当前位置:首页 » 操作系统 » 大数据算法题

大数据算法题

发布时间: 2022-08-27 03:08:31

1. 算法面试

我在《再谈“我是怎么招程序员”》中比较保守地说过,“问难的算法题并没有错,错的很多面试官只是在肤浅甚至错误地理解着面试算法题的目的。”,今天,我想加强一下这个观点——我反对纯算法题面试!(注意,我说的是纯算法题)图片源Wikipedia(点击图片查看词条)我再次引用我以前的一个观点——能解算法题并不意味着这个人就有能力就能在工作中解决问题,你可以想想,小学奥数题可能比这些题更难,但并不意味着那些奥数能手就能解决实际问题。好了,让我们来看一个示例(这个示例是昨天在微博上的一个讨论),这个题是——“找出无序数组中第2大的数”,几乎所有的人都用了O(n)的算法,我相信对于我们这些应试教育出来的人来说,不用排序用O(n)算法是很正常的事,连我都不由自主地认为O(n)算法是这个题的标准答案。我们太习惯于标准答案了,这是我国教育最悲哀的地方。(广义的洗脑就是让你的意识依赖于某个标准答案,然后通过给你标准答案让你不会思考而控制你)功能性需求分析试想,如果我们在实际工作中得到这样一个题 我们会怎么做?我一定会分析这个需求,因为我害怕需求未来会改变,今天你叫我找一个第2大的数,明天你找我找一个第4大的数,后天叫我找一个第100大的数,我不搞死了。需求变化是很正常的事。分析完这个需求后,我会很自然地去写找第K大数的算法——难度一下子就增大了。很多人会以为找第K大的需求是一种“过早扩展”的思路,不是这样的,我相信我们在实际编码中写过太多这样的程序了,你一定不会设计出这样的函数接口 —— Find2ndMaxNum(int* array, int len),就好像你不会设计出 DestroyBaghdad(); 这样的接口,而是设计一个DestoryCity( City& ); 的接口,而把Baghdad当成参数传进去!所以,你应该是声明一个叫FindKthMaxNum(int* array, int len, int kth),把2当成参数传进去。这是最基本的编程方法,用数学的话来说,叫代数!最简单的需求分析方法就是把需求翻译成函数名,然后看看是这个接口不是很二?!(注:不要纠结于FindMaxNum()或FindMinNum(),因为这两个函数名的业务意义很清楚了,不像Find2ndMaxNum()那么二)非功能性需求分析性能之类的东西从来都是非功能性需求,对于算法题,我们太喜欢研究算法题的空间和时间复杂度了。我们希望做到空间和时间双丰收,这是算法学术界的风格。所以,习惯于标准答案的我们已经失去思考的能力,只会机械地思考算法之内的性能,而忽略了算法之外的性能。如果题目是——“从无序数组中找到第K个最大的数”,那么,我们一定会去思考用O(n)的线性算法找出第K个数。事实上,也有线性算法——STL中可以用nth_element求得类似的第n大的数,其利用快速排序的思想,从数组S中随机找出一个元素X,把数组分为两部分Sa和Sb。Sa中的元素大于等于X,Sb中元素小于X。这时有两种情况:1)Sa中元素的个数小于k,则Sb中的第 k-|Sa|个元素即为第k大数;2) Sa中元素的个数大于等于k,则返回Sa中的第k大数。时间复杂度近似为O(n)。搞学术的nuts们到了这一步一定会欢呼胜利!