测向计算法
① 有哪几种主要的测向方法
1.利用罗盘(指北针)。 将罗盘或指北针水平放置,使气泡居中,此时磁针静止后,标有“N”的一端所指的便是北方。
2.利用太阳。 在晴朗的白天,根据日出、日落就可以很方便地知道方向,但只能是大致的估计,较准确的测定有下列几种方法。 (1)手表测向。“时数折半对太阳,12指的是北方”。一般在上午9时至下午4时之间可以很快地辨别出方向,用时间的一半所指的方向对向太阳,12时刻度就是北方。如,下午14∶40的时间,其一半为7∶20,把时针对向太阳,那么12指的就是北方。 (2)日影测向。晴天,在地上竖立一木棍,木棍的影子随太阳位置的变化而移动,这些影子在中午最短,其末端的连线是一条直线,该直线的垂直线为南北方向。 3.利用地物和植物特征。 有时野外的一些地物和植物生长特征是良好的方向标志,增加这方面的知识可以帮助我们快速地辨别方向。 (1)地物特征。 房屋:一般门向南开,我国北方尤其如此。 庙宇:通常也是向南开门,尤其庙宇群中的主体建筑。 突出地物:向北一侧基部较潮湿并可能生长低矮的苔藓植物。 (2)植物生长特征。 北侧山坡,低矮的蕨类和藤本植物比阳面更加发育。树木树干的断面可见清晰的年轮,向南一侧的年轮较为疏稀,向北一侧则年轮较紧密。
② 无线电测向技术的无线电测向的方法
无线电测向一般有以下几种方法: 幅度比较式测向体制的工作原理是:依据电波在行进中,利用测向天线阵或测向天线的方向特性,对不同方向来波接收信号幅度的不同,测定来波方向。
幅度比较式测向体制的特点:测向原理直观明了,一般来说系统相对简单,体积小,重量轻,价格便宜。存在间距误差和极化误差,抗波前失真的能力受到限制。频率覆盖范围、测向灵敏度、准确度、测向时效、抗多径能力和抗干扰能力等重要指标,要根据具体情况做具体分析。 干涉仪测向体制的测向原理是:依据电波在行进中,从不同方向来的电波到达测向天线阵时,在空间上各测向天线单元接收的相位不同,因而相互间的相位差也不同,通过测定来波相位和相位差,即可确定来波方向。在干涉仪测向方式中,是直接测量测向天线感应电压的相位,而后求解相位差,其数学公式与幅度比较式测向的公式十分相似。
相关干涉仪测向:是干涉仪测向的一种,它的测向原理是:在测向天线阵列工作频率范围内和360度方向上,各按一定规律设点,同时在频率间隔和方位间隔上,建立样本群,在测向时,将所测得的数据与样本群进行相关运算和插值处理,以获得来波信号方向。
干涉仪测向体制的特点:采用变基线技术,可以使用中、大基础天线阵,采用多信道接收机、计算机和FFT技术,使得该体制测向灵敏度高,测向准确度高,测向速度快,可测仰角,有一定的抗波前失真能力。该体制极化误差不敏感。干涉仪测向是当代比较好的测向体制,由于研制技术较复杂、难度较大,因此造价较高。干涉仪测向对接收信号的幅度不敏感,测向天线在空间的分布和天线的架设间距,比幅度比较式测向灵活,但又必须遵循某种规则。例如:可以是三角形,也可以是五边形,还可以是L形等。 多普勒测向体制的测向原理:依据电波在传播中,遇到与它相对运动的测向天线时,被接收的电波信号产生多普勒效应,测定多普勒效应产生的频移,可以确定来波的方向。
为了得到多普勒效应产生的频移,必须使测向天线与被测电波之间做相对运动,通常是以测向天线在接收场中,以足够高的速度运动来实现的,当测向天线完全朝着来波方向运动时,多普勒效应频移量(升高)最大。
多普勒测向,通常不是直接旋转测向天线,因为这在工程上难于实现,它是将多个天线架设在同心圆的圆周上,电子开关顺序快速接通各个天线,等效于旋转测向天线。人们称这种测向机为准多普勒测向机。
多普勒测向体制的特点:可以采用中、大基础天线阵,测向灵敏度高,准确度高,没有间距误差,极化误差小,可测仰角,有一定的抗波前失真能力。多普勒测向体制的缺欠是抗干扰性能较差,如:遇到同信道干扰、调频调制干扰时,会产生测向误差。该体制尚在发展之中,改进会使系统变得复杂,造价会随之升高。 到达时间差测向体制的测向原理:依据电波在行进中,通过测量电波到达测向天线阵各个测向天线单元时间上的差别,确定电波到来的方向。它类似于比相式测向,但所测量的参数是时间差,而不是相位差。该测向体制要求被测信号具有确定的调制方式。
