fft算法代码
① matlab中fft2的计算代码!!!
function f = fft2(x, mrows, ncols)
%FFT2 Two-dimensional discrete Fourier Transform.
% FFT2(X) returns the two-dimensional Fourier transform of matrix X.
% If X is a vector, the result will have the same orientation.
%
% FFT2(X,MROWS,NCOLS) pads matrix X with zeros to size MROWS-by-NCOLS
% before transforming.
%
% Class support for input X:
% float: double, single
%
% See also FFT, FFTN, FFTSHIFT, FFTW, IFFT, IFFT2, IFFTN.
% Copyright 1984-2010 The MathWorks, Inc.
% $Revision: 5.13.4.3 $ $Date: 2010/02/25 08:08:32 $
if ismatrix(x)
if nargin==1
f = fftn(x);
else
f = fftn(x,[mrows ncols]);
end
else
if nargin==1
f = fft(fft(x,[],2),[],1);
else
f = fft(fft(x,ncols,2),mrows,1);
end
end
② fft算法matlab的实现代码!完整版的!
function result = MyFFT(vector)
result = fft(vector);
③ 基2—fft算法的软件实现(MATLAB代码)
参考网络: clc; clear all; close all; x=ones(1,128); %输入的信号,自己可以改变 %整体运用原位计算 m=nextpow2(x);N=2^m; % 求x的长度对应的2的最低幂次m if length(x)<N x=[x,zeros(1,N-length(x))]; % 若x的长度不是2的幂,补零到2的整数幂 end nxd=bin2dec(fliplr(dec2bin([1:N]-1,m)))+1; % 求1:2^m数列序号的倒序 y=x(nxd); % 将x倒序排列作为y的初始值 for mm=1:m % 将DFT作m次基2分解,从左到右,对每次分解作DFT运算,共做m级蝶形运算,每一级都有2^(mm-1)个蝶形结 Nz=2^mm;u=1; % 旋转因子u初始化为WN^0=1 WN=exp(-i*2*pi/Nz); % 本次分解的基本DFT因子WN=exp(-i*2*pi/Nz) for j=1:Nz/2 % 本次跨越间隔内的各次蝶形运算,在进行第mm级运算时需要2^(mm-1)个 蝶形 for k=j:Nz:N % 本次蝶形运算的跨越间隔为Nz=2^mm kp=k+Nz/2; % 蝶形运算的两个因子对应单元下标的关系 t=y(kp)*u; % 蝶形运算的乘积项 y(kp)=y(k)-t; % 蝶形运算 y(k)=y(k)+t; % 蝶形运算 end u=u*WN; % 修改旋转因子,多乘一个基本DFT因子WN end end y y1=fft(x) %自己编的FFT跟直接调用的函数运算以后的结果进行对比
④ 一维复数序列的快速傅里叶变换(FFT)
设x(N)为N点有限长离散序列,代入式(8-3)、式(8-4),并令 其傅里叶变换(DFT)为
地球物理数据处理基础
反变换(IDFT)为
地球物理数据处理基础
两者的差异只在于W的指数符号不同,以及差一个常数1/N,因此下面我们只讨论DFT正变换式(8-5)的运算量,其反变换式(8-6)的运算是完全相同的。
一般来说,W是复数,因此,X(j)也是复数,对于式(8-5)的傅里叶变换(DFT),计算一个X(j)值需要N次复数乘法和N-1次复数加法。而X(j)一共有N个值(j=0,1,…,N-1),所以完成整个DFT运算总共需要N2次复数乘法和N(N-1)次复数加法。
