当前位置:首页 » 操作系统 » 决策树的算法

决策树的算法

发布时间: 2022-09-05 02:18:53

⑴ 决策树算法原理是什么

决策树构造的输入是一组带有类别标记的例子,构造的结果是一棵二叉树或多叉树。二叉树的 内部节点(非 叶子节点)一般表示为一个逻辑判断,如形式为a=aj的逻辑判断,其中a是属性,aj是该属性的所有取值:树的边是逻辑判断的分支结果。

多叉树(ID3)的内部结点是属性,边是该属性的所有取值,有几个 属性值就有几条边。树的叶子节点都是类别标记。

由于数据表示不当、有噪声或者由于决策树生成时产生重复的子树等原因,都会造成产生的决策树过大。

因此,简化决策树是一个不可缺少的环节。寻找一棵最优决策树,主要应解决以下3个最优化问题:①生成最少数目的叶子节点;②生成的每个叶子节点的深度最小;③生成的决策树叶子节点最少且每个叶子节点的深度最小。

(1)决策树的算法扩展阅读:

决策树算法的优点如下:

(1)分类精度高;

(2)生成的模式简单;

(3)对噪声数据有很好的健壮性。

因而是目前应用最为广泛的归纳推理算法之一,在 数据挖掘中受到研究者的广泛关注。

⑵ 决策树的计算方法

决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。

⑶ 决策树算法原理

决策树是通过一系列规则对数据进行分类的过程。它提供一种在什么条件下会得到什么值的类似规则的方法。决策树分为分类树和回归树两种,分类树对离散变量做决策树,回归树对连续变量做决策树。

如果不考虑效率等,那么样本所有特征的判断级联起来终会将某一个样本分到一个类终止块上。实际上,样本所有特征中有一些特征在分类时起到决定性作用,决策树的构造过程就是找到这些具有决定性作用的特征,根据其决定性程度来构造一个倒立的树--决定性作用最大的那个特征作为根节点,然后递归找到各分支下子数据集中次大的决定性特征,直至子数据集中所有数据都属于同一类。所以,构造决策树的过程本质上就是根据数据特征将数据集分类的递归过程,我们需要解决的第一个问题就是,当前数据集上哪个特征在划分数据分类时起决定性作用。

一棵决策树的生成过程主要分为以下3个部分:

特征选择:特征选择是指从训练数据中众多的特征中选择一个特征作为当前节点的分裂标准,如何选择特征有着很多不同量化评估标准标准,从而衍生出不同的决策树算法。

决策树生成: 根据选择的特征评估标准,从上至下递归地生成子节点,直到数据集不可分则停止决策树停止生长。 树结构来说,递归结构是最容易理解的方式。

剪枝:决策树容易过拟合,一般来需要剪枝,缩小树结构规模、缓解过拟合。剪枝技术有预剪枝和后剪枝两种。

划分数据集的最大原则是:使无序的数据变的有序。如果一个训练数据中有20个特征,那么选取哪个做划分依据?这就必须采用量化的方法来判断,量化划分方法有多重,其中一项就是“信息论度量信息分类”。基于信息论的决策树算法有ID3、CART和C4.5等算法,其中C4.5和CART两种算法从ID3算法中衍生而来。

CART和C4.5支持数据特征为连续分布时的处理,主要通过使用二元切分来处理连续型变量,即求一个特定的值-分裂值:特征值大于分裂值就走左子树,或者就走右子树。这个分裂值的选取的原则是使得划分后的子树中的“混乱程度”降低,具体到C4.5和CART算法则有不同的定义方式。

ID3算法由Ross Quinlan发明,建立在“奥卡姆剃刀”的基础上:越是小型的决策树越优于大的决策树(be simple简单理论)。ID3算法中根据信息论的信息增益评估和选择特征,每次选择信息增益最大的特征做判断模块。ID3算法可用于划分标称型数据集,没有剪枝的过程,为了去除过度数据匹配的问题,可通过裁剪合并相邻的无法产生大量信息增益的叶子节点(例如设置信息增益阀值)。使用信息增益的话其实是有一个缺点,那就是它偏向于具有大量值的属性--就是说在训练集中,某个属性所取的不同值的个数越多,那么越有可能拿它来作为分裂属性,而这样做有时候是没有意义的,另外ID3不能处理连续分布的数据特征,于是就有了C4.5算法。CART算法也支持连续分布的数据特征。

