当前位置:首页 » 操作系统 » 分类树算法

分类树算法

发布时间: 2022-09-12 12:16:59

Ⅰ 请比较k近邻,决策树和朴素贝叶斯这三种分类算法之间的异同点

决策树算法主要包括id3,c45,cart等算法,生成树形决策树,而朴素贝叶斯是利用贝叶斯定律,根据先验概率求算后验概率。

如果训练集很小,那么高偏差/低方差分类器(如朴素贝叶斯分类器)要优于低偏差/高方差分类器(如k近邻分类器),因为后者容易过拟合。然而,随着训练集的增大,低偏差/高方差分类器将开始胜出(它们具有较低的渐近误差),因为高偏差分类器不足以提供准确的模型。

一些特定算法的优点:

朴素贝叶斯的优点:

超级简单,你只是在做一串计算。如果朴素贝叶斯(NB)条件独立性假设成立,相比于逻辑回归这类的判别模型,朴素贝叶斯分类器将收敛得更快,所以只需要较小的训练集。而且,即使NB假设不成立,朴素贝叶斯分类器在实践方面仍然表现很好。

如果想得到简单快捷的执行效果,这将是个好的选择。它的主要缺点是,不能学习特征之间的相互作用(比如,它不能学习出:虽然你喜欢布拉德·皮特和汤姆·克鲁斯的电影,但却不喜欢他们一起合作的电影)。

逻辑回归的优点:

有许多正则化模型的方法,不需要像在朴素贝叶斯分类器中那样担心特征间的相互关联性。与决策树和支撑向量机不同,还可以有一个很好的概率解释,并能容易地更新模型来吸收新数据(使用一个在线梯度下降方法)。

如果想要一个概率框架(比如,简单地调整分类阈值,说出什么时候是不太确定的,或者获得置信区间),或你期望未来接收更多想要快速并入模型中的训练数据,就选择逻辑回归。

决策树的优点:

易于说明和解释(对某些人来说—我不确定自己是否属于这个阵营)。它们可以很容易地处理特征间的相互作用,并且是非参数化的,所以你不用担心异常值或者数据是否线性可分(比如,决策树可以很容易地某特征x的低端是类A,中间是类B,然后高端又是类A的情况)。

一个缺点是,不支持在线学习,所以当有新样本时,你将不得不重建决策树。另一个缺点是,容易过拟合,但这也正是诸如随机森林(或提高树)之类的集成方法的切入点。另外,随机森林往往是很多分类问题的赢家(我相信通常略优于支持向量机),它们快速并且可扩展,同时你不须担心要像支持向量机那样调一堆参数,所以它们最近似乎相当受欢迎。

(1)分类树算法扩展阅读:

朴素贝叶斯算法:

设每个数据样本用一个n维特征向量来描述n个属性的值,即:X={x1,x2,…,xn},假定有m个类,分别用C1, C2,…,Cm表示。给定一个未知的数据样本X(即没有类标号),若朴素贝叶斯分类法将未知的样本X分配给类Ci,则一定是

P(Ci|X)>P(Cj|X) 1≤j≤m,j≠i

根据贝叶斯定理:

由于P(X)对于所有类为常数,最大化后验概率P(Ci|X)可转化为最大化先验概率P(X|Ci)P(Ci)。如果训练数据集有许多属性和元组,计算P(X|Ci)的开销可能非常大,为此,通常假设各属性的取值互相独立,这样

先验概率P(x1|Ci),P(x2|Ci),…,P(xn|Ci)可以从训练数据集求得。

根据此方法,对一个未知类别的样本X,可以先分别计算出X属于每一个类别Ci的概率P(X|Ci)P(Ci),然后选择其中概率最大的类别作为其类别。

朴素贝叶斯算法成立的前提是各属性之间互相独立。当数据集满足这种独立性假设时,分类的准确度较高,否则可能较低。另外,该算法没有分类规则输出。

TAN算法(树增强型朴素贝叶斯算法)

