温控pid算法
‘壹’ 温控仪pid怎样设置,或者是怎样计算的。
系统功率越大,热容量越小。
p1值越小。p2越小,积分作用越明显。
rt越小,响应越快。
对于多数系统,调整rt、P1参数即可获得满意的效果。
对于多数系统,P1的取值范围在千位数,P2的取值范围在百位数,rt的取值范围在十位数或百位数, 一般可先取P1=2000,P2=200,rt=100进行试验,然后根据输出百分比来调整。
在调整参数时,调整范围应先从大到小。若出现2.1现象可把P1由2000调为1000,把rt由100调为200,如果调整后的控制效果如2.2,则说明P1的取值在1000-2000之间,rt取值在100-200之间。逐渐减小调整范围,即可得到理想的参数。
由于仪表采用的是模糊PID控制算法,输出百分比的变化是振荡式的,因此观察输出百分比的变化趋势应以总体趋势为准。输出百分比变化时的振荡幅度大小主要是由P1决定的,P1越大,振荡的幅度越大。
‘贰’ pid_PWM 温控pwm 利用pid算法
PID算法本身是很简单的,你随便找本讲PID的书,大胆的把公式抄上,肯定就能用。
至于好用不好用的问题,在于另外两点,
第一是你用的参数的精度问题,如果你全部用浮点数来计算,当然不会出错,但程序可能会很大,可能大到你无法接受(看你用的什么芯片了),如果你用短整,或者长整来做,那么小数点后面的精度会被丢弃,严重的时候,你有算法无法正常运行。一般是用定点数来做,说白了就是用整数做,但整数1不要代表1度,而是代表0.1度,0.01度,或者16分之一度,具体的你自己来约定。
第二,是关于PID的几个参数的整定问题,这个需要经验,网上可以找到一些口诀,但具体操作还是要经验的。整定好的PID才是能用的PID,整定不好,温度就会失控。
回到你的问题,你需要先决定你的输出的精度,比如你的PWM输出是几位精度的,可能是8位,也可能是10位,假设是10位,那么输出是大值就是1023,最小值是0。你套上公式计算,像这样,以浮点数为例
EK_1 = EK;
Ek = settemp - runtemp;
Up = Ek * KP; // KP 是设定的比例系数,需要整定
Ui = Ui + Ek * Ki;
Ud = ( EK - EK_1 ) * Kd;
Upid = Uk + Ui + Ud;
整定KP, Ki, Kd,使Upid 的范围在+/-1.0范围,
最后
PWM_Out( Upid * 1024 );
‘叁’ 求基于单片机温控的PID算法程序,谢谢啊!!!!
//温控PID程序
#include<reg51.h>
#include<intrins.h>
#include<math.h>
#include<string.h>
struct PID {
unsigned int SetPoint; // 设定目标 Desired Value
unsigned int Proportion; // 比例常数 Proportional Const
unsigned int Integral; // 积分常数 Integral Const
unsigned int Derivative; // 微分常数 Derivative Const
unsigned int LastError; // Error[-1]
unsigned int PrevError; // Error[-2]
unsigned int SumError; // Sums of Errors
};
struct PID spid; // PID Control Structure
unsigned int rout; // PID Response (Output)
unsigned int rin; // PID Feedback (Input)
sbit data1=P1^0;
sbit clk=P1^1;
sbit plus=P2^0;
sbit subs=P2^1;
sbit stop=P2^2;
sbit output=P3^4;
sbit DQ=P3^3;
unsigned char flag,flag_1=0;
unsigned char high_time,low_time,count=0;//占空比调节参数
unsigned char set_temper=35;
unsigned char temper;
unsigned char i;
unsigned char j=0;
unsigned int s;
/***********************************************************
延时子程序,延时时间以12M晶振为准,延时时间为30us×time
***********************************************************/
void delay(unsigned char time)
{
unsigned char m,n;
for(n=0;n<time;n++)
for(m=0;m<2;m++){}
}
/***********************************************************
写一位数据子程序
***********************************************************/
void write_bit(unsigned char bitval)
{
EA=0;
DQ=0; /*拉低DQ以开始一个写时序*/
if(bitval==1)
{
_nop_();
DQ=1; /*如要写1,则将总线置高*/
}
delay(5); /*延时90us供DA18B20采样*/
DQ=1; /*释放DQ总线*/
_nop_();
_nop_();
EA=1;
}
/***********************************************************
写一字节数据子程序
***********************************************************/
void write_byte(unsigned char val)
{
unsigned char i;
unsigned char temp;
EA=0;
TR0=0;
for(i=0;i<8;i++) /*写一字节数据,一次写一位*/
{
temp=val>>i; /*移位操作,将本次要写的位移到最低位*/
temp=temp&1;
write_bit(temp); /*向总线写该位*/
}
delay(7); /*延时120us后*/
// TR0=1;
EA=1;
}
/***********************************************************
读一位数据子程序
***********************************************************/
unsigned char read_bit()
{
unsigned char i,value_bit;
EA=0;
DQ=0; /*拉低DQ,开始读时序*/
_nop_();
_nop_();
DQ=1; /*释放总线*/
for(i=0;i<2;i++){}
value_bit=DQ;
EA=1;
return(value_bit);
}
/***********************************************************
读一字节数据子程序
***********************************************************/
unsigned char read_byte()