C4.5是ID3的一个改进算法,继承了ID3算法的优点。C4.5算法用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足在树构造过程中进行剪枝;能够完成对连续属性的离散化处理;能够对不完整数据进行处理。C4.5算法产生的分类规则易于理解、准确率较高;但效率低,因树构造过程中,需要对数据集进行多次的顺序扫描和排序。也是因为必须多次数据集扫描,C4.5只适合于能够驻留于内存的数据集。

CART算法的全称是Classification And Regression Tree,采用的是Gini指数(选Gini指数最小的特征s)作为分裂标准,同时它也是包含后剪枝操作。ID3算法和C4.5算法虽然在对训练样本集的学习中可以尽可能多地挖掘信息,但其生成的决策树分支较大,规模较大。为了简化决策树的规模,提高生成决策树的效率,就出现了根据GINI系数来选择测试属性的决策树算法CART。

决策树算法的优点:

(1)便于理解和解释,树的结构可以可视化出来

(2)基本不需要预处理,不需要提前归一化,处理缺失值

(3)使用决策树预测的代价是O(log2m),m为样本数

(4)能够处理数值型数据和分类数据

(5)可以处理多维度输出的分类问题

(6)可以通过数值统计测试来验证该模型,这使解释验证该模型的可靠性成为可能

(7)即使该模型假设的结果与真实模型所提供的数据有些违反,其表现依旧良好

决策树算法的缺点:

(1)决策树模型容易产生一个过于复杂的模型,这样的模型对数据的泛化性能会很差。这就是所谓的过拟合.一些策略像剪枝、设置叶节点所需的最小样本数或设置数的最大深度是避免出现该问题最为有效地方法。

(2)决策树可能是不稳定的,因为数据中的微小变化可能会导致完全不同的树生成。这个问题可以通过决策树的集成来得到缓解。

(3)在多方面性能最优和简单化概念的要求下,学习一棵最优决策树通常是一个NP难问题。因此,实际的决策树学习算法是基于启发式算法,例如在每个节点进行局部最优决策的贪心算法。这样的算法不能保证返回全局最优决策树。这个问题可以通过集成学习来训练多棵决策树来缓解,这多棵决策树一般通过对特征和样本有放回的随机采样来生成。

(4)有些概念很难被决策树学习到,因为决策树很难清楚的表述这些概念。例如XOR,奇偶或者复用器的问题。

(5)如果某些类在问题中占主导地位会使得创建的决策树有偏差。因此,我们建议在拟合前先对数据集进行平衡。

(1)当数据的特征维度很高而数据量又很少的时候,这样的数据在构建决策树的时候往往会过拟合。所以我们要控制样本数量和特征的之间正确的比率;

(2)在构建决策树之前,可以考虑预先执行降维技术(如PCA,ICA或特征选择),以使我们生成的树更有可能找到具有辨别力的特征;

(3)在训练一棵树的时候,可以先设置max_depth=3来将树可视化出来,以便我们找到树是怎样拟合我们数据的感觉,然后在增加我们树的深度;

(4)树每增加一层,填充所需的样本数量是原来的2倍,比如我们设置了最小叶节点的样本数量,当我们的树层数增加一层的时候,所需的样本数量就会翻倍,所以我们要控制好树的最大深度,防止过拟合;

(5)使用min_samples_split(节点可以切分时拥有的最小样本数) 和 min_samples_leaf(最小叶节点数)来控制叶节点的样本数量。这两个值设置的很小通常意味着我们的树过拟合了,而设置的很大意味着我们树预测的精度又会降低。通常设置min_samples_leaf=5;

(6)当树的类比不平衡的时候,在训练之前一定要先平很数据集,防止一些类别大的类主宰了决策树。可以通过采样的方法将各个类别的样本数量到大致相等,或者最好是将每个类的样本权重之和(sample_weight)规范化为相同的值。另请注意,基于权重的预剪枝标准(如min_weight_fraction_leaf)将比不知道样本权重的标准(如min_samples_leaf)更少偏向主导类别。

(7)如果样本是带权重的,使用基于权重的预剪枝标准将更简单的去优化树结构,如mn_weight_fraction_leaf,这确保了叶节点至少包含了样本权值总体总和的一小部分;