TAN算法通过发现属性对之间的依赖关系来降低NB中任意属性之间独立的假设。它是在NB网络结构的基础上增加属性对之间的关联(边)来实现的。

实现方法是:用结点表示属性,用有向边表示属性之间的依赖关系,把类别属性作为根结点,其余所有属性都作为它的子节点。通常,用虚线代表NB所需的边,用实线代表新增的边。属性Ai与Aj之间的边意味着属性Ai对类别变量C的影响还取决于属性Aj的取值。

这些增加的边需满足下列条件:类别变量没有双亲结点,每个属性有一个类别变量双亲结点和最多另外一个属性作为其双亲结点。

Ⅱ 名词解释 决策树

决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy = 系统的凌乱程度,使用算法ID3, C4.5和C5.0生成树算法使用熵。这一度量是基于信息学理论中熵的概念。
决策树是一种树形结构,其中每个内部节点表示一个属性上的测试,每个分支代表一个测试输出,每个叶节点代表一种类别。
分类树(决策树)是一种十分常用的分类方法。他是一种监管学习,所谓监管学习就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别是事先确定的,那么通过学习得到一个分类器,这个分类器能够对新出现的对象给出正确的分类。这样的机器学习就被称之为监督学习。

Ⅲ 决策树ID3,C4.5,CART算法中某一属性分类后,是否能运用该属性继续分类

决策树主要有ID3,C4.5,CART等形式。ID3选取信息增益的属性递归进行分类,C4.5改进为使用信息增益率来选取分类属性。CART是Classfication and Regression Tree的缩写。表明CART不仅可以进行分类,也可以进行回归。其中使用基尼系数选取分类属性。以下主要介绍ID3和CART算法。
ID3算法:
信息熵: H(X)=-sigma(对每一个x)(plogp) H(Y|X)=sigma(对每一个x)(pH(Y|X=xi))
信息增益:H(D)-H(D|X) H(D)是整个数据集的熵
信息增益率:(H(D)-H(D|X))/H(X)
算法流程:(1)对每一个属性计算信息增益,若信息增益小于阈值,则将该支置为叶节点,选择其中个数最多的类标签作为该类的类标签。否则,选择其中最大的作为分类属 性。
(2)若各个分支中都只含有同一类数据,则将这支置为叶子节点。
否则 继续进行(1)。
CART算法:
基尼系数:Gini(p)=sigma(每一个类)p(1-p)
回归树:属性值为连续实数。将整个输入空间划分为m块,每一块以其平均值作为输出。f(x)=sigma(每一块)Cm*I(x属于Rm)
回归树生成:(1)选取切分变量和切分点,将输入空间分为两份。
(2)每一份分别进行第一步,直到满足停止条件。
切分变量和切分点选取:对于每一个变量进行遍历,从中选择切分点。选择一个切分点满足分类均方误差最小。然后在选出所有变量中最小分类误差最小的变量作为切分 变量。
分类树:属性值为离散值。
分类树生成:(1)根据每一个属性的每一个取值,是否取该值将样本分成两类,计算基尼系数。选择基尼系数最小的特征和属性值,将样本分成两份。
(2)递归调用(1)直到无法分割。完成CART树生成。

决策树剪枝策略:
预剪枝(树提前停止生长)和后剪枝(完全生成以后减去一些子树提高预测准确率)
降低错误率剪枝:自下而上对每一个内部节点比较减去以其为叶节点和子树的准确率。如果减去准确率提高,则减去,依次类推知道准确率不在提高。
代价复杂度剪枝:从原始决策树T0开始生成一个子树序列{T0、T1、T2、...、Tn},其中Ti+1是从Ti总产生,Tn为根节点。每次均从Ti中 减去具有最小误差增长率的子树。然后通过 交叉验证比较序列中各子树的效果选择最优决策树。

