粒度估算法
① 常规的粒度分析方法有几种
据我所知有沉降法、激光法、显微镜法,以前我记得还有一种空气透过法(大概15年前的了)估计已经淘汰了!
② 粒度分布的计算方法
D50:一个样品的累计粒度分布百分数达到50%时所对应的粒径。它的物理意义是粒径大于它的颗粒占50%,小于它的颗粒也占50%,D50也叫中位径或中值粒径。D50常用来表示粉体的平均粒度。
D90:一个样品的累计粒度分布数达到90%时所对应的粒径。它的物理意义是粒径小于它的的颗粒占90%。D90常用来表示粉体粗端的粒度指标。 其它如D16、D90等参数的定义与物理意义与D97相似。
D10:D10就是纵坐标累计分布10%所对应的横坐标直径值。
颗粒累计分布为10%的粒径,即小于此粒径的颗粒体积含量占全部颗粒的10%。颗粒粒径分布为50%的粒径,即小于此粒径的颗粒体积含量占全部颗粒的50%。颗粒粒径分布为90%的粒径,即小于此粒径的颗粒体积含量占全部颗粒的90%。
产品种类丰富,其中激光衍射粒度分析仪可为干湿法分散提供快速、精确、便捷的粒径分布测试。 该分析仪可在纳米至毫米粒度范围内进行测量,体积小巧、性能卓越、稳定可靠,可为所有用户提供无需操作者干预的测量。
(2)粒度估算法扩展阅读:
数学方程式亦可用来描述粒度分布。虽曾有人尝试将这类数学式与实际断裂力学相联系,但多数还是一些仅便于表述数据的经验关系式。当数据必须处理时,数学式可能有用;但这往往要求使用计算机,而在这类条件下,实际数据的矩阵表示同样方便,而且更可靠。
粒度数据的图示法通常是以横坐标(x轴)列出颗粒粒度,以纵坐标(y轴)列出测得的基准量。表示数量有两种方法:一种是列出每一粒级中的量(绝对量,分数,或百分数),另一种方法是列出高于或低于某一粒度的累计量(分数或百分数)。
③ 常用粒度测试方法所具有哪些优缺点
颗粒的大小称为颗粒的粒度。颗粒是在一定尺寸范围内具有特定形状的几何体。颗粒不仅指固体颗粒,还有雾滴、油珠等液体颗粒。颗粒的概念似乎很简单,但由于各种颗粒的形状复杂,使得粒度分布的测试工作比想象的要复杂得多。因此要真正了解各种粒度测试技术所得出的测试结果,明确颗粒的定义是很重要的。
筛分法: 优点:简单、直观、设备造价低、常用于大于40μm的样品。
缺点:不能用于40μm以细的样品;结果受人为因素和筛孔变形影响较大。
显微镜(图像)法: 优点:简单、直观、可进行形貌分析,适合分布窄(最大和最小粒径的比值小于10:1)的样品。
缺点:无法分析分布范围宽的样品,无法分析小于1微米的样品。
沉降法(包括重力沉降和离心沉降): 优点:操作简便,仪器可以连续运行,价格低,准确性和重复性较好,测试范围较大。
缺点:测试时间较长,操作比较复杂。
库尔特法: 优点:操作简便,可测颗粒总数,等效概念明确,速度快,准确性好。
缺点:适合分布范围较窄的样品。
激光法: 优点:操作简便,测试速度快,测试范围大,重复性和准确性好,可进行在线测量和干法测量。
缺点:结果受分布模型影响较大,仪器造价较高。
电镜: 优点:适合测试超细颗粒甚至纳米颗粒、分辨率高。
缺点:样品少、代表性差、仪器价格昂贵。
超声波法: 优点:可对高浓度浆料直接测量。
缺点:分辨率较低。
透气法: 优点:仪器价格低,不用对样品进行分散,可测磁性材料粉体。
缺点:只能得到平均粒度值,不能测粒度分布。
④ 粒度参数的计算
合适的粒度参数能较简便地表示碎屑沉积物的粒度特征,在分析沉积物的搬运方式和介质的水动力条件方面,有一定的参考价值。粒度参数的计算有两种方法,即矩法与图解法。矩法计算是一种近似的定量计算,其优点是能使整个粒度分布都投入计算,但计算手续较为复杂。运用矩法统计粒度参数的公式分别是