(8)在sklearn中所有决策树使用的数据都是np.float32类型的内部数组。如果训练数据不是这种格式,则将复制数据集,这样会浪费计算机资源。

(9)如果输入矩阵X非常稀疏,建议在调用fit函数和稀疏csr_matrix之前转换为稀疏csc_matrix,然后再调用predict。 当特征在大多数样本中具有零值时,与密集矩阵相比,稀疏矩阵输入的训练时间可以快几个数量级。

⑷ 数据挖掘-决策树算法

决策树算法是一种比较简易的监督学习分类算法,既然叫做决策树,那么首先他是一个树形结构,简单写一下树形结构(数据结构的时候学过不少了)。

树状结构是一个或多个节点的有限集合,在决策树里,构成比较简单,有如下几种元素:

在决策树中,每个叶子节点都有一个类标签,非叶子节点包含对属性的测试条件,用此进行分类。
所以个人理解,决策树就是 对一些样本,用树形结构对样本的特征进行分支,分到叶子节点就能得到样本最终的分类,而其中的非叶子节点和分支就是分类的条件,测试和预测分类就可以照着这些条件来走相应的路径进行分类。

根据这个逻辑,很明显决策树的关键就是如何找出决策条件和什么时候算作叶子节点即决策树终止。

决策树的核心是为不同类型的特征提供表示决策条件和对应输出的方法,特征类型和划分方法包括以下几个:

注意,这些图中的第二层都是分支,不是叶子节点。

如何合理的对特征进行划分,从而找到最优的决策模型呢?在这里需要引入信息熵的概念。

先来看熵的概念:

在数据集中,参考熵的定义,把信息熵描述为样本中的不纯度,熵越高,不纯度越高,数据越混乱(越难区分分类)。

例如:要给(0,1)分类,熵是0,因为能明显分类,而均衡分布的(0.5,0.5)熵比较高,因为难以划分。

信息熵的计算公式为:
其中 代表信息熵。 是类的个数, 代表在 类时 发生的概率。
另外有一种Gini系数,也可以用来衡量样本的不纯度:
其中 代表Gini系数,一般用于决策树的 CART算法

举个例子:

如果有上述样本,那么样本中可以知道,能被分为0类的有3个,分为1类的也有3个,那么信息熵为:
Gini系数为:
总共有6个数据,那么其中0类3个,占比就是3/6,同理1类。

我们再来计算一个分布比较一下:

信息熵为:
Gini系数为:

很明显,因为第二个分布中,很明显这些数偏向了其中一类,所以 纯度更高 ,相对的信息熵和Gini系数较低。

有了上述的概念,很明显如果我们有一组数据要进行分类,最快的建立决策树的途径就是让其在每一层都让这个样本纯度最大化,那么就要引入信息增益的概念。

所谓增益,就是做了一次决策之后,样本的纯度提升了多少(不纯度降低了多少),也就是比较决策之前的样本不纯度和决策之后的样本不纯度,差越大,效果越好。
让信息熵降低,每一层降低的越快越好。
度量这个信息熵差的方法如下:
其中 代表的就是信息熵(或者其他可以度量不纯度的系数)的差, 是样本(parent是决策之前, 是决策之后)的信息熵(或者其他可以度量不纯度的系数), 为特征值的个数, 是原样本的记录总数, 是与决策后的样本相关联的记录个数。

当选择信息熵作为样本的不纯度度量时,Δ就叫做信息增益

我们可以遍历每一个特征,看就哪个特征决策时,产生的信息增益最大,就把他作为当前决策节点,之后在下一层继续这个过程。

举个例子:

如果我们的目标是判断什么情况下,销量会比较高(受天气,周末,促销三个因素影响),根据上述的信息增益求法,我们首先应该找到根据哪个特征来决策,以信息熵为例:

首先肯定是要求 ,也就是销量这个特征的信息熵:

接下来,就分别看三个特征关于销量的信息熵,先看天气,天气分为好和坏两种,其中天气为好的条件下,销量为高的有11条,低的有6条;天气坏时,销量为高的有7条,销量为低的有10条,并且天气好的总共17条,天气坏的总共17条。

分别计算天气好和天气坏时的信息熵,天气好时:

根据公式 ,可以知道,N是34,而天气特征有2个值,则k=2,第一个值有17条可以关联到决策后的节点,第二个值也是17条,则能得出计算:

再计算周末这个特征,也只有两个特征值,一个是,一个否,其中是有14条,否有20条;周末为是的中有11条销量是高,3条销量低,以此类推有:


信息增益为:

另外可以得到是否有促销的信息增益为0.127268。

可以看出,以周末为决策,可以得到最大的信息增益,因此根节点就可以用周末这个特征进行分支:

注意再接下来一层的原样本集,不是34个而是周末为“是”和“否”分别计算,为是的是14个,否的是20个。
这样一层一层往下递归,直到判断节点中的样本是否都属于一类,或者都有同一个特征值,此时就不继续往下分了,也就生成了叶子节点。

上述模型的决策树分配如下:

需要注意的是,特征是否出现需要在分支当中看,并不是整体互斥的,周末生成的两个分支,一个需要用促销来决策,一个需要用天气,并不代表再接下来就没有特征可以分了,而是在促销决策层下面可以再分天气,另外一遍天气决策下面可以再分促销。

决策树的模型比较容易解释,看这个树形图就能很容易的说出分类的条件。

我们知道属性有二元属性、标称属性、序数属性和连续属性,其中二元、标称和序数都是类似的,因为是离散的属性,按照上述方式进行信息增益计算即可,而连续属性与这三个不同。

对于连续的属性,为了降低其时间复杂度,我们可以先将属性内部排序,之后取相邻节点的均值作为决策值,依次取每两个相邻的属性值的均值,之后比较他们的不纯度度量。

需要注意的是,连续属性可能在决策树中出现多次,而不是像离散的属性一样在一个分支中出现一次就不会再出现了。

用信息熵或者Gini系数等不纯度度量有一个缺点,就是会倾向于将多分支的属性优先分类——而往往这种属性并不是特征。

例如上面例子中的第一行序号,有34个不同的值,那么信息熵一定很高,但是实际上它并没有任何意义,因此我们需要规避这种情况,如何规避呢,有两种方式:

公式如下:

其中k为划分的总数,如果每个属性值具有相同的记录数,则 ,划分信息等于 ,那么如果某个属性产生了大量划分,则划分信息很大,信息增益率低,就能规避这种情况了。

为了防止过拟合现象,往往会对决策树做优化,一般是通过剪枝的方式,剪枝又分为预剪枝和后剪枝。

在构建决策树时,设定各种各样的条件如叶子节点的样本数不大于多少就停止分支,树的最大深度等,让决策树的层级变少以防止过拟合。
也就是在生成决策树之前,设定了决策树的条件。

后剪枝就是在最大决策树生成之后,进行剪枝,按照自底向上的方式进行修剪,修剪的规则是,评估叶子节点和其父节点的代价函数,如果父节点的代价函数比较小,则去掉这个叶子节点。
这里引入的代价函数公式是:
其中 代表的是叶子节点中样本个数, 代表的是该叶子节点上的不纯度度量,把每个叶子节点的 加起来,和父节点的 比较,之后进行剪枝即可。

⑸ 决策树算法有哪些

决策树算法有随机森林,GBDT,XGboost,这些都是基于决策树的

⑹ 决策树算法的典型算法

决策树的典型算法有ID3,C4.5,CART等。
国际权威的学术组织,数据挖掘国际会议ICDM (the IEEE International Conference on Data Mining)在2006年12月评选出了数据挖掘领域的十大经典算法中,C4.5算法排名第一。C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法。C4.5算法产生的分类规则易于理解,准确率较高。不过在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,在实际应用中因而会导致算法的低效。
决策树算法的优点如下:
(1)分类精度高;
(2)生成的模式简单;
(3)对噪声数据有很好的健壮性。
因而是目前应用最为广泛的归纳推理算法之一,在数据挖掘中受到研究者的广泛关注。