Ⅳ 决策树CART算法优点和缺点

CART的全称是分类和回归树,既可以做分类算法,也可以做回归。
决策树的优缺点:
优点:

1.可以生成可以理解的规则。
2.计算量相对来说不是很大。
3.可以处理连续和种类字段。
4.决策树可以清晰的显示哪些字段比较重要
缺点:

1. 对连续性的字段比较难预测。
2.对有时间顺序的数据,需要很多预处理的工作。
3.当类别太多时,错误可能就会增加的比较快。
4.一般的算法分类的时候,只是根据一个字段来分类。

Ⅳ 决策树算法是按什么来进行分类的

决策树算法是一种逼近离散函数值的方法。它是一种典型的分类方法,首先对数据进行处理,利用归纳算法生成可读的规则和决策树,然后使用决策对新数据进行分析。本质上决策树是通过一系列规则对数据进行分类的过程。
决策树方法最早产生于上世纪60年代,到70年代末。由J Ross Quinlan提出了ID3算法,此算法的目的在于减少树的深度。但是忽略了叶子数目的研究。C4.5算法在ID3算法的基础上进行了改进,对于预测变量的缺值处理、剪枝技术、派生规则等方面作了较大改进,既适合于分类问题,又适合于回归问题。
决策树算法构造决策树来发现数据中蕴涵的分类规则.如何构造精度高、规模小的决策树是决策树算法的核心内容。决策树构造可以分两步进行。第一步,决策树的生成:由训练样本集生成决策树的过程。一般情况下,训练样本数据集是根据实际需要有历史的、有一定综合程度的,用于数据分析处理的数据集。第二步,决策树的剪枝:决策树的剪枝是对上一阶段生成的决策树进行检验、校正和修下的过程,主要是用新的样本数据集(称为测试数据集)中的数据校验决策树生成过程中产生的初步规则,将那些影响预衡准确性的分枝剪除。

Ⅵ 决策树算法原理

决策树是通过一系列规则对数据进行分类的过程。它提供一种在什么条件下会得到什么值的类似规则的方法。决策树分为分类树和回归树两种,分类树对离散变量做决策树,回归树对连续变量做决策树。

如果不考虑效率等,那么样本所有特征的判断级联起来终会将某一个样本分到一个类终止块上。实际上,样本所有特征中有一些特征在分类时起到决定性作用,决策树的构造过程就是找到这些具有决定性作用的特征,根据其决定性程度来构造一个倒立的树--决定性作用最大的那个特征作为根节点,然后递归找到各分支下子数据集中次大的决定性特征,直至子数据集中所有数据都属于同一类。所以,构造决策树的过程本质上就是根据数据特征将数据集分类的递归过程,我们需要解决的第一个问题就是,当前数据集上哪个特征在划分数据分类时起决定性作用。

一棵决策树的生成过程主要分为以下3个部分:

特征选择:特征选择是指从训练数据中众多的特征中选择一个特征作为当前节点的分裂标准,如何选择特征有着很多不同量化评估标准标准,从而衍生出不同的决策树算法。

决策树生成: 根据选择的特征评估标准,从上至下递归地生成子节点,直到数据集不可分则停止决策树停止生长。 树结构来说,递归结构是最容易理解的方式。

剪枝:决策树容易过拟合,一般来需要剪枝,缩小树结构规模、缓解过拟合。剪枝技术有预剪枝和后剪枝两种。

划分数据集的最大原则是:使无序的数据变的有序。如果一个训练数据中有20个特征,那么选取哪个做划分依据?这就必须采用量化的方法来判断,量化划分方法有多重,其中一项就是“信息论度量信息分类”。基于信息论的决策树算法有ID3、CART和C4.5等算法,其中C4.5和CART两种算法从ID3算法中衍生而来。