但是他们哪里能想得到性能的需求分析也是来源自业务的!我们一说性能,基本上是个人都会问,请求量有多大?如果我们的FindKthMaxNum()的请求量是m次,那么你的这个每次都要O(n)复杂度的算法得到的效果就是O(n*m),这一点,是书呆子式的学院派人永远想不到的。因为应试教育让我们不会从实际思考了。工程式的解法根据上面的需求分析,有软件工程经验的人的解法通常会这样:1)把数组排序,从大到小。2)于是你要第k大的数,就直接访问 array[k]。排序只需要一次,O(n*log(n)),然后,接下来的m次对FindKthMaxNum()的调用全是O(1)的,整体复杂度反而成了线性的。其实,上述的还不是工程式的最好的解法,因为,在业务中,那数组中的数据可能会是会变化的,所以,如果是用数组排序的话,有数据的改动会让我重新排序,这个太耗性能了,如果实际情况中会有很多的插入或删除操作,那么可以考虑使用B+树。工程式的解法有以下特点:1)很方便扩展,因为数据排好序了,你还可以方便地支持各种需求,如从第k1大到k2大的数据(那些学院派写出来的代码在拿到这个需求时又开始挠头苦想了)2)规整的数据会简化整体的算法复杂度,从而整体性能会更好。(公欲善其事,必先利其器)3)代码变得清晰,易懂,易维护!(学院派的和STL一样的近似O(n)复杂度的算法没人敢动)争论你可能会和我有以下争论,如果程序员做这个算法题用排序的方式,他一定不会像你想那么多。是的,你说得对。但是我想说,很多时候,我们直觉地思考,恰恰是正确的路。因为“排序”这个思路符合人类大脑处理问题的方式,而使用学院派的方式是反大脑直觉的。反大脑直觉的,通常意味着晦涩难懂,维护成本上升。就是一道面试题,我就是想测试一下你的算法技能,这也扯太多了。没问题,不过,我们要清楚我们是在招什么人?是一个只会写算法的人,还是一个会做软件的人?这个只有你自己最清楚。这个算法题太容易诱导到学院派的思路了。是的这道“找出第K大的数”,其实可以变换为更为业务一点的题目——“我要和别的商户竞价,我想排在所有竞争对手报价的第K名,请写一个程序,我输入K,和一个商品名,系统告诉我应该订多少价?(商家的所有商品的报价在一数组中)”——业务分析,整体性能,算法,数据结构,增加需求让应聘者重构,这一个问题就全考了。你是不是在说算法不重要,不用学?千万别这样理解我,搞得好像如果面试不面,我就可以不学。算法很重要,算法题能锻炼我们的思维,而且也有很多实际用处。我这篇文章不是让大家不要去学算法,这是完全错误的,我是让大家带着业务问题去使用算法。问你业务问题,一样会问到算法题上来。小结看过这上面的分析,我相信你明白我为什么反对纯算法面试题了。原因就是纯算法的面试题根本不能反应一个程序的综合素质!那么,在面试中,我们应该要考量程序员的那些综合素质呢?我以为有下面这些东西:会不会做需求分析?怎么理解问题的?解决问题的思路是什么?想法如何?会不会对基础的算法和数据结构灵活运用?另外,我们知道,对于软件开发来说,在工程上,难是的下面是这些挑战:软件的维护成本远远大于软件的开发成本。软件的质量变得越来越重要,所以,测试工作也变得越来越重要。软件的需求总是在变的,软件的需求总是一点一点往上加的。程序中大量的代码都是在处理一些错误的或是不正常的流程。所以,对于编程能力上,我们应该主要考量程序员的如下能力:设计是否满足对需求的理解,并可以应对可能出现的需求变化。