{
unsigned char i,value=0;
EA=0;
for(i=0;i<8;i++)
{
if(read_bit()) /*读一字节数据,一个时序中读一次,并作移位处理*/
value|=0x01<<i;
delay(4); /*延时80us以完成此次都时序,之后再读下一数据*/
}
EA=1;
return(value);
}
/***********************************************************
复位子程序
***********************************************************/
unsigned char reset()
{
unsigned char presence;
EA=0;
DQ=0; /*拉低DQ总线开始复位*/
delay(30); /*保持低电平480us*/
DQ=1; /*释放总线*/
delay(3);
presence=DQ; /*获取应答信号*/
delay(28); /*延时以完成整个时序*/
EA=1;
return(presence); /*返回应答信号,有芯片应答返回0,无芯片则返回1*/
}
/***********************************************************
获取温度子程序
***********************************************************/
void get_temper()
{
unsigned char i,j;
do
{
i=reset(); /*复位*/
}while(i!=0); /*1为无反馈信号*/
i=0xcc; /*发送设备定位命令*/
write_byte(i);
i=0x44; /*发送开始转换命令*/
write_byte(i);
delay(180); /*延时*/
do
{
i=reset(); /*复位*/
}while(i!=0);
i=0xcc; /*设备定位*/
write_byte(i);
i=0xbe; /*读出缓冲区内容*/
write_byte(i);
j=read_byte();
i=read_byte();
i=(i<<4)&0x7f;
s=(unsigned int)(j&0x0f);
s=(s*100)/16;
j=j>>4;
temper=i|j; /*获取的温度放在temper中*/
}
/*====================================================================================================
Initialize PID Structure
=====================================================================================================*/
void PIDInit (struct PID *pp)
{
memset ( pp,0,sizeof(struct PID));
}
/*====================================================================================================
PID计算部分
=====================================================================================================*/
unsigned int PIDCalc( struct PID *pp, unsigned int NextPoint )
{
unsigned int dError,Error;
Error = pp->SetPoint - NextPoint; // 偏差
pp->SumError += Error; // 积分
dError = pp->LastError - pp->PrevError; // 当前微分
pp->PrevError = pp->LastError;
pp->LastError = Error;
return (pp->Proportion * Error // 比例项
+ pp->Integral * pp->SumEror // 积分项
+ pp->Derivative * dError); // 微分项
}
/***********************************************************
温度比较处理子程序
***********************************************************/
compare_temper()
{
unsigned char i;
if(set_temper>temper)
{
if(set_temper-temper>1)
{
high_time=100;
low_time=0;
}
else
{
for(i=0;i<10;i++)
{ get_temper();
rin = s; // Read Input
rout = PIDCalc ( &spid,rin ); // Perform PID Interation
}
if (high_time<=100)
high_time=(unsigned char)(rout/800);
else
high_time=100;
low_time= (100-high_time);
}
}
else if(set_temper<=temper)
{
if(temper-set_temper>0)
{
high_time=0;
low_time=100;
}
else
{
for(i=0;i<10;i++)
{ get_temper();
rin = s; // Read Input
rout = PIDCalc ( &spid,rin ); // Perform PID Interation
}
if (high_time<100)
high_time=(unsigned char)(rout/10000);
else
high_time=0;
low_time= (100-high_time);
}
}
// else
// {}
}
/*****************************************************
T0中断服务子程序,用于控制电平的翻转 ,40us*100=4ms周期
******************************************************/
void serve_T0() interrupt 1 using 1
{
if(++count<=(high_time))
output=1;
else if(count<=100)
{
output=0;
}
else
count=0;
TH0=0x2f;
TL0=0xe0;
}
/*****************************************************
串行口中断服务程序,用于上位机通讯
******************************************************/
void serve_sio() interrupt 4 using 2
{
/* EA=0;
RI=0;
i=SBUF;
if(i==2)
{
while(RI==0){}
RI=0;
set_temper=SBUF;