⑺ 决策树的算法

C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:
1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;
2) 在树构造过程中进行剪枝;
3) 能够完成对连续属性的离散化处理;
4) 能够对不完整数据进行处理。
C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。此外,C4.5只适合于能够驻留于内存的数据集,当训练集大得无法在内存容纳时程序无法运行。
具体算法步骤如下;
1创建节点N
2如果训练集为空,在返回节点N标记为Failure
3如果训练集中的所有记录都属于同一个类别,则以该类别标记节点N
4如果候选属性为空,则返回N作为叶节点,标记为训练集中最普通的类;
5for each 候选属性 attribute_list
6if 候选属性是连续的then
7对该属性进行离散化
8选择候选属性attribute_list中具有最高信息增益率的属性D
9标记节点N为属性D
10for each 属性D的一致值d
11由节点N长出一个条件为D=d的分支
12设s是训练集中D=d的训练样本的集合
13if s为空
14加上一个树叶,标记为训练集中最普通的类
15else加上一个有C4.5(R - {D},C,s)返回的点 背景:
分类与回归树(CART——Classification And Regression Tree)) 是一种非常有趣并且十分有效的非参数分类和回归方法。它通过构建二叉树达到预测目的。
分类与回归树CART 模型最早由Breiman 等人提出,已经在统计领域和数据挖掘技术中普遍使用。它采用与传统统计学完全不同的方式构建预测准则,它是以二叉树的形式给出,易于理解、使用和解释。由CART 模型构建的预测树在很多情况下比常用的统计方法构建的代数学预测准则更加准确,且数据越复杂、变量越多,算法的优越性就越显着。模型的关键是预测准则的构建,准确的。
定义:
分类和回归首先利用已知的多变量数据构建预测准则, 进而根据其它变量值对一个变量进行预测。在分类中, 人们往往先对某一客体进行各种测量, 然后利用一定的分类准则确定该客体归属那一类。例如, 给定某一化石的鉴定特征, 预测该化石属那一科、那一属, 甚至那一种。另外一个例子是, 已知某一地区的地质和物化探信息, 预测该区是否有矿。回归则与分类不同, 它被用来预测客体的某一数值, 而不是客体的归类。例如, 给定某一地区的矿产资源特征, 预测该区的资源量。

⑻ 决策树算法基础 ID3与C4.5

决策树算法基础:ID3与C4.5
设X是一个取有限个值得离散随机变量,其概率分布为P(X=xi)=pi, i=1,2,…,n。则随机变量X的信息熵为
条件熵H(Y|X)表示在已知随机变量X的条件下随机变量Y的不确定性。H(Y|X)的计算公式为
所以决策树分支后信息总熵H(D|A)=P1*H1+P2*H2+...+Pn*Hn,(特征A条件下D的经验条件熵)
所以信息增益ΔH=H(D)-H(D|A)
H(D|A)越小,ΔH越大,该特征A越适合作为当前的决策节点。
选取最佳特征伪代码:
计算信息总熵H(D)
遍历每一个特征下的关于D的经验条件熵H(D|A)
计算每一个特征的信息增益ΔH
将信息增益ΔH最大的特征作为最佳特征选为当前决策节点
ID3算法伪代码:
如果第一个标签的数量等于所有的标签数量,说明这是一个单节点树,返回这个标签作为该节点类
如果特征只有一个,说明这是一个单节点树,用多数表决法投票选出标签返回作为该节点类
否则,按信息增益最大的特征A作为当前决策节点,即决策树父节点
如果该特征的信息增益ΔH小于阈值,则用多数表决法投票选出标签返回作为该节点类
否则,对于该特征A的每一个可能值ai,将原空间D分割为若干个子空间Di
对于若干个非空子集Di,将每个Di中实例数最大的类作为标记,构建子节点
以Di为训练空间,递归调用上述步骤
由于信息增益存在偏向于选择取值较多的特征的问题,而C4.5算法中,将ID3算法里的信息增益换成信息增益比,较好地解决了这个问题。
决策树的优点在于计算量简单,适合有缺失属性值的样本,适合处理不相关的特征。而缺点是容易过拟合,可以通过剪枝来简化模型,另外随机森林也解决了这个问题。

⑼ 决策树法分为那几个步骤

1、特征选择

特征选择决定了使用哪些特征来做判断。在训练数据集中,每个样本的属性可能有很多个,不同属性的作用有大有小。因而特征选择的作用就是筛选出跟分类结果相关性较高的特征,也就是分类能力较强的特征。在特征选择中通常使用的准则是:信息增益。

2、决策树生成

选择好特征后,就从根节点触发,对节点计算所有特征的信息增益,选择信息增益最大的特征作为节点特征,根据该特征的不同取值建立子节点;对每个子节点使用相同的方式生成新的子节点,直到信息增益很小或者没有特征可以选择为止。

3、决策树剪枝

剪枝的主要目的是对抗“过拟合”,通过主动去掉部分分支来降低过拟合的风险。

【简介】

决策树是一种解决分类问题的算法,决策树算法采用树形结构,使用层层推理来实现最终的分类。

⑽ 决策树、随机森林

在了解树模型之前,自然想到树模型和线性模型,他们有什么区别呢?