2. 大数据时代 无处不在的算法应用

大数据时代 无处不在的算法应用
能不能讲讲算法在工作中的运用?你个人学习算法的过程是怎样的?我对算法还是有点怕。除此之外,你认为大学是应该多花时间学应用技术还是理论知识呢?
今天就来聊聊我自己学习算法的过程,以及算法在实际工作中的应用。
以前,我们认为大数据总是优于好算法。也就是说,只要数据量足够大,即使算法没有那么好,也会产生好的结果。
前一阵子“极客时间” App 发布了一条极客新闻:“算法比数据更重要,AlphaGo Zero 完胜旧版。”新闻的内容是谷歌人工智能团队 DeepMind 发布了新版的 AlphaGo 计算机程序,名为 AlphaGo Zero。这款软件能够从空白状态开始,不需要人类输入任何命令,便可以迅速自学围棋,并以 100 比 0 的战绩击败了上一代 AlphaGo。
AlphaGo Zero 最大的突破在于实现了“白板理论”。白板理论认为:婴儿是一块白板,可以通过后天学习和训练来提高智力。AI 的先驱图灵认为,只要能用机器制造一个类似于小孩的 AI,然后加以训练,就能得到一个近似成人智力,甚至超越人类智力的 AI。
自学成才的 AlphaGo Zero 正是实现了这一理论。AlphaGo 的首席研究员大卫·席尔瓦(David Silver)认为,从 AlphaGo Zero 中可以发现,算法比所谓的计算或数据量更为重要。事实上,AlphaGo Zero 使用的计算要比过去的版本少一个数量级,但是因为使用了更多原理和算法,它的性能反而更加强大。
由此可见,在大数据时代,算法的重要性日渐明晰。一个合格的程序员,必须掌握算法。
我不知道大家是怎样一步步开始精通算法和数据结构的。大二时,我第一次接触到了《数据结构》,因为从来没有过这方面的思维训练,当时的我学习这门课比较费力。那时候接触到的编程比较少,所以并没有很多实际经验让我欣赏和体味:一个好的数据结构和算法设计到底 “美” 在哪里。
开始学习的时候,我甚至有点死记硬背的感觉,我并不知道 “如果不这样设计”,实际上会出现哪些问题。各种时间和空间复杂度对我而言,也仅仅是一些不能融入到实际问题的数学游戏。至于“每种最坏情况、平均情况的时间空间复杂度与各种排序”,这些内容为什么那么重要,当时我想,可能因为考试会考吧。
没想到后来的时日,我又与算法重新结缘。可能是因为莱斯大学给的奖学金太高了,所以每个研究生需要无偿当五个学期的助教 。好巧不巧,我又被算法老师两次挑中当助教。所以,在命运强制下,一本《算法导论》就这样被我前前后后仔细学习了不下四遍。这样的结果是,我基本做过整本书的习题,有些还不止做了一遍。我学习算法的过程,就是反复阅读《算法导论》的过程。
那么,学习算法到底有什么用处呢?
首先,算法是面试的敲门砖国内的情况我不太清楚,但就硅谷的 IT 公司而言,不但电话面试偏算法,现场面试至少有两轮都是考算法和编程的。
大一些老一些的公司,像谷歌、Facebook、领英、Dropbox 等,都是直接在白板上写程序。小一些新一些的公司,如 Square、Airbnb 等,都是需要现场上机写出可运行的程序。Twitter、Uber 等公司则是白板上机兼备,视情况而定。
虽说还有其它考系统设计等部分,但如果算法没有打好基础,第一关就很难过,而且算法要熟悉到能够现场短时间内写出正解,所以很多人准备面试前都需要刷题。
有一次我当面试官,电话面试另外一个人,当时是用 Codepad 共享的方式,让对方写一个可运行的正则表达式解析器。45 分钟过去了,对方并没有写出来。我就例行公事地问:“你还有什么问题想问或者想了解么?” 对方估计因为写不出程序很有挫败感,就反问:“你们平时工作难道就是天天写正则表达式的解析器么?”
一瞬间,我竟无言以对。想了想,我回复说:“不用天天写。那我再给你 15 分钟,你证明给我看你还会什么,或者有什么理由让我给你进一步面试的机会?” 对方想了一会,默默挂掉了电话。
老实说,我对目前面试中偏重算法的程度是持保留意见的。算法题答得好,并不能说明你有多牛。牛人也有因为不愿刷题而马失前蹄的时候。但是除了算法测试,显然也没有更好的方法佐证候选人的实力;然而怎样才能最优化面试流程,这也是个讨论起来没完的话题,并且每次讨论必定无果而终。