SBUF=0x02;
while(TI==0){}
TI=0;
}
else if(i==3)
{
TI=0;
SBUF=temper;
while(TI==0){}
TI=0;
}
EA=1; */
}
void disp_1(unsigned char disp_num1[6])
{
unsigned char n,a,m;
for(n=0;n<6;n++)
{
// k=disp_num1[n];
for(a=0;a<8;a++)
{
clk=0;
m=(disp_num1[n]&1);
disp_num1[n]=disp_num1[n]>>1;
if(m==1)
data1=1;
else
data1=0;
_nop_();
clk=1;
_nop_();
}
}
以前收藏的一个程序,与你分享一下,希望对你有用、
‘肆’ 温度控制的PID算法的C语言程序
//PID算法温控C语言2008-08-17 18:58
#include<reg51.h>
#include<intrins.h>
#include<math.h>
#include<string.h>
struct PID {
unsigned int SetPoint; // 设定目标 Desired Value
unsigned int Proportion; // 比例常数 Proportional Const
unsigned int Integral; // 积分常数 Integral Const
unsigned int Derivative; // 微分常数 Derivative Const
unsigned int LastError; // Error[-1]
unsigned int PrevError; // Error[-2]
unsigned int SumError; // Sums of Errors
};
struct PID spid; // PID Control Structure
unsigned int rout; // PID Response (Output)
unsigned int rin; // PID Feedback (Input)
sbit data1=P1^0;
sbit clk=P1^1;
sbit plus=P2^0;
sbit subs=P2^1;
sbit stop=P2^2;
sbit output=P3^4;
sbit DQ=P3^3;
unsigned char flag,flag_1=0;
unsigned char high_time,low_time,count=0;//占空比调节参数
unsigned char set_temper=35;
unsigned char temper;
unsigned char i;
unsigned char j=0;
unsigned int s;
/***********************************************************
延时子程序,延时时间以12M晶振为准,延时时间为30us×time
***********************************************************/
void delay(unsigned char time)
{
unsigned char m,n;
for(n=0;n<time;n++)
for(m=0;m<2;m++){}
}
/***********************************************************
写一位数据子程序
***********************************************************/
void write_bit(unsigned char bitval)
{
EA=0;
DQ=0; /*拉低DQ以开始一个写时序*/
if(bitval==1)
{
_nop_();
DQ=1; /*如要写1,则将总线置高*/
}
delay(5); /*延时90us供DA18B20采样*/
DQ=1; /*释放DQ总线*/
_nop_();
_nop_();
EA=1;
}
/***********************************************************
写一字节数据子程序
***********************************************************/
void write_byte(unsigned char val)
{
unsigned char i;
unsigned char temp;
EA=0; /*关中断*/
TR0=0;
for(i=0;i<8;i++) /*写一字节数据,一次写一位*/
{
temp=val>>i; /*移位操作,将本次要写的位移到最低位*/
temp=temp&1;
write_bit(temp); /*向总线写该位*/
}
delay(7); /*延时120us后*/
// TR0=1;
EA=1; /*开中断*/
}
/***********************************************************
读一位数据子程序
***********************************************************/
unsigned char read_bit()
{
unsigned char i,value_bit;
EA=0;
DQ=0; /*拉低DQ,开始读时序*/
_nop_();
_nop_();
DQ=1; /*释放总线*/
for(i=0;i<2;i++){}
value_bit=DQ;
EA=1;
return(value_bit);
}
/***********************************************************
读一字节数据子程序
***********************************************************/
unsigned char read_byte()
{
unsigned char i,value=0;
EA=0;
for(i=0;i<8;i++)
{
if(read_bit()) /*读一字节数据,一个时序中读一次,并作移位处理*/
value|=0x01<<i;
delay(4); /*延时80us以完成此次都时序,之后再读下一数据*/
}
EA=1;
return(value);
}
/***********************************************************
复位子程序
***********************************************************/
unsigned char reset()
{
unsigned char presence;
EA=0;
DQ=0; /*拉低DQ总线开始复位*/
delay(30); /*保持低电平480us*/
DQ=1; /*释放总线*/
delay(3);
presence=DQ; /*获取应答信号*/
delay(28); /*延时以完成整个时序*/
EA=1;
return(presence); /*返回应答信号,有芯片应答返回0,无芯片则返回1*/
}
/***********************************************************
获取温度子程序
