CDMA手机的SAR值 (人体单位质量吸收的射频功率) 大体相当。
究竟GSM手机和CDMA手机辐射功率谁大谁小或相差多少,为得出实际的客观的比较结果,由一家国际着名的CDMA技术权威公司和国内某知名的GSM网络优化公司工程技术人员于2001年12月上旬沿北京市二环路全线进行了CDMA和GSM现网中手机发射功率的测试。测试结果表明,在二环路上CDMA手机平均发射功率为2.4 dBm(1.72mW), GSM手机平均发射功率为28.9dBm(773 mW),考虑到GSM手机只在八分之一时间内发射,GSM 手机在时间上的等效平均发射功率可减少到19.85dBm(96.63mW)。由此而见,CDMA手机的平均发射功率相当于GSM手机在时间上的等效平均发射功率的1.78%。
一、CDMA和GSM系统对手机发射功率要求比较
我们先来了解一下CDMA和GSM相关技术规范对手机发射功率的要求。目前普遍使用的GSM手机900MHz频段最大发射功率为2W (33dBm),1800MHz频段最大发射功率为1W(30dBm),同时规范要求,对于GSM900和1800频段,通信过程中手机最小发射功率分别不能低于5dBm和0dBm。CDMA IS-95A规范对手机最大发射功率要求为0.2W~1W(23dBm~30dBm),目前网络实际上允许手机的最大发射功率为23dBm (0.2W),规范对CDMA手机最小发射功率没有要求。
在实际通信过程中,在某个时刻某个地点,手机的实际发射功率取决于环境,系统对通信质量的要求,语音激活等诸多因素, 实际上就是取决于系统的链路预算。在通常的网络设计和规划中, 对于基本相同的误帧率要求, GSM系统要求到达基站的手机信号的载干比通常为9dB左右,由于CDMA系统采用扩频技术, 扩频增益对全速率编码的增益为21dB, (对其他低速率编码的增益更大), 所以对解扩前信号的等效载干比的要求小于 -14dB! (CDMA系统通常要解扩后信号的值为7dB左右)。
我们再来比较一下GSM和CDMA手机发射功率的初始值的取定及功率控制机制。手机与系统的通信可分为两个阶段,一是接入阶段,二是话务通信阶段。对于GSM系统,手机在随机接入阶段没有进入专用模式以前,是没有功率控制的,为保证接入成功,手机以系统允许的最大功率发射 (通常是手机的最大发射功率)。在分配专用信道(SDCCH或TCH)后,手机会根据基站的指令调整手机的发射功率,调整的步长通常为2dB。调整的频率为60ms一次。
对于CDMA系统,在随机接入状态下,手机会根据接收到的基站信号电平估计一个较小的值作为手机的初始发射功率, 发送第一个Access Probe,如果在规定的时间内没有得到基站的应答信息,手机会加大发射功率,发送第二个Access Probe,如果在规定时间内还没有得到基站的应答信息,手机会再加大发射功率。这个过程重复下去,直到收到基站的应答或者到达设定的最多尝试次数为止。在通话状态下,每1.25ms 基站会向手机发送一个功率控制命令信息,命令手机增大或减少发射功率, 步长为1dB。
由上面的比较可以看出,考虑到CDMA系统其他独有的技术, 如软切换、 RAKE接收机对多径的分集作用、强有力的前向纠错算法对上行链路预算的改善等, CDMA系统对手机的发射功率的要求比GSM系统对手机发射功的要求要小得多。而GSM手机在接入过程中以最大的功率发射,在通话过程中功率控制速度较慢,所以手机以大功率发射的机率较大。而CDMA手机独特的随机接入机制和快速的反向功率控制,可以使手机平均发射功率维持在一个较低的水平。上述的定性分析结论在后面的实际测量中得到了验证。
二、路测试验描述和结果分析
路测实验进行了CDMA和GSM手机在实际通信过程中发射功率的测试。CDMA测试手机和GSM测试手机同时拔打1861, 汽车内收音机调整到适当音量,模拟双向通话。车速40km左右。GSM手机每480ms抽样一次,CDMA手机每20ms抽样一次。试验测得的结果是: CDMA手机的线性平均发射功率为2.4dBm (1.72 mW),以最大功率 (23dBm, 0.2瓦) 发射的概率为0.2%;GSM手机的线性平均发射功率为28.9dBm (773 mW),以最大功率(2瓦W)发射的概率为21.8%。值得注意的是目前北京市区的北京移动GSM网络已相当成熟,基站间距较小,GSM手机可以较小功率发射,而CDMA网络处于发展阶段, 网络优化后, 对CDMA手机发射功率的要求会更小。