决策树与逻辑回归的分类区别也在于此。

树形模型更加接近人的思维方式,可以 产生可视化的分类规则,产生的模型具有可解释性 。树模型拟合出来的函数其实是 分区间的阶梯函数 。

决策树(decision tree)是一种基本的分类与回归方法,此处主要讨论分类的决策树。决策树是一种十分常用的分类方法,属于有监督学习(Supervised Learning)。所谓有监督学习,就是给出一堆样本,每个样本都有一组属性和一个分类结果,也就是分类结果已知,那么通过学习这些样本得到一个决策树,这个决策树能够对新的数据给出正确的分类。

决策树是一种树形结构,它主要有三种不同的节点:

决策树算法主要包括三个部分: 特征选择、树的生成、树的剪枝。

比较常用的决策树算法有ID3,C4.5和CART(Classification And Regression Tree),CART的分类效果一般优于其他决策树。

样本数量,特征数量上面,一开始需要注意的:

当熵中的概率由数据估计(特别是最大似然估计)得到时,所对应的熵称为 经验熵 (empirical entropy)。

什么叫由数据估计?比如有10个数据,一共有两个类别,A类和B类。其中有7个数据属于A类,则该A类的概率即为十分之七。其中有3个数据属于B类,则该B类的概率即为十分之三。浅显的解释就是,这概率是我们根据数据数出来的。

训练数据集D,则训练数据集D的经验熵为H(D),|D|表示其样本容量,及样本个数。设有K个类Ck,k = 1,2,3,···,K,|Ck|为属于类Ck的样本个数,这经验熵公式可以写为:

信息增益表示得知特征X的信息而使得类Y的信息不确定性减少的程度。

条件熵H(Y|X)表示在已知随机变量X的条件下随机变量Y的不确定性,随机变量X给定的条件下随机变量Y的条件熵(conditional entropy) H(Y|X),定义X给定条件下Y的条件概率分布的熵对X的数学期望:

当熵和条件熵中的概率由数据估计(特别是极大似然估计)得到时,所对应的分别为经验熵和经验条件熵,此时如果有0概率,令0log0=0。

信息增益

一般地, 熵H(D)与条件熵H(D|A)之差成为互信息(mutual information) 。决策树学习中的信息增益等价于训练数据集中类与特征的互信息。

信息增益比

Gini 指数

举例计算Gini指数(不纯度)

这个分类结果明显并不是很好,因为它没有将见面与不见面完全的分开,在算法中,当然不能凭我们的“感觉”去评价分类结果的好坏。我们需要用一个数去表示。(具体数值代入上面的基尼指数计算公式)

信息增益 vs 信息增益比

Gini 指数 vs 熵

ID3算法的核心是在决策树各个结点上对应信息增益准则选择特征,递归地构建决策树。

具体方法是:

1)从根结点(root node)开始,对结点计算所有可能的特征的信息增益,选择信息增益最大的特征作为结点的特征。

2)由该特征的不同取值建立子节点,再对子结点递归地调用以上方法,构建决策树;直到 所有特征的信息增益均很小或没有特征可以选择 为止;

3)最后得到一个决策树。

ID3相当于用 极大似然法进行概率模型的选择 。

与ID3算法相似,但是做了改进,将信息增益比作为选择特征的标准。

CART 的全称是分类与回归树。从这个名字中就应该知道,CART 既可以用于分类问题,也可以用于回归问题。

回归树中,使用平方误差最小化准则来选择特征并进行划分。每一个叶子节点给出的预测值,是划分到该叶子节点的所有样本目标值的均值,这样只是在给定划分的情况下最小化了平方误差。

要确定最优化分,还需要遍历所有属性,以及其所有的取值来分别尝试划分并计算在此种划分情况下的最小平方误差,选取最小的作为此次划分的依据。由于回归树生成使用平方误差最小化准则,所以又叫做最小二乘回归树。