***********************************************************/
void get_temper()
{
unsigned char i,j;
do
{
i=reset(); /*复位*/
}while(i!=0); /*1为无反馈信号*/
i=0xcc; /*发送设备定位命令*/
write_byte(i);
i=0x44; /*发送开始转换命令*/
write_byte(i);
delay(180); /*延时*/
do
{
i=reset(); /*复位*/
}while(i!=0);
i=0xcc; /*设备定位*/
write_byte(i);
i=0xbe; /*读出缓冲区内容*/
write_byte(i);
j=read_byte();
i=read_byte();
i=(i<<4)&0x7f;
s=(unsigned int)(j&0x0f);
s=(s*100)/16;
j=j>>4;
temper=i|j; /*获取的温度放在temper中*/
}
/*====================================================================================================
Initialize PID Structure
=====================================================================================================*/
void PIDInit (struct PID *pp)
{
memset ( pp,0,sizeof(struct PID));
}
/*====================================================================================================
PID计算部分
=====================================================================================================*/
unsigned int PIDCalc( struct PID *pp, unsigned int NextPoint )
{
unsigned int dError,Error;
Error = pp->SetPoint - NextPoint; // 偏差
pp->SumError += Error; // 积分
dError = pp->LastError - pp->PrevError; // 当前微分
pp->PrevError = pp->LastError;
pp->LastError = Error;
return (pp->Proportion * Error//比例
+ pp->Integral * pp->SumError //积分项
+ pp->Derivative * dError); // 微分项
}
/***********************************************************
温度比较处理子程序
***********************************************************/
compare_temper()
{
unsigned char i;
if(set_temper>temper)
{
if(set_temper-temper>1)
{
high_time=100;
low_time=0;
}
else
{
for(i=0;i<10;i++)
{ get_temper();
rin = s; // Read Input
rout = PIDCalc ( &spid,rin ); // Perform PID Interation
}
if (high_time<=100)
high_time=(unsigned char)(rout/800);
else
high_time=100;
low_time= (100-high_time);
}
}
else if(set_temper<=temper)
{
if(temper-set_temper>0)
{
high_time=0;
low_time=100;
}
else
{
for(i=0;i<10;i++)
{ get_temper();
rin = s; // Read Input
rout = PIDCalc ( &spid,rin ); // Perform PID Interation
}
if (high_time<100)
high_time=(unsigned char)(rout/10000);
else
high_time=0;
low_time= (100-high_time);
}
}
// else
// {}
}
/*****************************************************
T0中断服务子程序,用于控制电平的翻转 ,40us*100=4ms周期
******************************************************/
void serve_T0() interrupt 1 using 1
{
if(++count<=(high_time))
output=1;
else if(count<=100)
{
output=0;
}
else
count=0;
TH0=0x2f;
TL0=0xe0;
}
/*****************************************************
串行口中断服务程序,用于上位机通讯
******************************************************/
void serve_sio() interrupt 4 using 2
{
/* EA=0;
RI=0;
i=SBUF;
if(i==2)
{
while(RI==0){}
RI=0;
set_temper=SBUF;
SBUF=0x02;
while(TI==0){}
TI=0;
}
else if(i==3)
{
TI=0;
SBUF=temper;
while(TI==0){}
TI=0;
}
EA=1; */
}
void disp_1(unsigned char disp_num1[6])
{
unsigned char n,a,m;
for(n=0;n<6;n++)
{
// k=disp_num1[n];
for(a=0;a<8;a++)
{
clk=0;
m=(disp_num1[n]&1);
disp_num1[n]=disp_num1[n]>>1;
if(m==1)
data1=1;
else
data1=0;
_nop_();
clk=1;
_nop_();
}
}
}
/*****************************************************
显示子程序
功能:将占空比温度转化为单个字符,显示占空比和测得到的温度
******************************************************/
void display()
{
unsigned char code number[]={0xfc,0x60,0xda,0xf2,0x66,0xb6,0xbe,0xe0,0xfe,0xf6};
unsigned char disp_num[6];
unsigned int k,k1;
k=high_time;