三、手机安全辐射标准与手机发射功率
手机辐射对人体的影响尚在不断的观察与研究之中, 国外有大量相互矛盾的研究报告, 目前尚未有全面的科学的结论。目前国际上(包括美国FCC, NCRP,欧洲的CENEIEC)普遍采用的标准是SAR值(SPECIFIC ABSORPTION RATE),它指的是人体单位质量吸收的射频功率。 (公式略)
由于手机在通话时靠近人的脑部(不带耳机),手机辐射天线与人脑的距离通常小于15cm。人脑处于天线辐射的近场,由于人体组织结构的复杂性,理论上计算天线辐射功率与人体内场强分布的关系非常困难。但根据电磁场理论,有一点是可以肯定的,在天线结构以及手机和人体相对位置一定的情况下,天线输出功率越大,在人体内形成的电场强度越高,人体吸收的射频辐射功率越大。目前测量SAR值一个重要方法是使用人体组织等效模型,利用探头来测量受射频辐射的人体内的实际场强值。
对SAR要求较严的是FCC标准,对30MHz-15GHz频段推荐了两类辐射标准:
1. 受控制的辐射极限:
0.4mw/g(人体平均值),峰值8mw/g(对任何1克人体组织平均),平均时间6分钟;
2. 非控制的辐射极限
0.08mw/g(人体平均值), 峰值1.6mw/g(对任何1克人体组织平均),平均时间30分钟。
手机辐射属于人不能控制射频源的非控制辐射。
需要特别指出的是,目前进行的手机SAR测试得到的结果,均是在手机以最大发射功率和全速率移动的情况下得到的。CDMA手机最大发射功率为 0.2W, GSM手机最大发射功率为2W,但GSM手机只在1/8的时间发射,而SAR值的测定是一个较长时间的平均,因此,GSM手机和CDMA手机在这种情况下的SAR值相近是不足为奇的。我们不能因为在这种极限情况下CDMA手机和GSM手机SAR值相当而武断地认为在实际的通信过程中CDMA手机和GSM手机辐射也相近。因为在实际通信过程中,GSM手机和CDMA手机都不会总是以最大功率发射,特别是CDMA手机以全速率,最大功率发射的概率极小。从前面路测的统计结果来看,GSM手机以大功率发射的概率远远大于CDMA 手机大功率发射的概率,CDMA手机的平均发射功率远远小于CDMA手机的最大发射功率,也远远小于GSM手机的平均发射功率,因此,在实际通信过程中的 CDMA手机对人体辐射的实际SAR值将大大低于CDMA手机标称的SAR值,也远低于GSM手机实际的SAR值。
另一方面, 客观地说, 目前广泛采用的SAR标准可能不能够全面反应手机辐射对人体的影响。因为该标准是根据电磁辐射对人体的热效应制定的。事实上, 电磁波, 特别是低频脉冲电磁波对人体辐射的非热效应也日益引起人们的关注, GSM手机发射产生的低频脉冲电磁波已经影响到精密医疗设备, 助听设备的正常使用, 是否对人体也有害, 目前尚无定论。为避免GSM手机的上述缺陷, 第三代移动通信系统的终端设备发射的将都是象CDMA手机一样连续的无线电波而非脉冲电波。
由于CDMA和GSM的技术体制对CDMA和GSM手机的发射功率的要求以及初始发射功率值的取定以及功率控制机制不同,在实际通信过程中, CDMA手机的平均发射功率远远低于GSM手机的平均发射功率。现网实测证实,CDMA手机的平均发射功率比GSM手机的发射功率小 500多倍,考虑到GSM手机只在八分之一时间内发射,在同等时间内,CDMA辐射的能量比GSM手机辐射的能量小60倍以上。
手机辐射的安全标准SAR值是在手机以最大功率发射的情况下得出的,在这种情况下GSM手机和CDMA手机的SAR值相当是完全正常的。由于 CDMA手机在实际通信过程中的平均发射功率远远小于CDMA手机的最大发射功率,也远小于GSM手机的平均发射功率,因此CDMA手机对人体的实际辐射远远低于手机最大发射功率下的SAR值,而且在使用过程中不辐射低频无线电波, CDMA手机是名副其实的"绿色手机"!