图6-7 正态概率坐标
(1)平均值
晶体光学与沉积岩岩石学实验教程
(2)标准偏差
晶体光学与沉积岩岩石学实验教程
(3)偏度
晶体光学与沉积岩岩石学实验教程
(4)尖度
晶体光学与沉积岩岩石学实验教程
式中:f为每个粒级中质量百分数(频率);m为每个粒级中间值,以φ表示;n为样品中颗粒总数,当以百分数表示时,n就等于100。
图解法可以从累积曲线上读出与某些累积百分数相应的颗粒直径,称之为分位数值,再经简单的数学运算,即可得出粒度参数。此法简便。精度也可以。
首先,从累积曲线图上读出下列参数:
φ1——累积质量为1%的粒径φ值;φ5——累积质量为5%的粒径φ值;φ16——累积质量为16%的粒径φ值;φ25——累积质量为25%的粒径φ值;φ50——累积质量为50%的粒径φ值;φ75——累积质量为75%的粒径φ值;φ84——累积质量为84%的粒径φ值;φ95——累积质量为95%的粒径φ值。
上列参数又称之为百分位数,例如φ16相对应于16%处的粒径φ值,称之为第16百分位数。φ众数为含量最高的粒级φ值,可直接从原始分析数据上读出;<4φ的粒级含量百分数,也可直接从原始分析数据上读出。
过去广泛采用的是特拉斯克(Trask,1930)提出的粒度参数计算公式:
(1)平均值
晶体光学与沉积岩岩石学实验教程
(2)分选性
晶体光学与沉积岩岩石学实验教程
式中:Q1为第一四分位数,即相当于25%处的粒径大小;Q3为第三四分位数,即相当于75%处的粒径大小。
(3)偏度
晶体光学与沉积岩岩石学实验教程
特拉斯克的参数精度较差,不能表示出分布的粗尾和细尾的特征。因此,目前大都采用福克及沃德(Folk and Ward,1957)提出的粒度参数计算公式:
(1)平均值
晶体光学与沉积岩岩石学实验教程
(2)标准偏差
晶体光学与沉积岩岩石学实验教程
(3)偏度
晶体光学与沉积岩岩石学实验教程
(4)尖度
晶体光学与沉积岩岩石学实验教程
平均值可以反映沉积物的平均粒度,它是沉积物粒度特征中最主要的特征之一,常被用来作剖面粒度韵律曲线,作为沉积韵律的基础。或是作平面等值线图,表示沉积物在平面上的粒度变化。作为岩性变化的基础,划分沉积相带,追索物源方向。或是用于研究储油物性与粒度关系等方面,应用很广。
标准偏差(σφ)用来表示沉积物粒度的分选程度,即颗粒大小的均匀性。若粒级少,主要粒级很突出,百分含量高,分选就好,标准偏差的数值小;反之,粒级分布范围很宽,主要粒级不突出,甚至是两峰或多峰沉积物,则分选就差,标准偏差的数值大。
偏度(SKφ)是用以度量频率曲线的不对称程度的,即表示非正态性特征的。按频率曲线对称的性质分为三类:正偏态、正态及负偏态(图6-8)。偏度公式的前一半是表示频率曲线中央部分的偏度,另一半表示粗细两尾端的偏度。
图6-8 正态频率曲线和正偏态、负偏态曲线
1)曲线对称时,SKφ=0。
2)曲线不对称呈正偏时,SKφ>0,最大可达+1,通常不超过+0.8。
3)曲线不对称呈负偏时,SKφ<0,最小可到-1,通常不超过-0.8。
偏度与分选有密切关系,很纯的分选、很好的单峰沉积物频率曲线是对称的;当有另一组粗或细的少量组分加入时,分选变差,频率曲线为不对称,为正偏或负偏;当新加入组分的含量逐渐增加,相应地旧组分减少,至两组分的含量相等时,分选最差,频率曲线呈平坦的马鞍状双峰曲线,又趋于对称。