其次,编程时用到的更多是算法思想,而不是写具体的算法说到实际工作中真正需要使用算法的机会,让我想一想 —— 这个范围应该在 10% 的附近游走。
有些朋友在工作中遇到算法场景多些,有的少些。更多的时候,是对业务逻辑的理解,对程序语言各种特性的熟练使用,对代码风格和模式的把握,各种同步异步的处理,包括代码测试、系统部署是否正规化等等。需要设计甚至实现一个算法的机会确实很少,即使用到,现学可能都来得及。
但是熟悉基本算法的好处在于:如果工作需要读的一段代码中包含一些基本算法思想,你会比不懂算法的人理解代码含义更快。读到一段烂代码,你知道为什么烂,烂在哪,怎么去优化。
当真的需要在程序中设计算法的时候,熟悉算法的你会给出一个更为完备的方案,对程序中出现的算法或比较复杂的时间复杂度问题你会更有敏感性。熟悉算法你还可以成为一个更优秀的面试官,可以和别的工程师聊天时候不被鄙视。
最后,不精通算法的工程师永远不是好工程师当然,除了算法导论中那些已成为经典的基本算法以及算法思想(Divide-and-conquer,Dynamic programming)等,其实我们每天接触到的各种技术中,算法无处不在。
就拿人人都会接触的存储为例吧,各种不同的数据库或者键值存储的实现,就会涉及各种分片(Sharding)算法、缓存失败(Cache Invalidation)算法、 锁定(Locking)算法,包括各种容错算法(多复制的同步算法)。 虽然说平时不太会去写这些算法 —— 除非你恰恰是做数据库实现的 —— 但是真正做到了解这项技术的算法细节和实现细节,无论对于技术选型还是对自己程序的整体性能评估都是至关重要的。
举个例子,当你在系统里需要一个键值存储方案的时候,面对可供选择的各种备选方案,到底应该选择哪一种呢?
永远没有一种方案在所有方面都是最佳的。就拿 Facebook 开源的 RocksDB 来说吧。了解它历史的人都知道,RocksDB 是构建在 LevelDB 之上的,可以在多 CPU 服务器上高效运行的一种键值存储。而 LevelDB 又是基于谷歌的 BigTable 数据库系统概念设计的。
早在 2004 年,谷歌开始开发 BigTable,其代码大量的依赖谷歌内部的代码库,虽然 BigTable 很牛,却因此无法开源。2011 年,谷歌的杰夫·迪恩和桑杰·格玛沃尔特开始基于 BigTable 的思想,重新开发一个开源的类似系统,并保证做到不用任何谷歌的代码库,于是就有了 LevelDB。这样一个键值存储的实现也用在了谷歌浏览器的 IndexedDB 中,对于谷歌浏览器的开源也提供了一定的支持。
我曾经在文章中提到过 CockroachDB,其实又可以看作是基于 RocksDB 之上的一个分布式实现。从另一个层面上讲,CockroachDB 又可以说是 Spanner 的一个开源实现。知道这些,就知道这些数据库或键值存储其实都同出一系。再来看看 LevelDB 底层的 SSTable 算法,就知道他们都是针对高吞吐量(high throughput),顺序读 / 写工作负载(sequential read/write workloads)有效的存储系统。
当然,一个系统里除了最基本的算法,很多的实现细节和系统架构都会对性能及应用有很大的影响。然而,对算法本身的理解和把握,永远是深入了解系统不可或缺的一环。
类似的例子还有很多,比如日志分析、打车软件的调度算法。
拿我比较熟悉的支付领域来说吧,比如信用卡 BIN 参数的压缩,从服务端到移动 App 的数据传输,为了让传输数据足够小,需要对数据进行压缩编码。
每个国家,比如中国、韩国、墨西哥信用卡前缀格式都不一样,如何尽量压缩同时又不会太复杂,以至于影响移动 App 端的代码复杂度,甚至形成 Bug 等,也需要对各种相关算法有详尽地了解,才有可能做出最优的方案。
关于算法我们来总结一下:
在大数据时代,数据和算法都同等重要,甚至算法比计算能力或数据量更为重要。
如何学习算法呢?读经典着作、做题,然后在实践中阅读和使用算法。
算法是面试的敲门砖,可以帮助你得到一份自己喜欢的工作。
写程序中用到的更多是算法思想,不是写具体的算法。
不精通算法的工程师永远不会是一个优秀的工程师,只有对各种相关算法有详尽理解,才有可能做出最优的方案。