ID3

熵表示的是数据中包含的信息量大小。熵越小,数据的纯度越高,也就是说数据越趋于一致,这是我们希望的划分之后每个子节点的样子。

信息增益 = 划分前熵 - 划分后熵。信息增益越大,则意味着使用属性 a 来进行划分所获得的 “纯度提升” 越大 **。也就是说,用属性 a 来划分训练集,得到的结果中纯度比较高。

ID3 仅仅适用于二分类问题。ID3 仅仅能够处理离散属性。

C4.5 克服了 ID3 仅仅能够处理离散属性的问题,以及信息增益偏向选择取值较多特征的问题,使用信息增益比来选择特征。 信息增益比 = 信息增益 / 划分前熵 选择信息增益比最大的作为最优特征。

C4.5 处理连续特征是先将特征取值排序,以连续两个值中间值作为划分标准。尝试每一种划分,并计算修正后的信息增益,选择信息增益最大的分裂点作为该属性的分裂点。

CART 与 ID3,C4.5 不同之处在于 CART 生成的树必须是二叉树 。也就是说,无论是回归还是分类问题,无论特征是离散的还是连续的,无论属性取值有多个还是两个,内部节点只能根据属性值进行二分。

决策树生成算法递归的产生决策树,直到不能继续下去为止,这样产生的树往往对训练数据的分类很准确,但对未知测试数据的分类缺没有那么精确,即会出现过拟合现象。过拟合产生的原因在于在学习时过多的考虑如何提高对训练数据的正确分类,从而构建出过于复杂的决策树,解决方法是考虑决策树的复杂度,对已经生成的树进行简化。

剪枝(pruning):从已经生成的树上裁掉一些子树或叶节点,并将其根节点或父节点作为新的叶子节点,从而简化分类树模型。

实现方式:极小化决策树整体的损失函数或代价函数来实现

决策树学习的损失函数定义为:

https://www.cnblogs.com/ooon/p/5647309.html

鉴于决策树容易过拟合的缺点,随机森林采用多个决策树的投票机制来改善决策树,我们假设随机森林使用了m棵决策树,那么就需要产生m个一定数量的样本集来训练每一棵树,如果用全样本去训练m棵决策树显然是不可取的,全样本训练忽视了局部样本的规律,对于模型的泛化能力是有害的。

产生n个样本的方法采用Bootstraping法,这是一种有放回的抽样方法,产生n个样本。

而最终结果采用Bagging的策略来获得,即多数投票机制。

随机森林的生成方法:

1.从样本集中通过重采样的方式产生n个样本

2.假设样本特征数目为a,对n个样本选择a中的k个特征,用建立决策树的方式获得最佳分割点

3.重复m次,产生m棵决策树

4.多数投票机制来进行预测

(需要注意的一点是,这里m是指循环的次数,n是指样本的数目,n个样本构成训练的样本集,而m次循环中又会产生m个这样的样本集)

随机森林是一个比较优秀的模型,在我的项目的使用效果上来看,它对于多维特征的数据集分类有很高的效率,还可以做特征重要性的选择。运行效率和准确率较高,实现起来也比较简单。 但是在数据噪音比较大的情况下会过拟合,过拟合的缺点对于随机森林来说还是较为致命的。

机器学习实战(三)——决策树 https://blog.csdn.net/jiaoyangwm/article/details/79525237

热点内容
新名图配置怎么样 发布:2024-05-19 09:31:30 浏览:94
php获取子节点 发布:2024-05-19 09:21:18 浏览:160
php生成html 发布:2024-05-19 09:20:24 浏览:795
keil编译步骤 发布:2024-05-19 08:58:12 浏览:702
ipad有哪些好用的c语言编译器 发布:2024-05-19 08:41:56 浏览:767
征途手游版脚本 发布:2024-05-19 08:38:11 浏览:165
安卓咪咕音乐怎么录制视频 发布:2024-05-19 07:56:06 浏览:838
如何搞出超大声的听声辨位安卓版 发布:2024-05-19 07:46:21 浏览:927
linux安全模式 发布:2024-05-19 07:27:25 浏览:176
为什么安卓手机安装不了cpk 发布:2024-05-19 07:22:21 浏览:313