到达时间差测向体制的特点:测向准确度高,灵敏度高,测向速度快,极化误差不敏感,没有间距误差,测向场地环境要求低。但是抗干扰性能不好,载波必须有确定的调制,目前应用尚不普及。 空间谱估计测向体制的测向原理:在已知坐标的多元天线阵中,测量单元或多元电波场的来波参数,经过多信道接收机变频、放大,得到矢量信号,将其采样量化为数字信号阵列,送给空间谱估计器,运用确定的算法求出各个电波的来波方向、仰角、极化等参数。
空间谱估计测向体制的特点:空间谱估计测向技术可以实现对几个相干波同时测向;可以实现对同信道中、同时存在的多个信号,同时测向;可以实现超分辨测向;仅需要很少的信号采样,就能精确测向,因而适用于对跳频信号测向;可以实现高测向灵敏度和高测向准确度;测向场地环境要求不高,可以实现天线阵元方向特性选择及阵元位置选择的灵活性。以上空间谱估计测向的优点,正是传统测向方法长期以来存在的难题。
空间谱估计测向系统尚在研究试验阶段。在这个系统中,要求具备宽带测向天线,要求各个天线阵元之间和多信道接收机之间,电性能具有一致性。此外还需要简捷高精度的计算方法和高性能的运算处理器,以便解决实用化问题。
③ 时差法测向的基本原理
超声波流量计介绍 即速度差法包括:直接时差法、时差法、相位差法、频差法
超声波流量计的基本原理及类型
超声波在流动的流体中传播时就载上流体流速的信息。因此通过接收到的超声波就可以检测出流体的流速,从而换算成流量。根据检测的方式,可分为传播速度差法、多普勒法、波束偏移法、噪声法及相关法等不同类型的超声波流量计。起声波流量计是近十几年来随着集成电路技术迅速发展才开始应用的一种
非接触式仪表,适于测量不易接触和观察的流体以及大管径流量。它与水位计联动可进行敞开水流的流量测量。使用超声波流量比不用在流体中安装测量元件故不会改变流体的流动状态,不产生附加阻力,仪表的安装及检修均可不影响生产管线运行因而是一种理想的节能型流量计。
众所周知,目前的工业流量测量普遍存在着大管径、大流量测量困难的问题,这是因为一般流量计随着测量管径的增大会带来制造和运输上的困难,造价提高、能损加大、安装不仅这些缺点,超声波流量计均可避免。因为各类超声波流量计均可管外安装、非接触测流,仪表造价基本上与被测管道口径大小无关,而其它类型的流量计随着口径增加,造价大幅度增加,故口径越大超声波流量计比相同功能其它类型流量计的功能价格比越优越。被认为是较好的大管径流量测量仪表,多普勒法超声波流量计可测双相介质的流量,故可用于下水道及排污水等脏污流的测量。在发电厂中,用便携式超声波流量计测量水轮机进水量、汽轮机循环水量等大管径流量,比过去的皮脱管流速计方便得多。超声被流量汁也可用于气体测量。管径的适用范围从2cm到5m,从几米宽的明渠、暗渠到500m宽的河流都可适用。
另外,超声测量仪表的流量测量准确度几乎不受被测流体温度、压力、粘度、密度等参数的影响,又可制成非接触及便携式测量仪表,故可解决其它类型仪表所难以测量的强腐蚀性、非导电性、放射性及易燃易爆介质的流量测量问题。另外,鉴于非接触测量特点,再配以合理的电子线路,一台仪表可适应多种管径测量和多种流量范围测量。超声波流量计的适应能力也是其它仪表不可比拟的。超声波流量计具有上述一些优点因此它越来越受到重视并且向产品系列化、通用化发展,现已制成不同声道的标准型、高温型、防爆型、湿式型仪表以适应不同介质,不同场合和不同管道条件的流量测量。