CART和C4.5支持数据特征为连续分布时的处理,主要通过使用二元切分来处理连续型变量,即求一个特定的值-分裂值:特征值大于分裂值就走左子树,或者就走右子树。这个分裂值的选取的原则是使得划分后的子树中的“混乱程度”降低,具体到C4.5和CART算法则有不同的定义方式。

ID3算法由Ross Quinlan发明,建立在“奥卡姆剃刀”的基础上:越是小型的决策树越优于大的决策树(be simple简单理论)。ID3算法中根据信息论的信息增益评估和选择特征,每次选择信息增益最大的特征做判断模块。ID3算法可用于划分标称型数据集,没有剪枝的过程,为了去除过度数据匹配的问题,可通过裁剪合并相邻的无法产生大量信息增益的叶子节点(例如设置信息增益阀值)。使用信息增益的话其实是有一个缺点,那就是它偏向于具有大量值的属性--就是说在训练集中,某个属性所取的不同值的个数越多,那么越有可能拿它来作为分裂属性,而这样做有时候是没有意义的,另外ID3不能处理连续分布的数据特征,于是就有了C4.5算法。CART算法也支持连续分布的数据特征。

C4.5是ID3的一个改进算法,继承了ID3算法的优点。C4.5算法用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足在树构造过程中进行剪枝;能够完成对连续属性的离散化处理;能够对不完整数据进行处理。C4.5算法产生的分类规则易于理解、准确率较高;但效率低,因树构造过程中,需要对数据集进行多次的顺序扫描和排序。也是因为必须多次数据集扫描,C4.5只适合于能够驻留于内存的数据集。

CART算法的全称是Classification And Regression Tree,采用的是Gini指数(选Gini指数最小的特征s)作为分裂标准,同时它也是包含后剪枝操作。ID3算法和C4.5算法虽然在对训练样本集的学习中可以尽可能多地挖掘信息,但其生成的决策树分支较大,规模较大。为了简化决策树的规模,提高生成决策树的效率,就出现了根据GINI系数来选择测试属性的决策树算法CART。

决策树算法的优点:

(1)便于理解和解释,树的结构可以可视化出来

(2)基本不需要预处理,不需要提前归一化,处理缺失值

(3)使用决策树预测的代价是O(log2m),m为样本数

(4)能够处理数值型数据和分类数据

(5)可以处理多维度输出的分类问题

(6)可以通过数值统计测试来验证该模型,这使解释验证该模型的可靠性成为可能

(7)即使该模型假设的结果与真实模型所提供的数据有些违反,其表现依旧良好

决策树算法的缺点:

(1)决策树模型容易产生一个过于复杂的模型,这样的模型对数据的泛化性能会很差。这就是所谓的过拟合.一些策略像剪枝、设置叶节点所需的最小样本数或设置数的最大深度是避免出现该问题最为有效地方法。

(2)决策树可能是不稳定的,因为数据中的微小变化可能会导致完全不同的树生成。这个问题可以通过决策树的集成来得到缓解。

(3)在多方面性能最优和简单化概念的要求下,学习一棵最优决策树通常是一个NP难问题。因此,实际的决策树学习算法是基于启发式算法,例如在每个节点进行局部最优决策的贪心算法。这样的算法不能保证返回全局最优决策树。这个问题可以通过集成学习来训练多棵决策树来缓解,这多棵决策树一般通过对特征和样本有放回的随机采样来生成。

(4)有些概念很难被决策树学习到,因为决策树很难清楚的表述这些概念。例如XOR,奇偶或者复用器的问题。

(5)如果某些类在问题中占主导地位会使得创建的决策树有偏差。因此,我们建议在拟合前先对数据集进行平衡。

(1)当数据的特征维度很高而数据量又很少的时候,这样的数据在构建决策树的时候往往会过拟合。所以我们要控制样本数量和特征的之间正确的比率;

(2)在构建决策树之前,可以考虑预先执行降维技术(如PCA,ICA或特征选择),以使我们生成的树更有可能找到具有辨别力的特征;