尖度或称峰态(Kφ)是计算分布曲线尾部展开度与中部展开度的比例来表示的。用之来说明与正态分布曲线相比时分布曲线的峰的宽窄尖锐程度(图6-9)。按福克和沃德(1957)所建议的尖度公式,正态曲线的Kφ=1.01,双峰分布的Kφ值可能低至0.68,而含尾部的尖峰分布,其Kφ可能在1.5~3之间,或更大些。
尖度和偏度一样,都是用来测量沉积物频率曲线的双峰性质和反映其尾部变化的。由于沉积物的粒度分布,以粗细两尾端部分对搬运介质的机械作用反映最灵敏,所以尖度和偏度可用于判断沉积环境和追溯物源方向。真正的单峰沉积物,如海滩砂,应该为常态曲线,有正常的偏度和尖度值。不正常的偏度和尖度值的出现说明沉积物是双峰或多峰的多物源的混合沉积物,在频率曲线上应显示双峰或多峰性质。但当次峰不明显时,曲线反映不出来,而偏度和尖度却能灵敏地表示出微弱的双峰或多峰性质。有的尖度比偏度更灵敏些。
图6-9 宽窄峰态与正态曲线形态的比较
⑤ 焦炭的平均粒度计算方法
焦炭的平均粒度计算方法
焦炭平均粒度有许多种,计算步骤都较繁。
介绍一种常用的,叫“表面积体积平均径”,简写D(3,2):
D(3,2) = 1 / (Σ(fVI /DI))。
就是,“(体积)表中百分数,除对应的边界中值”,这些值相加后,再倒数。
例如,边界0到1有10%,1到2有30%,2到4有40%,4到8有20%,那么为
D(3,2) = 1 / (0.1/0.5 + 0.3/1.5 + 0.4/3 + 0.2/6) = 1/(0.2 + 0.2 + 0.13 + 0.03) = 1/0.56 = 1.78
⑥ 粒度分析
粒度与搬运流体的性质及其力学特征密切相关,它是判别环境的标志之一。目前国际上应用最广的粒度分级标准是伍登-温德华粒级。它是以1mm作为基数乘以或除以2来分级的。后经克伦宾将其转化为φ值。转换公式为:
φ=-log2d
式中:d为毫米直径值。形成一个以1为基数,2为公比数的等比级数列。如表4-3所示。
表4-3 伍登-温德华φ值粒度标准
*有些分界点记为0.05mm;**有些分界点记为0.005mm
沉积物粒度测量方法,主要包括放大镜、照片分析、筛析、沉降分析、显微镜下粒度分析等方法。针对不同的颗粒选择适用的方法进行测量,其中,砾石等颗粒级别较大的多用皮尺或测量规直接测量,用量筒测砾石的体积。可松解或疏松的细、中碎屑岩多采用筛析法。粉砂及黏土岩常用沉降法、流水法等方法测量。固结的无法松解的岩石多采用显微镜下粒度分析。不同的方法测出的结果,略有差别,需校正后才能互用,其中沉降粒径和筛析粒径之间的偏差小于或等于0.1φ,可以直接互用。但薄片显微镜下分析粒径,因存在切片效应,需经过弗里德曼(1962)所提出的粒度的回归校正方程:
D=0.3815+0.9027d
式中:D为校正后的筛析粒径,d是薄片中测定的视长径,均为φ单位。进行校正后才能与筛析法的结果相互用,一般校正后的平均粒径最大偏差一般不超过1/4φ单位。
此外,在粒度测量中杂基校正是一项重要的工作,其方法是:显微镜测至7φ,测定或估出杂基含量。取其2/3~1/2为校正值,假定为Δ,将各累计频率乘以(100-Δ),重新绘曲线。对于弱固结岩石,可用同一标本既做筛析也作薄片分析,通过实验求出校正系数(100-Δ)的数值。
粒度分析的结果可获取到大量的测值,这种大量的数字资料要用统计的方法加以处理,才能推断其与流体力学性质和沉积环境之间的关系。主要的方法是:根据资料做出一些图件,从这些图件上做定量的解释分析。或者直接通过计算,统计参数。两种方法各有优劣,往往需综合分析利用。