k=k%1000;
k1=k/100;
if(k1==0)
disp_num[0]=0;
else
disp_num[0]=0x60;
k=k%100;
disp_num[1]=number[k/10];
disp_num[2]=number[k%10];
k=temper;
k=k%100;
disp_num[3]=number[k/10];
disp_num[4]=number[k%10]+1;
disp_num[5]=number[s/10];
disp_1(disp_num);
}
/***********************************************************
主程序
***********************************************************/
main()
{
unsigned char z;
unsigned char a,b,flag_2=1,count1=0;
unsigned char phil[]={2,0xce,0x6e,0x60,0x1c,2};
TMOD=0x21;
TH0=0x2f;
TL0=0x40;
SCON=0x50;
PCON=0x00;
TH1=0xfd;
TL1=0xfd;
PS=1;
EA=1;
EX1=0;
ET0=1;
ES=1;
TR0=1;
TR1=1;
high_time=50;
low_time=50;
PIDInit ( &spid ); // Initialize Structure
spid.Proportion = 10; // Set PID Coefficients
spid.Integral = 8;
spid.Derivative =6;
spid.SetPoint = 100; // Set PID Setpoint
while(1)
{
if(plus==0)
{
EA=0;
for(a=0;a<5;a++)
for(b=0;b<102;b++){}
if(plus==0)
{
set_temper++;
flag=0;
}
}
else if(subs==0)
{
for(a=0;a<5;a++)
for(b=0;a<102;b++){}
if(subs==0)
{
set_temper--;
flag=0;
}
}
else if(stop==0)
{
for(a=0;a<5;a++)
for(b=0;b<102;b++){}
if(stop==0)
{
flag=0;
break;
}
EA=1;
}
get_temper();
b=temper;
if(flag_2==1)
a=b;
if((abs(a-b))>5)
temper=a;
else
temper=b;
a=temper;
flag_2=0;
if(++count1>30)
{
display();
count1=0;
}
compare_temper();
}
TR0=0;
z=1;
while(1)
{
EA=0;
if(stop==0)
{
for(a=0;a<5;a++)
for(b=0;b<102;b++){}
if(stop==0)
disp_1(phil);
// break;
}
EA=1;
}
}
//DS18b20 子程序
#include <REG52.H>
sbit DQ=P2^1; //定义端口
typedef unsigned char byte;
typedef unsigned int word;
//延时
void delay(word useconds)
{
for(;useconds>0;useconds--);
}
//复位
byte ow_reset(void)
{
byte presence;
DQ=0; //DQ低电平
delay(29); //480us
DQ=1; //DQ高电平
delay(3); //等待
presence=DQ; //presence信号
delay(25);
return(presence);
} //0允许,1禁止
//从1-wire 总线上读取一个字节
byte read_byte(viod)
{
byte i;
byte value=0;
for (i=8;i>0;i--)
{
value>>=1;
DQ=0;
DQ=1;
delay(1);
if(DQ)value|=0x80;
delay(6);
}
return(value);
}
//向1-wire总线上写一个字节
void write_byte(char val)
{
byte i;
for (i=8;i>0;i--) //一次写一个字节
{
DQ=0;
DQ=val&0x01;
delay(5);
DQ=1;
val=val/2;
}
delay(5);
}
//读取温度
char Read_Temperature(void)
{
union{
byte c[2];
int x;
}temp;
ow_reset();
write_byte(0xcc);
write_byte(0xBE);
temp.c[1]=read_byte();
temp.c[0]=read_byte();
ow_reset();
write_byte(0xCC);
write_byte(0x44);
return temp.x/2;
}
‘伍’ pid温控算法到底是怎样的
PID是一种微积分算法,会根据温度的变化和时间的联系一起来控制的,比较人性化和节能。
‘陆’ PID算法控制温度加热系统,室温(为防止分数流失,做成追加100分以上)
刚好前不久搞过PID,部分程序如下,仅供参考
/*==============================================================================
在使用单片机作为控制cpu时,请稍作简化,具体的PID参数必须由具体对象通过实验确定。
由于单片机的处理速度和ram资源的限制,一般不采用浮点数运算,而将所有参数全部用整数,
运算到最后再除以一个2的N次方数据(相当于移位),作类似定点数运算,可大大提高运算速度,
根据控制精度的不同要求,当精度要求很高时,注意保留移位引起的“余数”,做好余数补偿。
这个程序只是一般常用pid算法的基本架构,没有包含输入输出处理部分。
==============================================================================*/
#include <string.h>
#include <stdio.h>
/*===============================================================================
PID Function
The PID function is used in mainly
control applications. PID Calc performs one iteration of the PID
algorithm.
While the PID function works, main is just a mmy program showing
a typical usage.
PID功能
在PID功能主要用于控制应用。 PID 计算器执行一个PID的迭代算法。虽然PID功能的工程,
主要只是一个虚拟程序显示一个典型的使用。
================================================================================*/
typedef struct PID {
double SetPoint; // 设定目标 Desired Value