(3)在训练一棵树的时候,可以先设置max_depth=3来将树可视化出来,以便我们找到树是怎样拟合我们数据的感觉,然后在增加我们树的深度;

(4)树每增加一层,填充所需的样本数量是原来的2倍,比如我们设置了最小叶节点的样本数量,当我们的树层数增加一层的时候,所需的样本数量就会翻倍,所以我们要控制好树的最大深度,防止过拟合;

(5)使用min_samples_split(节点可以切分时拥有的最小样本数) 和 min_samples_leaf(最小叶节点数)来控制叶节点的样本数量。这两个值设置的很小通常意味着我们的树过拟合了,而设置的很大意味着我们树预测的精度又会降低。通常设置min_samples_leaf=5;

(6)当树的类比不平衡的时候,在训练之前一定要先平很数据集,防止一些类别大的类主宰了决策树。可以通过采样的方法将各个类别的样本数量到大致相等,或者最好是将每个类的样本权重之和(sample_weight)规范化为相同的值。另请注意,基于权重的预剪枝标准(如min_weight_fraction_leaf)将比不知道样本权重的标准(如min_samples_leaf)更少偏向主导类别。

(7)如果样本是带权重的,使用基于权重的预剪枝标准将更简单的去优化树结构,如mn_weight_fraction_leaf,这确保了叶节点至少包含了样本权值总体总和的一小部分;

(8)在sklearn中所有决策树使用的数据都是np.float32类型的内部数组。如果训练数据不是这种格式,则将复制数据集,这样会浪费计算机资源。

(9)如果输入矩阵X非常稀疏,建议在调用fit函数和稀疏csr_matrix之前转换为稀疏csc_matrix,然后再调用predict。 当特征在大多数样本中具有零值时,与密集矩阵相比,稀疏矩阵输入的训练时间可以快几个数量级。

Ⅶ GBDT与XGBoost

之前介绍过 梯度下降法与牛顿法 ,GBDT与XGBoost就与这两种方法有关。

GBDT泛指所有梯度提升树算法,包括XGBoost,它也是GBDT的一种变种,为了区分它们,GBDT一般特指“Greedy Function Approximation:A Gradient Boosting Machine”里提出的算法,只用了一阶导数信息。

算法流程如下:

算法流程图也可以如下图:

GBDT常用损失函数
分类算法:
分类算法中CART树也是采用回归树
(1) 指数损失函数:

负梯度计算和叶子节点的最佳负梯度拟合与Adaboost相似。
(2) 对数损失函数:
二元分类:

多元分类:

回归算法:
(1)均方差:

(2)绝对损失:

负梯度误差为:

(3)Huber损失:
均方差和绝对损失的折中,对远离中心的异常点,采用绝对损失,而中心附近的点采用均方差。界限一般用分位数点度量。损失函数如下:

负梯度误差:

(4) 分位数损失:分位数回归的损失函数,表达式为

θ为分位数,需要我们在回归前指定。对应的负梯度误差为:

Huber损失和分位数损失,减少异常点对损失函数的影响。

问题:GBDT如何减少异常点的影响?

GBDT优点:

GBDT缺点:

Adaboost与GBDT:

RF与GBDT:

RF优点:

RF缺点:

XGBoost目标函数及归一化公式

归一化解释

XGBoost参数定义

XGBoost第t次迭代: 训练第t棵子树,损失函数最小求参数,计算过程如下

假设分到j这个叶子节点上的样本只有一个。那么,w* j 如下:

回归树的学习策略

XGBoost的打分函数

树节点分裂方法

寻找分为点可以使用Weighted Quantile Sketch—分布式加权直方图算法

稀疏值处理

关键的改进是只访问非缺失的条目I k 。 所提出的算法将不存在的值视为缺失值并且学习处理缺失值的最佳方向。稀疏感知算法运行速度比初始版本快50倍

XGBoost的其它特性

Shrinkage and Column Subsampling
Shrinkage and Column Subsampling均是为了防止过拟合

XGBoost的系统设计

Column Block
xgboost的并行不是tree粒度的并行,而是特征粒度上。

缓存感知访问(Cache-aware Access)

XGBoost的优点

XGBoost与GBDT对比

问题:XGBoost为什么使用CART树而不是用普通的决策树呢?