粒度分析图主要包括直方图、频率曲线图和累积曲线图(累积百分含量图)。其中最常用的是累积百分含量图,是由维希尔(1969)根据采自现代和古代不同环境内的1500个样品测得的粒度数据,以粒径(φ值)为横坐标,以累积概率值为纵坐标,用来表现大于一定粒级的百分含量统计图。他通过分析得出了沉积物搬运方式与粒度分布之间的关系,以及一些环境的概率图模式(图4-1)。
图4-1 搬运方式与粒度分布的关系
(据Visher,1969)
沉积物的粒度一般不是表现为单一的对数正态分布,因此,在概率分布图上总是表现为几个相交的直线段。每个直线段是不同搬运方式产生的响应。主要包括牵引负载、跳跃负载和悬浮负载三种。其中,悬浮负载的颗粒一般很细,粒径在0.1mm左右,其负载颗粒的粗细变化取决于介质的扰动强度,在概率图上的右上角形成悬浮次总体;跳跃负载是指靠近河床底部层,通过在动荡的水中或流水中对颗粒进行分选,粒径一般在0.15~1.0mm之间,往往是沉积样品中分选最好的组分,在概率图的中部形成跳跃次总体,其不是一个粒度总体,而是由两部分组成,如海滩砂;底部牵引负载是粗粒组分,因颗粒粗而在地面上滚动,形成的滚动次总体位于图的左下方。沉积物因粒径大小和分选性的不同,经历了不同的搬运方式,在累积概率图上形成了不同的次总体直线。直线的不同斜率代表不同的分选性,斜率越大代表分选越好,一定的粒度分布区间和斜率,表明不同的次总体具有一定的平均粒径和标准偏差。各直线段的交点称为交截点,有的样品在两个粒度次总体间有混合带,在图上表现为两线段圆滑接触。
大量的粒度数据通过计算获得各种分析参数后,往往也通过作图来进行定量分析,最常用的是弗里德曼(1961,1967)通过对现代海洋与河流、湖滩沉积所做的粒度分析,用粒度参数离散图(采用10种粒度参数,作出19种图)来区分河流与海(湖)滩沉积。离散图能够把不同成因的砂区别开来,是由于不同成因的砂具有不相同的结构参数。
此外,C-M图也是另外一种常用的图版(图4-2),它是应用每个样品的C值和M值绘成的图形,由Passega(1957,1964)所提出。其中,C值是累积曲线上颗粒含量1%处对应的粒径,M值是累积曲线上50%处对应的粒径。C值与样品中最粗颗粒的粒径相当,代表了水动力搅动开始搬运的最大能量;M值是中值,代表了水动力的平均能量。该图版对于每一个样品都可以用其C值和M值,在以C值为纵坐标,以M值为横坐标的双对数坐标纸上投得一个点,研究沉积地层包含的由粗至细的全部粒度结构类型样品在图纸上会投得一个点群。根据点群的分布绘出的图形形态、分布范围,以及图形与C-M基线的关系等特点,与已知沉积环境的典型C-M图进行对比,再结合其岩性特征,从而对该层沉积岩的沉积环境做出判断。
图4-2 牵引流的C-M图像及粒度类型
(据Passega,1964)
在C-M图中,Ⅰ,Ⅱ,Ⅲ,Ⅸ 段表示C>1000μm,Ⅳ,Ⅴ,Ⅵ,Ⅶ,Ⅷ段表示C<1000μm。1表示牵引流沉积,2表示浊流沉积,“T”代表静水悬浮沉积。“S”形图是以河流沉积为例的完整C-M图,可划分为N—O—P—Q—R—S段。其中从左至右:
N—O段基本上由滚动颗粒组成,C值一般大于1mm(1000μm),常构成河流的砂坝砾石堆积物。
O—P段是滚动物质与间歇悬浮物质(跳跃)混合,物质组分中滚动组分与悬浮组分相混合。C值一般大于800μm,但由于滚动组分中有悬浮物质的参加,从而使M值有明显的变化。C值稍微变化即会使M 值发生重大改变,即粒度分布极不对称,粗细首尾不均。
P—Q段是以间歇悬浮质为主,粗粒滚动质减少。由上游至下游C值变化而M值不变,说明随着流体搬运能力的减弱,越向下游滚动组分的颗粒越小。但由于滚动颗粒的数量并不多,因此M值基本不变。P点附近的C值以Cr表示,它代表着最易作滚动搬运的颗粒直径。