超声波流量计目前所存在的缺点主要是可测流体的温度范围受超声波换能铝及换能器与管道之间的耦合材料耐温程度的限制,以及高温下被测流体传声速度的原始数据不全。目前我国只能用于测量200℃以下的流体。另外,超声波流量计的测量线路比一般流量计复杂。这是因为,一般工业计量中液体的流速常常是每秒几米,而声波在液体中的传播速度约为1500m/s左右,被测流体流速(流量)变化带给声速的变化量最大也是10-3数量级.若要求测量流速的准确度为1%,则对声速的测量准确度需为10-5~10-6数量级,因此必须有完善的测量线路才能实现,这也正是超声波流量计只有在集成电路技术迅速发展的前题下才能得到实际应用的原因。
超声波流量计由超声波换能器、电子线路及流量显示和累积系统三部分组成。超声波发射换能器将电能转换为超声波能量,并将其发射到被测流体中,接收器接收到的超声波信号,经电子线路放大并转换为代表流量的电信号供给显示和积算仪表进行显示和积算。这样就实现了流量的检测和显示。
超声波流量计常用压电换能器。它利用压电材料的压电效应,采用适出的发射电路把电能加到发射换能器的压电元件上,使其产生超声波振劝。超声波以某一角度射入流体中传播,然后由接收换能器接收,并经压电元件变为电能,以便检测。发射换能器利用压电元件的逆压电效应,而接收换能器则是利用压电效应。
超声波流量计换能器的压电元件常做成圆形薄片,沿厚度振动。薄片直径超过厚度的10倍,以保证振动的方向性。压电元件材料多采用锆钛酸铅。为固定压电元件,使超声波以合适的角度射入到流体中,需把元件故人声楔中,构成换能器整体(又称探头)。声楔的材料不仅要求强度高、耐老化,而且要求超声波经声楔后能量损失小即透射系数接近1。常用的声楔材料是有机玻璃,因为它透明,可以观察到声楔中压电元件的组装情况。另外,某些橡胶、塑料及胶木也可作声楔材料。
超声波流量计的电子线路包括发射、接收、信号处理和显示电路。测得的瞬时流量和累积流量值用数字量或模拟量显示。
根据对信号检测的原理,目前超声波流量计大致可分传播速度差法(包括:直接时差法、时差法、相位差法、频差法)波束偏移法、多普勒法、相关法、空间滤波法及噪声法等类型,如图所示。其中以噪声法原理及结构最简单,便于测量和携带,价格便宜但准确度较低,适于在流量测量准确度要求不高的场合使用。由于直接时差法、时差法、频差法和相位差法的基本原理都是通过测量超声波脉冲顺流和逆流传报时速度之差来反映流体的流速的,故又统称为传播速度差法。其中频差法和时差法克服了声速随流体温度变化带来的误差,准确度较高,所以被广泛采用。按照换能器的配置方法不同,传播速度差拨又分为:Z法(透过法)、V法(反射法)、X法(交叉法)等。波束偏移法是利用超声波束在流体中的传播方向随流体流速变化而产生偏移来反映流体流速的,低流速时,灵敏度很低适用性不大.多普勒法是利用声学多普勒原理,通过测量不均匀流体中散射体散射的超声波多普
勒频移来确定流体流量的,适用于含悬浮颗粒、气泡等流体流量测量。相关法是利用相关技术测量流量,原理上,此法的测量准确度与流体中的声速无关,因而与流体温度,浓度等无关,因而测量准确度高,适用范围广。但相关器价格贵,线路比较复杂。在微处理机普及应用后,这个缺点可以克服。噪声法(听音法)是利用管道内流体流动时产生的噪声与流体的流速有关的原理,通过检测噪声表示流速或流量值。其方法简单,设备价格便宜,但准确度低。
以上几种方法各有特点,应根据被测流体性质.流速分布情况、管路安装地点以及对测量准确度的要求等因素进行选择。一般说来由于工业生产中工质的温度常不能保持恒定,故多采用频差法及时差法。只有在管径很大时才采用直接时差法。对换能器安装方法的选择原则一般是:当流体沿管轴平行流动时,选用Z法;当流动方向与管铀不平行或管路安装地点使换能器安装间隔受到限制时,采用V法或X法。当流场分布不均匀而表前直管段又较短时,也可采用多声道(例如双声道或四声道)来克服流速扰动带来的流量测量误差。多普勒法适于测量两相流,可避免常规仪表由悬浮粒或气泡造成的堵塞、磨损、附着而不能运行的弊病,因而得以迅速发展。随着工业的发展及节能工作的开展,煤油混合(COM)、煤水泥合(CWM)燃料的输送和应用以及燃料油加水助燃等节能方法的发展,都为多普勒超声波流量计应用开辟广阔前景。
④ 测向的训练方法