3. 大数据的新算法:简化数据分类

大数据的新算法:简化数据分类

如今,大数据时代悄然来临。专家用“大数据”的表达描述大量信息,比如数十亿人在计算机、智能手机以及其他电子设备上分享的照片、音频、文本等数据。当前这种模式为我们的未来展现了前所未有的愿景:比如追踪流感疫情蔓延,实时监控道路交通,处理紧急自然灾害等。对人们而言,想要利用这些庞大的数据,首先必须要了解它们,而在此之前我们需要一种快捷有效自动的方式对数据进行分类。

其中一种最为常用的系统,是一系列称之为簇分析的统计技术,这种技术能依据数据的“相似性”进行数据分组。来自意大利国际高等研究院(SISSA)的两位研究者基于简单且强大的原理设计了一种簇分析方法,被证明可以非常有效地解决一些大数据分析中遇到的主要典型问题。

数据集合可以视为多维空间的云数据点。这些点呈现不同分配方式:或稀疏地分布在一个区域,或密集地分布在另外一个区域。簇分析就是用来有效地鉴别密集型区域,基于基本的准则将数据分为一定数量的重要子集合,每个子集合对应一种分类。

“以一个面部图像数据库为例,”SISSA统计与生物物理系教授Alessandro Laio说,“数据库可能包含同一个人的多张照片,簇分析可以用来归类同一人的所有照片。这种类型的分析可用自动脸部识别系统来完成。”

“我们试着设计一种较现有方法更为有效的算法,来解决簇分析中典型的问题。”Laio继续补充说。

“我们的方法基于一种新的鉴定簇中心,比如子集合,”另一位研究者Alex Rodriguez解释道,“试想这样的情形,在无法访问地图中,却不得不鉴定全球所有的城市时,这无疑是一个艰巨的任务。”Rodriguez进一步解释道,“因此我们在做一种探索式的识别,尝试寻找一条简单的规则或是一种捷径来达成目标。”

“为了确定一个地方是否达到城市级别规模,我们可以让当地居民计数自己的‘邻居’,换句话说,他房子的100米内住了多少人。一旦得到这个数字,我们继续去确认每一个居民,他们身边最近的拥有最多邻居数的居民。借助这两组数据结果交叉的部分,就可以推断每个人所在居住区域人口的稠密程度,以及拥有邻居数最多的两家间距。就全球人口而言,通过自动交叉检测这些数据,我们能识别代表簇状中心的个体,这些个体就是不同的城市。” Laio解释道。

“我们的算法能够精确地完成此类计算,也适用于其他场景,”Rodriguez进一步补充说,此算法表现相当优异。Rodriguez对此有着深刻理解:“借用面部数据档案Olivetti Face数据库,我们测试了自己的数学模型,并获得了满意的结果。此系统能够正确地识别大部分个体,从不产生假阳性结果,这意味着在某些情况下,它可能无法识别事物,但绝不会混淆一个个体与另一个个体。与类似的方法相比,我们的算法能够有效地剔除异类,要知道这些异类的数据点与其他数据存在较大差异是会损毁分析结果的。”

以上是小编为大家分享的关于大数据的新算法:简化数据分类的相关内容,更多信息可以关注环球青藤分享更多干货

4. 大数据分析的高级分析算法

众所周知,大数据分析的高级分析算法过程为下游流程提供了更精确,价值更高的数据,这对于公司真正利用其数据的价值并实现其所需的结果至关重要。下面是小编整理的一些高级分析计划中使用的一些最受欢迎的算法。每种方法都有优缺点,可以有效地利用它来产生业务价值的方式也不同。实施这些算法的最终目标是进一步优化数据,使结果信息可以应用于业务决策。