XGBoost参数说明

回归树 生成算法如下,使用最小二乘偏差(LSD)。

分类树 算法流程如下,使用GINI指数

GINI 指数:

分类中,假设 K 个类,样本属于第 k 类的概率为 p k ,概率分布的基尼指数为:

样本集合 D 的基尼指数为:

C k 为数据集D中属于第k类的样本子集,| * |表示样本集中样本的个数。
数据集 D 根据特征 A 在某一取值 a 上进行分割,得到 D 1 、D 2 两部分,则在特征 A 下集合 D 的基尼指数为:

停止条件:

剪枝
决策树防止过拟合方法:

代价复杂度剪枝 Cost-Complexity Pruning(CCP) 方法对CART剪枝,算法流程如下:

其中 C(T)为误差(例如基尼指数),|T| 为 T 的叶节点个数,alpha 为非负参数,用来权衡训练数据的拟合程度和模型的复杂度。

剪枝例子如下:

例如 t 1 节点,R(t)即剪枝后误差,数据所占比例16/16,节点误差率 = 该节点较少类别的数/该节点类别总数 = 8/16
R(Tt)为剪枝前误差,即叶子节点误差之和,以该节点为根节点的4叶子节点均只有一个类别的样本,该节点较少类别的数/该节点类别总数 = 0,所以R(Tt) = 0

参考

Ⅷ 决策树算法是按什么来进行分类的

决策树算法是一种逼近离散函数值的方法。它是一种典型的分类方法,首先对数据进行处理,利用归纳算法生成可读的规则和决策树,然后使用决策对新数据进行分析。本质上决策树是通过一系列规则对数据进行分类的过程。
决策树方法最早产生于上世纪60年代,到70年代末。由J
Ross
Quinlan提出了ID3算法,此算法的目的在于减少树的深度。但是忽略了叶子数目的研究。C4.5算法在ID3算法的基础上进行了改进,对于预测变量的缺值处理、剪枝技术、派生规则等方面作了较大改进,既适合于分类问题,又适合于回归问题。
决策树算法构造决策树来发现数据中蕴涵的分类规则.如何构造精度高、规模小的决策树是决策树算法的核心内容。决策树构造可以分两步进行。第一步,决策树的生成:由训练样本集生成决策树的过程。一般情况下,训练样本数据集是根据实际需要有历史的、有一定综合程度的,用于数据分析处理的数据集。第二步,决策树的剪枝:决策树的剪枝是对上一阶段生成的决策树进行检验、校正和修下的过程,主要是用新的样本数据集(称为测试数据集)中的数据校验决策树生成过程中产生的初步规则,将那些影响预衡准确性的分枝剪除。

热点内容
android添加sdk 发布:2025-05-15 08:59:20 浏览:5
oracle数据导入sql 发布:2025-05-15 08:55:00 浏览:49
最适合做的脚本 发布:2025-05-15 08:54:27 浏览:380
太原php培训班 发布:2025-05-15 08:41:38 浏览:937
豌豆服务器地址 发布:2025-05-15 08:34:56 浏览:712
linux下php编译安装 发布:2025-05-15 08:30:37 浏览:592
c语言八进制十六进制 发布:2025-05-15 08:22:17 浏览:282
华为安卓如何更新鸿蒙 发布:2025-05-15 08:18:52 浏览:373
工商密码器是什么 发布:2025-05-15 08:18:50 浏览:752
c语言自考 发布:2025-05-15 07:52:42 浏览:501