❹ 贪婪算法和最大载干比算法是同一个算法啊
贪心法的基本思路:
——从问题的某一个初始解出发逐步逼近给定的目标,以尽可能快的地求得更好的解。当达到某算法中的某一步不能再继续前进时,算法停止。
该算法存在问题:
1. 不能保证求得的最后解是最佳的;
2. 不能用来求最大或最小解问题;
3. 只能求满足某些约束条件的可行解的范围。
实现该算法的过程:
从问题的某一初始解出发;
while 能朝给定总目标前进一步 do
求出可行解的一个解元素;
由所有解元素组合成问题的一个可行解;
最大载干比算法在选择传输用户时,只选择最大载干比叫的用户,即让信道条件最好的用户占用资源传输数据,当该用户信道变差后,再选择其他信道最好的用户。基站始终为该传输时刻信道条件最好的用户服务。最大C/I算法的吞吐量最大,但公平性最差,应该是和贪婪算法为同一个算法。
❺ CDMA 导频污染
CDMA网络导频污染问题
网络优化是网络建设和发展的关键环节。在CDMA网络优化的过程中,导频污染是一个需要重点解决的问题,其结果直接影响着网络性能的改善。
一、导频污染简介
当移动台的激活集中有四个或者更多导频信号(这些导频与最佳导频的Ec/Io值之差小于6dB,且都比T_ADD门限大,而且这其中没有一个信号能强到足以成为真正的主导频),在这些区域,其它不在移动台激活集中的强导频信号的突然出现导致移动台在切换过程中掉话现象的产生,强导频信号成为潜在的干扰源,这就是导频污染概念的由来。由于移动台需要从基站或扇区接收一些系统参数,其主要来源就是主导频的基站或扇区。在这种情况下,移动台在移动的过程中,四个导频的大小不断变化,主服务小区也随之不断变化,这将对移动台的通话产生一定的影响。
C网手机中有四个Rake接收机,一个作为相关器,其余三个用作解调,这使得Rake同时只能处理三径的信号。由于CDMA是一个自干扰受限系统,当激活集中的导频数大于三个时,Rake接收机将以时分形式从中选取三路进行合并,多余的导频信号就成为一种干扰,增加了系统的背景噪声,这对Rake接收机的自适应算法是不利的,将会导致FER的升高。当移动台在该区域中移动时,由于强导频信号较多,相互变化也比较快,势必导致移动台发生频繁的切换。当移动台处于这种频繁软切换状态时,需要同时和几个基站进行通信,虽然分集增益可以改善该移动台的通话质量,但其对系统容量有一定的负作用。而且,移动台掉话大多数情况下发生在其切换的过程中,频繁的切换势必增加移动台发生掉话的几率。这种情况下,系统的容量不但会降低,而且掉话率也会因此而升高,导致用户的投诉,同时浪费网络资源。
二、导频污染的分析
解决导频污染一般通过调整系统的多种参数来实现。目前主要采取减少污染导频信号的强度和增强有用导频信号的强度的方法使第四个污染导频的强度超出导频污染的门限,从而达到消除导频污染的目的。
1.地形分析
是否有阻挡。地形因素是影响信号传播的主要因素之一,由于受到地形因素影响,本来应该覆盖到该区域的信号变弱,而其他较远小区的信号强度与主服务小区的信号强度差别不大,便会产生导频干扰现象。
2.导频信号强度分析
共有多少个导频,有多少个有用导频,每个导频的信号强度是多少,是否全部大于T_ADD(激活集门限),或部分大于T_ADD,或全部小于T_ADD。
3.周围环境分析
周围环境是由哪几个扇区来覆盖(一般不要超过三个),在刨除这三个小区的导频后,其余的导频都是无用的、干扰的导频,需要加以控制,以减小干扰。
4.导频功率
通过改变导频功率,可以控制导频信号的覆盖范围。
(1)增加某些扇区的导频功率,提高导频信号的强度,加强覆盖,使该区域只有一个或两个强的主导频,并相应提高T_ADD的门限,滤除其他无用的信号。
(2)减少某些扇区的导频功率,降低导频信号的强度,并控制这些导频信号的强度在T_ADD以下,减少对某地点的干扰,避免导频污染。
5.基站天线
(1)改变天线高度:将天线升高,扩大覆盖范围,提高信号强度;降低天线高度,控制覆盖范围,避免越区覆盖,减少导频污染的几率。