5. 大数据分析之聚类算法

大数据分析之聚类算法
1. 什么是聚类算法
所谓聚类,就是比如给定一些元素或者对象,分散存储在数据库中,然后根据我们感兴趣的对象属性,对其进行聚集,同类的对象之间相似度高,不同类之间差异较大。最大特点就是事先不确定类别。
这其中最经典的算法就是KMeans算法,这是最常用的聚类算法,主要思想是:在给定K值和K个初始类簇中心点的情况下,把每个点(亦即数据记录)分到离其最近的类簇中心点所代表的类簇中,所有点分配完毕之后,根据一个类簇内的所有点重新计算该类簇的中心点(取平均值),然后再迭代的进行分配点和更新类簇中心点的步骤,直至类簇中心点的变化很小,或者达到指定的迭代次数。
KMeans算法本身思想比较简单,但是合理的确定K值和K个初始类簇中心点对于聚类效果的好坏有很大的影响。
聚类算法实现
假设对象集合为D,准备划分为k个簇。
基本算法步骤如下:
1、从D中随机取k个元素,作为k个簇的各自的中心。
2、分别计算剩下的元素到k个簇中心的相异度,将这些元素分别划归到相异度最低的簇。
3、根据聚类结果,重新计算k个簇各自的中心,计算方法是取簇中所有元素各自维度的算术平均数。
4、将D中全部元素按照新的中心重新聚类。
5、重复第4步,直到聚类结果不再变化。
6、将结果输出。

核心java代码如下:
/**
* 迭代计算每个点到各个中心点的距离,选择最小距离将该点划入到合适的分组聚类中,反复进行,直到
* 分组不再变化或者各个中心点不再变化为止。
* @return
*/
public List[] comput() {
List[] results = new ArrayList[k];//为k个分组,分别定义一个聚簇集合,未来放入元素。

boolean centerchange = true;//该变量存储中心点是否发生变化
while (centerchange) {
iterCount++;//存储迭代次数
centerchange = false;
for (int i = 0; i < k; i++) {
results[i] = new ArrayList<T>();
}
for (int i = 0; i < players.size(); i++) {
T p = players.get(i);
double[] dists = new double[k];
for (int j = 0; j < initPlayers.size(); j++) {
T initP = initPlayers.get(j);
/* 计算距离 这里采用的公式是两个对象相关属性的平方和,最后求开方*/
double dist = distance(initP, p);
dists[j] = dist;
}

int dist_index = computOrder(dists);//计算该点到各个质心的距离的最小值,获得下标
results[dist_index].add(p);//划分到对应的分组。
}
/*
* 将点聚类之后,重新寻找每个簇的新的中心点,根据每个点的关注属性的平均值确立新的质心。
*/
for (int i = 0; i < k; i++) {
T player_new = findNewCenter(results[i]);
System.out.println("第"+iterCount+"次迭代,中心点是:"+player_new.toString());
T player_old = initPlayers.get(i);
if (!IsPlayerEqual(player_new, player_old)) {
centerchange = true;
initPlayers.set(i, player_new);
}

}

}

return results;
}
上面代码是其中核心代码,我们根据对象集合List和提前设定的k个聚集,最终完成聚类。我们测试一下,假设要测试根据NBA球员的场均得分情况,进行得分高中低的聚集,很简单,高得分在一组,中等一组,低得分一组。
我们定义一个Player类,里面有属性goal,并录入数据。并设定分组数目为k=3。
测试代码如下:
List listPlayers = new ArrayList();
Player p1 = new Player();
p1.setName(“mrchi1”);
p1.setGoal(1);
p1.setAssists(8);
listPlayers.add(p1);

Player p2 = new Player();
p2.setName("mrchi2");
p2.setGoal(2);
listPlayers.add(p2);

Player p3 = new Player();
p3.setName("mrchi3");
p3.setGoal(3);
listPlayers.add(p3);
//其他对象定义此处略。制造几个球员的对象即可。
Kmeans<Player> kmeans = new Kmeans<Player>(listPlayers, 3);
List<Player>[] results = kmeans.comput();
for (int i = 0; i < results.length; i++) {
System.out.println("类别" + (i + 1) + "聚集了以下球员:");
List<Player> list = results[i];
for (Player p : list) {
System.out.println(p.getName() + "--->" + p.getGoal()

}
}
算法运行结果:

可以看出中心点经历了四次迭代变化,最终分类结果也确实是相近得分的分到了一组。当然这种算法有缺点,首先就是初始的k个中心点的确定非常重要,结果也有差异。可以选择彼此距离尽可能远的K个点,也可以先对数据用层次聚类算法进行聚类,得到K个簇之后,从每个类簇中选择一个点,该点可以是该类簇的中心点,或者是距离类簇中心点最近的那个点。

6. 需要掌握哪些大数据算法

数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART。

1、C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法。
2、2、k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。
3、支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种监督式学习的方法,它广泛的应用于统计分类以及回归分析中。
4、Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。
5、最大期望(EM)算法。在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然 估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。
6、PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个等级方法是以佩奇来命名的。
7、Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器 (强分类器)。
8、K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。
9、Naive Bayes。在众多的分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBC)。
10、CART, Classification and Regression Trees。 在分类树下面有两个关键的思想。

关于大数据算法的相关问题推荐CDA数据分析师的相关课程,课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。要求学生具备从数据治理根源出发的思维,通过数字化工作方法来探查业务问题,通过近因分析、宏观根因分析等手段,再选择业务流程优化工具还是算法工具,而非“遇到问题调算法包”点击预约免费试听课。

7. 大数据算法有哪些

大数据是一个很广的概念,并没有大数据算法这种东西,您估计想问的是大数据挖掘的算法:
1.朴素贝叶斯
超级简单,就像做一些数数的工作。如果条件独立假设成立的话,NB将比鉴别模型收敛的更快,所以你只需要少量的训练数据。即使条件独立假设不成立,NB在实际中仍然表现出惊人的好。
2. 回归
LR有很多方法来对模型正则化。比起NB的条件独立性假设,LR不需要考虑样本是否是相关的。与决策树与支持向量机不同,NB有很好的概率解释,且很容易利用新的训练数据来更新模型(使用在线梯度下降法)。
3.决策树
DT容易理解与解释。DT是非参数的,所以你不需要担心野点和数据是否线性可分的问题,此外,RF在很多分类问题中经常表现得最好,且速度快可扩展,也不像SVM那样需要调整大量的参数,所以最近RF是一个非常流行的算法。
4.支持向量机
很高的分类正确率,对过拟合有很好的理论保证,选取合适的核函数,面对特征线性不可分的问题也可以表现得很好。SVM在维数通常很高的文本分类中非常的流行。

想要了解更多有关数据挖掘的信息,可以了解一下CDA数据分析师的课程。大数据分析师现在有专业的国际认证证书了, “CDA 数据分析师”具体指在互联网、金融、零售、咨询、电信、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、 提供决策的新型数据分析人才。全球 CDA 持证者秉承着先进商业数据分析的新理念,遵循着《CDA 数据分析师职业道德和行为准则》新规范,发 挥着自身数据科学专业能力,推动科技创新进步,助力经济持续发展。点击预约免费试听课。

8. 大数据核心算法有哪些

1、A* 搜索算法——图形搜索算法,从给定起点到给定终点计算出路径。其中使用了一种启发式的估算,为每个节点估算通过该节点的最佳路径,并以之为各个地点排定次序。算法以得到的次序访问这些节点。因此,A*搜索算法是最佳优先搜索的范例。
2、集束搜索(又名定向搜索,Beam Search)——最佳优先搜索算法的优化。使用启发式函数评估它检查的每个节点的能力。不过,集束搜索只能在每个深度中发现最前面的m个最符合条件的节点,m是固定数字——集束的宽度。

3、二分查找(Binary Search)——在线性数组中找特定值的算法,每个步骤去掉一半不符合要求的数据。

4、分支界定算法(Branch and Bound)——在多种最优化问题中寻找特定最优化解决方案的算法,特别是针对离散、组合的最优化。

5、Buchberger算法——一种数学算法,可将其视为针对单变量最大公约数求解的欧几里得算法和线性系统中高斯消元法的泛化。

6、数据压缩——采取特定编码方案,使用更少的字节数(或是其他信息承载单元)对信息编码的过程,又叫来源编码。

7、Diffie-Hellman密钥交换算法——一种加密协议,允许双方在事先不了解对方的情况下,在不安全的通信信道中,共同建立共享密钥。该密钥以后可与一个对称密码一起,加密后续通讯。