身体训练的基础理论和方法,例如训练原则、教学组织方法、赛前调整期训练、恢复期训练、少年运动员身体特点及训练方法等,专着已经很多。本书仅结合测向运动的特点,介绍一些一般性的训练方法。 (1)力量素质 力量素质是指肌肉在活动时克服阻力的能力。肌肉克服阻力是通过运动员的肌力实现的。阻力包括外部阻力和内部阻力两个方面。外部阻力包括运动员负载物体的重量、摩擦力、空气阻力等;内部阻力指肌肉内部的阻力,如肌肉的粘滞性,各肌肉间用力的内抗性等。
力量包括绝对力量,相对力量,速度力量和力量耐力。其中,力量耐力是指长时间克服小阻力的能力,无线电测向运动中的奔跑耐力就属于这种耐力。速度力量是指在短时间内克服小阻力的能力。无线电测向运动中的快速跑、冲刺跑都需要速度力量。不同的力量训练可以收到不同的效果。
(2)一般性来说,重复荷、高强度而短时间的训练可以刺激肌肉,特别是深层的肌肉,使肌肉强壮、增大。但在增强力量的训练中,更多的是用本人最大力量的2/3左右的力量进行训练。因为这可以减轻运动员心理上的负担,防止外伤,保证练习中完成必要的重复次数和组数。在这样的训练中应当注意以下两点:
第一、必须有一个训练的准备过程。一般来说,先从30~40%的强度开始,逐渐增加,直至75%的强度。
第二、在训练中间可以穿插一些超75%的小强度训练,直至95%的强度。
(3)速度力量的训练,在速度力量训练中大多采用超等长练习,就是先将需要加强的肌肉拉长,然后再迅速做收缩动作。增强下肢速度练习的常用练习有蛙跳、长短距离的单、双足跳和跳深等。
在进行这种练习时应注意以下几点:
第一、力量的增强不仅仅在于肌肉拉长的长度,更主要在于拉长后收缩的速度。
第二、不同的练习高度作用于肌肉的部位不同。一般来说,跳的高度较低,主要发展小腿后群肌肉;练习的高度较高,主要发展股四头肌。
第三、要做好准备活动,并逐渐增加强度,以防肌肉拉伤。
(4)力量耐力训练,在力量耐力训练中,要求负荷强度小,重复次数低,练习时间长。负荷的范围一般在运动员本身承担最大负荷的1/4以下,练习的重复次数要求达到或接近极限的程度,而练习的阻数不一定过多。对测向运动员来说,登山和轻负荷上台阶(楼梯,看台等)便是一种很好的练习。做上台阶练习时,要注意时间连续,掌握好上到台阶顶部再返回底部重新练习时的间隔时间,不要过长。此外还可做较浅的蹲起练习。选一台阶,运动员脚掌在台阶上,而脚跟悬空,曲膝半蹲到大小腿夹角近90度时直立。还可以做双脚跳台阶、单脚交换跳台阶等。 耐力素质是指机体长时间活动与疲劳作斗争的能力。耐力素质一般分为肌肉耐力和心血管耐力。心血管耐力又分为有氧耐力和无氧耐力。
有氧耐力是指机体在氧气供应比较充足时长时间工作的耐力。提高有氧耐力的目的,从身体训练角度看,主要是增强心血管系统工作能力,提高机体摄取氧和运输氧的能力,从而起进有机体的新陈代谢。
无氧耐力是指在机体氧供应不足,长时间在缺氧状态下工作的能力。由于机体长时间处在无氧状态下工作,导致机体欠下“氧债”,“氧债”需要在运动后得到补尝。提高无氧耐力的目的。从身体训练的角度看,就是提高运动员承担“氧债”的能力。从不同距离跑有氧与无氧代谢的百分比看,100米、200米、400米跑属于典型的无氧代谢项目;5000米、10000米、马拉松跑属于典型的有氧代谢项目;而800米、1500米跑是处于两种代谢之间的过渡性项目。无线电测向运动中,跑动距离远、运动时间长,而在途中摆脱对手时和近台区、终点“冲刺”时又需要快速度,因而对运动员的有氧耐力和无氧耐力的要求都比较高。
在耐力训练中如何区分运动员是处于有氧还是无氧状态呢?目前,主要是通过对参训者脉搏数的监测间接判断。处于有氧耐力训练界限内的最高心率可以由下式求得:
心率=安静时脉搏+(最高脉搏-安静时脉搏)60~70%心率一旦超过,便认为该运动员已进入无氧工作状态。
这是一个很有实用意义的公式。用这个心率的强度进行有氧耐力的训练,可以使心脏每博输出和每分钟输出血量增大,收到很好的训练效果。在日常训练中,为了简便,还常常使用150次/分左右的心率来控制运动员处于有氧训练状态。只在短时间内允许心率达到170次/分。