(2)更换天线:换用增益更高的天线,加强覆盖,提高信号强度;选用低增益天线,减少导频污染,避免越区覆盖。
(3)调整天线的方位角,有针对性地加强某地点的覆盖,减少对某地点的导频污染,或避开高层建筑的阻挡。
(4)调整天线的下倾角覆盖范围,加强信号覆盖或降低该路信号的强度,避免导频污染。
三、导频污染诊断
1.用plannet网络规划工具
(1)显示出在每个地点的重叠导频数。
(2)显示出在每个地点的导频及其来源。
2.采用路测设备进行路测,用后台分析工具进行导频污染分析
(1)路测过程中观测手机cdmapilotset图,观测导频数量,在电子地图上找出导频来源。
(2)用后台软件分析调出pilotHandoffnumber图,观察导频数量,找出导频来源。
四、导频污染问题的解决方案
1.调整基站的发射功率
通过降低最弱扇区的发射功率可以使该区域的主导频减少到一个或两个。如果降低其中一个扇区的功率,则在导频污染区域的Io(干扰信号能量)将会减小,其他几路导频在功率不调整的情况下,Ec/Io(载干比)也将得到提高。这样,就可以拉开激活集中四个PN的Ec/Io值的差距,使降低功率的扇区PN 从移动台激活集中去除,从而消除导频污染。同理,增加一个或两个扇区的发射功率,使这两个扇区的Ec/Io 提高,而其他的两个扇区因为总的Io 变大而使其Ec/Io 减小,这样也可以消除导频污染。但与降低功率不同,提高扇区的发射功率,必须保证功率的提高不会对周围其他小区造成干扰。
上述调整方法也存在一些弊端。
(1)如果增加导频功率,同步信道和寻呼信道的功率会相应地增加,业务信道的功率会因此而降低。
(2)如果降低导频功率,信号的穿透力会明显减弱,覆盖范围变小,用户的通话质量会受到影响。
(3)由于调整了扇区的发射功率,使被调整的小区以及周围小区的覆盖情况都发生了一定的变化。在优化完导频污染的问题之后,一定要充分考虑到调整方案对系统覆盖的影响。
2.调整天线的方位角和下倾角
为了达到降低该扇区到达导频污染区时的功率,大多数情况下可以调整天线的下倾角。
如果调整了其中两个扇区的下倾角(增大下倾角),使其到达远导频污染区的导频功率降低,那么它们的Ec/Io就会相应的降低,总的Io也就降低了。此时,剩余的两个扇区的Ec/Io就会有一定幅度的提高,这在一定程度上也解决了导频污染的问题。同理,调整其中两个扇区的下倾角(减小下倾角),使其到达远导频污染区的导频功率相应地提高,剩余的两个扇区的Ec/Io 也自然会相应地降低。当然,天线倾角的可调整范围是有限的。为了增加可调节的范围,将上述两种方法进行有机结合,增加两个扇区倾角的同时减小另外两个扇区的倾角,以达到增大调节范围的目的。
上述两种方法在有效控制导频污染的同时,也会对调整小区和周围小区的覆盖产生一定的影响。但相对于调整扇区的发射功率,调整天线倾角不会对覆盖产生太大的变化,只是由于小区呼吸的作用,对周围小区会有轻微的影响;适当的调节天线的方位角,使该扇区到达本污染区域的信号功率降低(或升高),从而使导频污染区各个扇区的信号功率的差距增大,也可以消除导频污染。但是,调节扇区的方位角不能方便地控制该扇区到达的功率,而且会影响本扇区的覆盖,事实上,方位角主要是用来调整覆盖的。
总之,通过上面的分析,采用调解天线的方位角和下倾角是比较好的优化方法,对系统的影响也相对小一些。
五、导频污染预防
1.基站位置的安排(BSLocation):可以合理配置覆盖资源,减少导频重叠覆盖区域,减少导频污染机会。
2.天线下倾角(AntennaDowntilt):合理最优覆盖,减少导频污染机会。
3.天线方位角(AntennaOrientation):合理最优覆盖,减少导频污染机会。
在CDMA网络优化中,导频污染问题是普遍存在的一个问题,要做到完全消除导频污染是非常困难的,加强网络优化和网络规划联系,对导频污染进行统一处理是提升网络质量、加强网络覆盖的重要保障。