8、Dijkstra算法——针对没有负值权重边的有向图,计算其中的单一起点最短算法。

9、离散微分算法(Discrete differentiation)。

9. 求一种大数据分析的算法

//群体数据的排序与查找 //1.直接插入排序的算法实现: void InsertSort(int arrForSort[],int nLength) { int i,j,temp; for(i=1;i/遍历整个序列 { temp=arrForSort[i]; for(j=i;j>0&&temp<arrForSort[j-1];j--) //将第i个元素插入到合适的位置 arrForSort[j]=arrForSort[j-1]; arrForSort[j]=temp; } } //2.直接选择排序的算法实现: void SelectSort(int arrForSort[],int nLength) { int min,temp, i,j; for(i=0;i<nLength-1;i++) { min=i; for(j=i+1;j<nLength;j++) //选出具有最小值的元素的下标标号 if(arrForSort[j]/第i个元素与具有最小值的元素进行交换 arrForSort[i]=arrForSort[min]; arrForSort[min]=temp; } } //3.起泡法排序的算法实现: void BubbleSort(int arrForSort[],int nLength) { int i,j,temp; i=nLength-1; while(i>0) { for(j=0;j<i;j++) //1次起泡的过程 { if(arrForSort[j+1]/逆序交换 {temp=arrForSort[j+1]; arrForSort[j+1]=arrForSort[j]; arrForSort[j]=temp;} } i--; //准备下一次起泡序列的长度 } } //4.希尔排序的算法实现: void ShellSort(int arrForSort[],int nLength) { int k,j,i,temp; k=nLength/2; //设置初始子序列的间隔 while(k>0) { for(j=k;j/子序列的插入排序 { temp=arrForSort[j];i=j-k; while((i>=0)&&(arrForSort[i]>temp)) { arrForSort[i+k]=arrForSort[i];i=i-k; } arrForSort[i+k]=temp; } k=k/2; //重新设置子序列的间隔 } return; } //5.顺序查找的实现 int SequenceSearch(int arrForSearch[],int nLength,int nKey) { int i; for(i=0;i<nLength;i++) //遍历整个序列 if(arrForSearch[i]==nKey) return i; return -1; } //6.折半查找的算法实现 int MiddleSearch(int arrForSearch(int arrForSearch[],int nLength,int nKey) { int mid,top,bottom; bottom=0; //设置首末元素下标 top=nLength-1; while(bottom/取序列中间元素下标 if(arrForSearch[mid]==nKey) return mid; //如果找到该元素,返回其下标 else if(arrForSearch[mid]>nKey) top=mid-1; //在前半个序列中继续查找 else bottom=mid+1; } return -1; }

10. java大数据颇有难度算法

先指出一下楼主你给出的数据是没办法做
500000(50万)个数最大值时20,要求和为80000000(8千万)
500000x20=10000000(1千万)连一半都不到,更何况20只能出现10000次...

要求完成这个算法没有难度,只不数据量过于庞大,对程序员来说没有难度,但是对设备来说压力不小

热点内容
韩服lol挂机脚本 发布:2025-05-15 12:42:56 浏览:460
监控存储服务器如何调试 发布:2025-05-15 12:36:30 浏览:217
一万级净化车间有哪些配置 发布:2025-05-15 12:16:41 浏览:97
javazip解压加密 发布:2025-05-15 12:15:02 浏览:941
dnf服务器存放什么信息 发布:2025-05-15 12:11:07 浏览:216
办公室视频剧本脚本 发布:2025-05-15 12:03:51 浏览:491
编译失败什么意思 发布:2025-05-15 11:58:18 浏览:87
lcs脚本官网 发布:2025-05-15 11:56:15 浏览:88
三国志战略版打9级矿什么配置 发布:2025-05-15 11:41:29 浏览:953
安卓加速器怎么关 发布:2025-05-15 11:38:16 浏览:466