double Proportion; // 比例常数 Proportional Const
double Integral; // 积分常数 Integral Const
double Derivative; // 微分常数 Derivative Const
double LastError; // Error[-1]
double PrevError; // Error[-2]
double SumError; // Sums of Errors
} PID;
/*================================ PID计算部分===============================*/
double PIDCalc( PID *pp, double NextPoint )
{
double dError, Error;
Error = pp->SetPoint - NextPoint; // 偏差
pp->SumError += Error; // 积分
dError = pp->LastError - pp->PrevError; // 当前微分
pp->PrevError = pp->LastError;
pp->LastError = Error;
return (pp->Proportion * Error // 比例项
+ pp->Integral * pp->SumError // 积分项
+ pp->Derivative * dError // 微分项
);
}
/*======================= 初始化的PID结构 Initialize PID Structure===========================*/
void PIDInit (PID *pp)
{
memset ( pp,0,sizeof(PID));
}
/*======================= 主程序 Main Program=======================================*/
double sensor (void) // 虚拟传感器功能 Dummy Sensor Function{ return 100.0;}
void actuator(double rDelta) // 虚拟驱动器功能 Dummy Actuator Function{}
void main(void)
{
PID sPID; // PID控制结构 PID Control Structure
double rOut; // PID响应(输出) PID Response (Output)
double rIn; // PID反馈(输入) PID Feedback (Input)
PIDInit ( &sPID ); // 初始化结构 Initialize Structure
sPID.Proportion = 0.5; // 设置PID系数 Set PID Coefficients
sPID.Integral = 0.5;
sPID.Derivative = 0.0;
sPID.SetPoint = 100.0; // 设置PID设定 Set PID Setpoint
for (;;)
{ // 模拟最多的PID处理 Mock Up of PID Processing
rIn = sensor (); // 读取输入 Read Input
rOut = PIDCalc ( &sPID,rIn ); // 执行的PID迭代 Perform PID Interation
actuator ( rOut ); // 所需的更改的影响 Effect Needed Changes
}
‘柒’ 关于温度控制系统PD/PID算法程序问题
PID控制的概念 所谓的控制首先分有反馈控制和无反馈控制,我们当然讨论的PID当然是有反馈控制了。所谓的有反馈控制无非是要根据被控量的情况参与运算来决定操纵量的大小或者方向,那么到底如何根据被控两来决定操纵量的大小呢,唉,这就有很多分类了,所谓的高级的控制方式也就是“高级”在这个节骨眼上,有什么“自适应控制、模糊控制、预测控制、神经网络控制、专家智能控制”等等(至于到底这些控制方式有什么优点,唉,我只用过PID,别的也说不清楚,去抄书的话也没有说服力,关键是也懒的去抄。那位老弟如果要作论文,可以在这里发挥一下,资料到处都是)。但是就目前而言,在工业控制领域尤其是控制系统的底层,PID控制算法仍然独霸鳌头,占领着80%左右的市场份额,当然,这里所说的PID控制算法不是侠义上的固定PID,现在不是讲究多学科融合吗?人们在PID控制规律中吸取了其他“高级”的控制规律的优点,出现了诸多的新颖的控制器如自校正PID、专家自适应PID、预估PID、模糊PID、神经网络PID、非线性 PID等新型PID控制器。至于所谓的变种的PID算法如什么“遇限削弱微分”微分先行,积分分离“bangbang+PID”等等,已经不算是什么高级的控制方式了作控制器的厂商大多都会或多等等或少的采取一些,至于是神经网络PID,模糊PID,自适应PID是如何实现的,我所知道的就是利用对应的控制算法,适时的调节PID的参数。还是举个例子吧。传统PID的算法公式是: ⊿U(n)=Kp[e(n)-e(n-1)]+Kie(n)+Kd[e(n)-2e(n-1)+e(n-2)] U(n)=⊿U(n)+U(n-1) e(n) ,e(n-1), e(n-2)就是历史上的三个设定值跟过程值之间的偏差了。 这是一个增量式的PID算式(如果有谁不明白什么式增量是算式,呵呵,可能以后会提到,偶的写作水平有限,不会组织内容,再说我是想到哪,写道哪,呵呵,见凉)。 所谓的新型PID控制器,就是根据e(n)的不同,利用那些先进的控制规律来适当的调整Kp,Ki,Ke。至于怎么调整,呵呵,这就太罗嗦了,也不是这篇内容所该介绍的,(关键是我也不太清楚,呵呵,见笑),需要这些功能的大侠应该是我的前辈,还请指教哟。 好了,现在正式介绍一下所谓的PID各个参数吧。 所谓的PID大家在大学期间都应该学过,就是比例(P)、积分(I)、微分(D)。 比例控制:就是对偏差进行控制,偏差一旦产生,控制器立即就发生作用即调节控制输出,使被控量朝着减小偏差的方向变化,偏差减小的速度取决于比例系数Kp, Kp越大偏差减小的越快,但是很容易引起振荡,尤其是在迟滞环节比较大的情况下,Kp减小,发生振荡的可能性减小但是调节速度变慢。但单纯的比例控制存在静差不能消除的缺点。这里就需要积分控制。 积分控制:实质上就是对偏差累积进行控制,直至偏差为零。积分控制作用始终施加指向给定值的作用力,有利于消除静差,其效果不仅与偏差大小有关,而且还与偏差持续的时间有关。简单来说就是把偏差积累起来,一起算总帐。 微分控制:它能敏感出误差的变化趋势,可在误差信号出现之前就起到修正误差的作用,有利于提高输出响应的快速性,减小被控量的超调和增加系统的稳定性。但微分作用很容易放大高频噪声,降低系统的信噪比,从而使系统抑制干扰的能力下降。因此,在实际应用中,应慎用微分控制,尤其是当你开始作实验时,不防将微分控制项去掉,看看行不行,呵呵,不行啊?还是看看别的地方吧,肯定行的。 行了,这三个参数说明白了,再来说说怎么确定这几个参数的数值吧。这几个参数的确定比较先进的方式是自整定,但是如果是开始涉及这部分还是先不要讲了,按照经验值吧。估计大家用来控制温度比较多。大家按照这个规律来选吧。 Kp=100/P Ki= kp*T/I Kd= kp*D/T 分别介绍一下各个参数的意义: T:计算周期,就是各多少时间计算一次 ⊿U(n)=Kp[e(n)-e(n-1)]+Kie(n)+Kd[e(n)-2e(n-1)+e(n-2)],单位是秒。