发展测向跑有氧代谢能力的方法主要有以下3种:
(1)持久跑训练法,持久跑要求较长时间的跑动,中途不间断,不休息,负荷量大,但强度保持在无氧训练心率范围内。一般安排距离至少在4千米左右,心率控制在140~150%次/分(或由计算更精确求得)。由于这种训练方法持续的时间较长,运动员容易感到单调、乏味,疲劳出现较早,所以一般用变速跑、越野跑、随意跑(又叫法特莱克跑)、匀速跑等方式的交替安排进行调节。持久跑的优点是血乳酸增加不明显,心脏的负荷规律稳定,对长距离跑所需的有氧代谢能力有显着效果。
(2)间歇跑训练法,这种训练的最大特点,是每一次练习后不让机体得到充分恢复就进行下一次练习,以便在休息时使心脏每搏输出血量达到最佳值,保证再次训练时心脏内有足够的血液输出。这对增强心脏机能和摄氧能力是十分有效的。间歇跑的方式也可以灵活掌握。根据运动强度,可以分为小强度间歇和大强度间歇跑;根据间歇时间长短,又可以为分长间歇跑和短间歇跑。这些训练方法,除发展有氧耐力外,对发展速度,无氧耐力均有一定效果。
(3)重复跑训练法,这种跑法就是多次重复规定的强度和距离。一般情况下,用这种方法来提高跑的强度,以加深对机体的刺激,促进无氧强度和专项耐力的提高。根据专项要求,有两种安排方案,一是跑专项距离的一半,一是跑专项距离。间歇到心率恢复到120次/分以下再重复下一次练习。例如,可以按测向竞赛中找一个台的途中跑距离(大约1至2公里),作为一次练习的距离。
耐力训练是测向运动员身体训练中最管重要的训练,也是最大量的训练。在耐力训练过程中,必须注意以下问题:注意培养运动员的呼吸能力,特别要培养鼻呼吸和深呼吸的能力;注意对运动员意志品质的培养;要把有氧耐力做为无氧耐力的基础;要控制运动员的体重,勿使发胖,以免增加心脏负荷和体力消耗。 速度素质是指机体(整体或某一部分)快速运动的能力。速度素质一般分为反应速度、动作速度和移动速度。无线电测向运动员身体训练中的速度训练主要是进行移动速度训练,特别是速度耐力的训练。
(1)移动速度训练,提高移动速度的途径有下面两条。
第一、可以通过动力性力量的训练来提高移动速度。就是说要有计划地训练运动员获得快速运动所需的力量以及发挥力量的能力。在力量训练一节中我们曾提到过速度力量,是指在很短时间内克服小阻力的能力。移动速度取决于步长和步频。在跑的过程中,前腿的高抬需要髂腰肌和股四头肌快速有力的收宿,后腿的蹬伸需要臀大肌、梨状肌快速有力的收缩,而髋关节的稳定需要有力的腰腹肌群进行保持。在完成跑的动作时,这些有关肌肉的动作迅速而有力,才能提高步频,加大步长,提高速度。所以说动力性力量训练是提高速度的必要途径。
提高动力性力量的练习有高抬腿、小腿加负荷的高抬腿、后蹬跑、用橡皮条牵拉形成阻力的腿前摆,后蹬伸等,还可以空插安排一些蹲起,小负重的蹲起,垫上的抑卧起坐、屈膝勾头两头靠、俯卧态的头脚两头起等。 是在运动中进行的,负荷轻而动作速度快。练出来的力量不是“死力气”,都可以在提高速度中发挥出来。如何判断力量素质是否转化到移动速度中呢?一般可以根据以下几个方面:(a)运动员在跑的过程中,自己有“有劲”的感觉。
(b)客观观察可见运动员跑的动作有明显的弹性感,有一种有力的向羊跨的感觉。
(c)运动员进行100米跑中,尤其是在后阶段的跑程中,肌肉酸痛的主观感觉减轻。
第二条提高移动速度的途径是跑。对跑的训练要求是:强度大,距离短,每组练习中次数不太多,间歇时间短。例如,以90%强度进行60米跑,共6组,每组3次,组间间歇2分钟至3分钟。
(2)速度耐力训练,速度耐力是指较长时间内做快速运动的能力。无线电测向运动中途中加速到位,途中摆脱对手、近台区长距离跟踪时的持续高速奔跑,都需要这种能力。在上述情况下奔跑距离大约在400米以内。练习时选择每次跑的距离也应在400米左右。还可以用负重训练来提高速度耐力。重量一般为本人最大负重量的80%,每次练习1~2分钟。