Q—R段为递变悬浮段,沉积物的特点是C值与M值相应变化,显示出与C=M线平行的结果,主要搬运方式为递变悬浮搬运,悬浮物质组分在流体中由下向上粒度逐渐变细,密度逐渐变低。它一般位于水流底部,常是由于涡流发育造成的。该段C的最大值以Cs表示。
R—S段为均匀悬浮段,是粒径和密度不随深度变化的完全悬浮,随着M值向S端逐渐变小,C值基本不变,最大C值即Cu,它代表均匀悬浮搬运的最大粒级。搬运方式常是递变悬浮之上的上层水流搬运,不受底流搬运分选,物质组成主要为粉砂和泥质混合物,最粗的粒度为细砂。表示在河流中从上游至下游沉积物的粒度成分变化不大,只是粗粒级含量相对减少。
C-M图也可用来研究水深、分选性、古流速和碎屑岩分类等,它是一种多功能综合图。
⑦ 粒度测试的基本方法
粒度测试的方法很多,据统计有上百种。目前常用的有沉降法、激光法、筛分法、图像法和电阻法五种,另外还有几种在特定行业和领域中常用的测试方法。 沉降法是根据不同粒径的颗粒在液体中的沉降速度不同测量粒度分布的一种方法。它的基本过程是把样品放到某种液体中制成一定浓度的悬浮液,悬浮液中的颗粒在重力或离心力作用下将发生沉降。不同粒径颗粒的沉降速度是不同的,大颗粒的沉降速度较快,小颗粒的沉降速度较慢。那么颗粒的沉降速度与粒径有怎样的数量关系,通过什么方式反映颗粒的沉降速度呢?
① Stokes定律:在重力场中,悬浮在液体中的颗粒受重力、浮力和粘滞阻力的作用将发生运动,其运动方程为:
这就是Stokes定律。
从Stokes 定律中我们看到,沉降速度与颗粒直径的平方成正比。比如两个粒径比为1:10的颗粒,其沉降速度之比为1:100,就是说细颗粒的沉降速度要慢很多。为了加快细颗粒的沉降速度,缩短测量时间,现代沉降仪大都引入离心沉降方式。在离心沉降状态下,颗粒的沉降事度与粒度的关系如下:
这就是Stokes定律在离心状态下的表达式。由于离心转速都在数百转以上,离心加速度ω2r远远大于重力加速度g,Vc>>V,所以在粒径相同的条件下,离心沉降的测试时间将大大缩短。
② 比尔定律:
如前所述,沉降法是根据颗粒的沉降速度来测试粒度分布的。但直接测量颗粒的沉降速度是很困难的。所以在实际应用过程中是通过测量不同时刻透过悬浮液光强的变化率来间接地反映颗粒的沉降速度的。那么光强的变化率与粒径之间的关系又是怎样的呢?比尔是律告诉我们:
设在T1、T2、T3、……Ti时刻测得一系列的光强值I1<I2<I3……<Ii,这些光强值对应的颗粒粒径为D1>D2>D3>……>Di,将这些光强值和粒径值代入式(5),再通过计算机处理就可以得到粒度分布了。 激光法是根据激光照射到颗粒后,颗粒能使激光产生衍射或散射的现象来测试粒度分布的。由激光器的发生的激光,经扩束后成为一束直径为10mm左右的平行光。在没有颗粒的情况下该平行光通过富氏透镜后汇聚到后焦平面上。如下图所示:
当通过适当的方式将一定量的颗粒均匀地放置到平行光束中时,平行光将发生散现象。一部分光将与光轴成一定角度向外传播。如下图:
那么,散射现象与粒径之间有什么关系呢?理论和实验都证明:大颗粒引发的散射光的角度小,颗粒越小,散光与轴之间的角度就越大。这些不同角度的散射光通过富姓氏透镜后在焦平面上将形成一系列有不同半径的光环,由这些光环组成的明暗交替的光斑称为Airy斑。Airy斑中包含着丰富粒度信息,简单地理解就是半径大的光环对应着较小的粒径;半径小的光环对应着较大的粒径;不同半径的光环光的强弱,包含该粒径颗粒的数量信息。这样我们在焦平面上放置一系列的光电接收器,将由不同粒径颗粒散射的光信号转换成电信号,并传输到计算机中,通过米氏散理论对这些信号进行数学处理,就可以得到粒度分布了。 电阻法又叫库尔特法,是由美国一个叫库尔特的人发明的一种粒度测试方法。这种方法是根据颗粒在通过一个小微孔的瞬间,占据了小微孔中的部分空间而排开了小微孔中的导电液体,使小微孔两端的电阻发生变化的原理测试粒度分布的。小孔两端的电阻的大小与颗粒的体积成正比。当不同大小的粒径颗粒连续通过小微孔时,小微孔的两端将连续产生不同大小的电阻信号,通过计算机对这些电阻信号进行处理就可以得到粒度分布了。如图所示:
用库尔特法进行粒度测试所用的介质通常是导电性能较好的生理盐水。 光阻法(Light Blockage),又称为光障碍法或光遮挡法,是利用微粒对光的遮挡所发生的光强度变化进行微粒粒径检测的方法,检测范围从1μm到2.5mm。
工作原理:当液体中的微粒通过一窄小的检测区时,与液体流向垂直的入射光,由于被不溶性微粒所阻挡,从而使传感器输出信号变化,这种信号变化与微粒的截面积成正比,光阻法检查注射液中不溶性微粒即依据此原理。 显微图像法包括显微镜、CCD摄像头(或数码像机)、图形采集卡、计算机等部分组成。它的基本工作原理是将显微镜放大后的颗粒图像通过CCD摄像头和图形采集卡传输到计算机中,由计算机对这些图像进行边缘识别等处理,计算出每个颗粒的投影面积,根据等效投影面积原理得出每个颗粒的粒径,再统计出所设定的粒径区间的颗粒的数量,就可以得到粒度分布了。
由于这种方法单次所测到的颗粒个数较少,对同一个样品可以通过更换视场的方法进行多次测量来提高测试结果的真实性。除了进行粒度测试之外,显微图像法还常用来观察和测试颗粒的形貌。 除了上述几种粒度测试方法以外,目前在生产和研究领域还常用刮板法、沉降瓶法、透气法、超声波法和动态光散射法等。
(1) 刮板法:把样品刮到一个平板的表面上,观察粗糙度,以此来评价样品的粒度是否合格。此法是涂料行业采用的一种方法。是一个定性的粒度测试方法。
(2) 沉降瓶法:它的原理与前后讲的沉降法原理大致相同。测试过程是首先将一定量的样品与液体在500ml或1000l的量筒里配制成悬浮液,充分搅拌均匀后取出一定量(如20ml)作为样品的总重量,然后根据Stokes定律计算好每种颗粒沉降时间,在固定的时刻分别放出相同量的悬浮液,来代表该时刻对应的粒径。将每个时刻得到的悬浮液烘干、称重后就可以计算出粒度分布了。此法目前在磨料和河流泥沙等行业还有应用。
(3) 透气法:透气法也叫弗氏法。先将样品装到一个金属管里并压实,将这个金属管安装到一个气路里形成一个闭环气路。当气路中的气体流动时,气体将从颗粒的缝隙中穿过。如果样品较粗,颗粒之间的缝隙就大,气体流边所受的阻碍就小;样品较细,颗粒之间的缝隙就小,气体流动所受的阻碍就大。透气法就是根据这样一个原理来测试粒度的。这种方法只能得到一个平均粒度值,不能测量粒度分布。这种方法主要用在磁性材料行业。
(4) 超声波法:通过不同粒径颗粒对超声波产生不同的影响的原理来测量粒度分布的一种方法。它可以直接测试固液比达到70%的高浓度浆料。这种方法是一种新的技术,目前国内外都有人进行研究,据说国外已经有了仪器,国内目前还没有。
(5) 动态光散射法:前面所讲的激光散射法可以理解为静态光散射法。当颗粒小到一定的程度时,颗粒在液体中受布朗运动的影响,呈一种随机的运动状态,其运动距离与运动速度与颗粒的大小有关。通过相关技术来识别这些颗粒的运动状态,就可以得到粒度分布了。动态光散射法,主要用来测量纳米材料的粒度分布。国外已有现成的仪器,国内目前还没有。