一般1秒或者0.5秒甚至5秒都行。 P:比例带 I:积分时间 D:微分时间 P、I、D跟kp,ki,kd有什么关系呢? Kp=100/P, Ki=kp*T/I Kd=kp*D/T 然后就可以计算 ⊿U(n)=Kp[e(n)-e(n-1)]+Kie(n)+Kd[e(n)-2e(n-1)+e(n-2)] 算出来⊿U(n)之后再怎么办呢?怎么把这一个数据跟控制输出联系在一起呢?说道这里我们先说说PID控制方式大体都有那些? 其一为线形连续PID输出,也就是说,PID运算的结果以模拟电压,电流或者可控硅导通角的形式按比例输出。 其二为时间-比例PID输出,也就是说,事先定一个时间长度,T1,然后PID运算的结果就在控制周期内以ON-OFF的形式输出出来,比如你控制一个炉子的温度,用电热丝来加热,就可以控制电热丝的一个控制周期内通电占整个控制周期的比例来实现,电路上可以用继电器或者过零触发的方式来切断或者接通电热丝供电。 起三为位置比例PID,PID运算的结果主要是对应于调节阀的阀门开度。 再回到前面,我们以第二种控制方式为例,计算出⊿U(n)后,一般首先将其归一化,也就是说除以你所要控制的温度的量程。 ⊿U(n)0_1=⊿U(n)/(hh-ll) 而时间比例PID输出对应的是“位置式PID运算”的结果 所以呢,我们要讲结果累积起来, U(n)0_1+=⊿U(n)0_1 然后将次结果换算成对应于控制周期的占空比。来输出
‘捌’ 如何用PID算法编程,使单片机通过控制继电器来实现恒温功能。
/***********************************************************************
PID温度控制程序
程序说明:
系统上电后显示 “--温度”
表示需要先设定温度才开始进行温度检测
温度设定完毕后程序才开始进行PID温控
***********************************************************************/
#include <reg52.h>
#include <absacc.h>
#include"DS18B20.H"
#include"PID.H"
#define uchar unsigned char
#define uint unsigned int
unsigned char code tab[]=
{
0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0xBF
}
;
/*个位0~9的数码管段码*/
unsigned char code sao[]=
{
0x7f,0xbf,0xdf,0xef
}
;
//扫描码
uchar set=30,keyflag=1 ; //set初始化为30° keyflag为进入温度设定的标志位
//4个按键使用说明
sbit key_out=P1^0 ; //用于温度设定后的退出
sbit key_up=P1^1 ; //设定温度加
sbit key_down=P1^2 ; //设定温度减
sbit key_in=P1^3 ; //在程序的运行中如需要重新设定温度 按下此键才能进入设置模式并且此时是停在温度控制的,按下key_out键后才表示设定完毕
void Show_key();
/***********************************************************/
void delays(unsigned char k)
{
unsigned char i,j ;
for(i=0;i<k;i++)
for(j=0;j<50;j++);
}
/*********************************************************
//数码管显示函数
P0口 作为数据口
P2口的低四位作为扫描口
变量 x表示扫描
d表示是否要加小数点 为1是 为0不加
y表示传递的数值
*********************************************************/
LCD_disp_char(uchar x,bit d,uchar y)
{
P2=0XFF ;
P0=0xFF ;
if(d==0)
P0=tab[y];
else
P0=tab[y]&0x7f ; //与上0x7f表示是否要加小数点
P2=sao[x]; //打开扫描端号
}
/*********************************************************
按键扫描
*********************************************************/
void keyscan(void)
{
if(key_in==0) //按键进入函数
{
delays(10); //延时消抖 (以下同)
if(key_in==0)
{
while(key_in==0)
{
Show_key(); //如果一直按着键不放 就一直显示在当前状态 (以下同)
}
keyflag=1 ; //按键标志位
}
}
/***********************/
if(key_out==0) //按键退出
{
delays(10);
if(key_out==0)
{
while(key_out==0)
{
Show_key();
}
keyflag=0 ;
set_temper=set ;
}
}
/*************************/
if(key_up==0) //设定温度的加
{
delays(10);
if(key_up==0)
{
while(key_up==0)
{
Show_key();
}
if(keyflag==1)
{
set++;
if(set>90) //如果大于90°就不在加
set=90 ;
}
}
}
/*************************/
if(key_down==0) //温度设定的减
{
delays(10);
if(key_down==0)
{
while(key_down==0)
{
Show_key();
}
if(keyflag==1)
{
set--;
if(set<30) //温度减到30°时不在往下减
set=30 ;
}
}
}
}
/*********************************************************************
按键按下时的显示函数
***********************************************************************/
void Show_key()
{
output=1 ;
LCD_disp_char(3,0,10); //显示 -
delays(3);
LCD_disp_char(2,0,10); //显示- (表示温度设定 )
delays(3);
LCD_disp_char(1,0,set/10); //显示温度十位
delays(3);
LCD_disp_char(0,0,set%10); //显示温度个位
delays(3);
}
/*****************************************************************/
void main()
{
unsigned int tmp ;//声明温度中间变量
unsigned char counter=0 ;
PIDBEGIN(); //PID参数的初始化
output=1 ; //关闭继电器输出
while(1)
{
keyscan();
if(keyflag)
{
Show_key(); //显示温度设定
}
else
{
if(counter--==0)
{
tmp=ReadTemperature();//每隔一段时间读取温度值
counter=20 ;
}
LCD_disp_char(3,0,tmp/1000); //显示温度十位
delays(3);
LCD_disp_char(2,1,tmp/100%10); //显示温度个位
//显示小数点
delays(3);
LCD_disp_char(1,0,tmp/10%10); //显示温度小数后一位
delays(3);
LCD_disp_char(0,0,tmp%10);//显示温度小数后二位
delays(3);
P2=0XFF ;
P0=0xff ;
compare_temper(); //比较温度
}
}
}
/**********************************************************************************************************************************************/
//PID算法温控C语言2008-08-17 18:58
#ifndef _PID_H__
#define _PID_H__
#include<intrins.h>
#include<math.h>
#include<string.h>
struct PID
{
unsigned int SetPoint ;
// 设定目标 Desired Value
unsigned int Proportion ;
// 比例常数 Proportional Const
unsigned int Integral ;
// 积分常数 Integral Const
unsigned int Derivative ;
// 微分常数 Derivative Const
unsigned int LastError ;
// Error[-1]
unsigned int PrevError ;
// Error[-2]
unsigned int SumError ;
// Sums of Errors
}
;
struct PID spid ;
// PID Control Structure
unsigned int rout ;
// PID Response (Output)
unsigned int rin ;
// PID Feedback (Input)
sbit output=P1^4;
unsigned char high_time,low_time,count=0 ;
//占空比调节参数
unsigned char set_temper ;
void PIDInit(struct PID*pp)
{
memset(pp,0,sizeof(struct PID)); //PID参数初始化全部设置为0
}
unsigned int PIDCalc(struct PID*pp,unsigned int NextPoint)
{
unsigned int dError,Error ;
Error=pp->SetPoint-NextPoint ;
// 偏差
pp->SumError+=Error ;
// 积分
dError=pp->LastError-pp->PrevError ;
// 当前微分
pp->PrevError=pp->LastError ;
pp->LastError=Error ;
//比例
//积分项
return(pp->Proportion*Error+pp->Integral*pp->SumError+pp->Derivative*dError);
// 微分项
}
/***********************************************************
温度比较处理子程序
***********************************************************/
void compare_temper()
{
unsigned char i ;
//EA=0;
if(set_temper>temper)
{
if(set_temper-temper>1)
{
high_time=100 ; //大于1°不进行PID运算
low_time=0 ;
}
else
{ //在1°范围内进行PID运算
for(i=0;i<10;i++)
{
//get_temper();
rin=s;
// Read Input
rout=PIDCalc(&spid,rin); //执行PID运算
// Perform PID Interation
}
if(high_time<=100) //限制最大值
high_time=(unsigned char)(rout/800);
else
high_time=100;
low_time=(100-high_time);
}
}
/****************************************/
else if(set_temper<=temper) //当实际温度大于设置温度时
{
if(temper-set_temper>0)//如果实际温度大于设定温度
{
high_time=0 ;
low_time=100 ;
}
else
{
for(i=0;i<10;i++)
{
//get_temper();
rin=s ;
// Read Input
rout=PIDCalc(&spid,rin);
// Perform PID Interation
}
if(high_time<100) //此变量是无符号字符型
high_time=(unsigned char)(rout/10000);
else
high_time=0 ;//限制不输出负值
low_time=(100-high_time);
//EA=1;
}
}
}
/*****************************************************
T0中断服务子程序,用于控制电平的翻转 ,40us*100=4ms周期
******************************************************/
void serve_T0()interrupt 1 using 1
{
if(++count<=(high_time))
output=0 ;
else if(count<=100)
{
output=1 ;
}
else
count=0 ;
TH0=0x2f ;
TL0=0xe0 ;
}
void PIDBEGIN()
{
TMOD=0x01 ;
TH0=0x2f ;
TL0=0x40 ;
EA=1 ;
ET0=1 ;
TR0=1 ;
high_time=50 ;
low_time=50 ;
PIDInit(&spid);
// Initialize Structure
spid.Proportion=10 ;
// Set PID Coefficients
spid.Integral=8 ;
spid.Derivative=6 ;
spid.SetPoint=100 ;
// Set PID Setpoint
}
#endif
转自他人程序。
‘玖’ 温控仪pid怎样设置,或者是怎样计算的
温控仪的温度控制采用PID算法,一般自整定调节PID参数,如果温控效果不理想,可以手动微调。
‘拾’ 请教温控PID增量型算法公式
南京星德机械提供:增量式PID控制算法
当执行机构需要的不是控制量的绝对值,而是控制量的增量(例如去驱
动步进电动机)时,需要用PID的“增量算法”。