直接计算DFT,乘法次数和加法次数都是与N2成正比的,当N很大时,运算量会很大,例如,当N=8时,DFT需64次复数乘法;而当N=1024时,DFT所需乘法为1048576次,即一百多万次的复数乘法运算,对运算速度要求高。所以需要改进DFT的计算方法,以减少运算次数。
分析Wjk,表面上有N2个数值,由于其周期性,实际上仅有N个不同的值W0,W1,…,WN-1。对于N=2m时,由于其对称性,只有N/2个不同的值W0,W1,…,
地球物理数据处理基础
因此可以把长序列的DFT分解为短序列DFT,而前面已经分析DFT与N2成正比,所以N越小越有利。同时,利用ab+ac=a(b+c)结合律法则,可以将同一个Wr对应的系数x(k)相加后再乘以Wr,就能大大减少运算次数。这就是快速傅里叶变换(FFT)的算法思路。下面,我们来分析N=2m情况下的FFT算法。
1.N=4的FFT算法
对于m=2,N=4,式(8-5)傅里叶变换为
地球物理数据处理基础
将式(8-7)写成矩阵形式
地球物理数据处理基础
为了便于分析,将上式中的j,k写成二进制形式,即
地球物理数据处理基础
代入式(8-7),得
地球物理数据处理基础
分析Wjk的周期性来减少乘法次数
地球物理数据处理基础
则 代回式(8-9),整理得
地球物理数据处理基础
上式可分层计算,先计算内层,再计算外层时就利用内层计算的结果,可避免重复计算。写成分层形式
地球物理数据处理基础
则X(j1 j0)=X2(j1 j0)。
上式表明对于N=4的FFT,利用Wr的周期关系可分为m=2步计算。实际上,利用Wr的对称性,仍可以对式(8-11)进行简化计算。考虑到
地球物理数据处理基础
式(8-11)可以简化为
地球物理数据处理基础
令j=j0;k=k0,并把上式表示为十进制,得
地球物理数据处理基础
可以看到,完成上式N=4的FFT计算(表8-1)需要N·(m-1)/2=2次复数乘法和N·m=8次复数加法,比N=4的DFT算法的N2=16次复数乘法和N·(N-1)=12次复数加法要少得多。
表8-1 N=4的FFT算法计算过程
注:W0=1;W1=-i。
[例1]求N=4样本序列1,3,3,1的频谱(表8-2)。
表8-2 N=4样本序列
2.N=8的FFT算法
类似N=4的情况,用二进制形式表示,有
地球物理数据处理基础
写成分层计算的形式:
地球物理数据处理基础
则X(j2 j1 j0)=X3(j2 j1 j0)。
对式(8-14)的X1(k1 k0 j0)进行展开,有
地球物理数据处理基础
还原成十进制,并令k=2k1+k0,即k=0,1,2,3,有
地球物理数据处理基础
用类似的方法对式(8-14)的X2(k0 j1 j0),X3(j2 j1 j0)进行展开,整理得
地球物理数据处理基础
用式(8-16)、式(8-17)逐次计算到X3(j)=X(j)(j=0,1,…,7),即完成N=23=8的FFT计算,其详细过程见表8-3。
表8-3 N=8的FFT算法计算过程
注:对于正变换 对于反变换 所
[例2]求N=8样本序列(表8-4)x(k)=1,2,1,1,3,2,1,2的频谱。
表8-4 N=8样本序列
3.任意N=2m的FFT算法
列出N=4,N=8的FFT计算公式,进行对比
地球物理数据处理基础
观察式(8-18)、式(8-19),不难看出,遵循如下规律:
(1)等式左边的下标由1递增到m,可用q=1,2,…,m代替,则等式右边为q-1;
(2)k的上限为奇数且随q的增大而减小,至q=m时为0,所以其取值范围为k=0,1,2,…,(2m-q-1);
(3)j的上限为奇数且随q的增大而增大,且q=1时为0,其取值范围为j=0,1,2,…,(2q-1-1);
(4)k的系数,在等式左边为2q,等式右边为2q-1(包括W的幂指数);
(5)等式左边序号中的常数是2的乘方形式,且幂指数比下标q小1,即2q-1;等式右边m对式子序号中的常数都是定值2m-1。
归纳上述规则,写出对于任意正整数m,N=2m的FFT算法如下:
由X0(p)=x(p)(p=0,1,…,N-1)开始:
(1)对q=1,2,…,m,执行(2)~(3)步;
(2)对k=0,1,2,…,(2m-q-1)及j=0,1,2,…,(2q-1-1),执行
地球物理数据处理基础
(3)j,k循环结束;
(4)q循环结束;由Xm(p)(p=0,1,…,N-1)输出原始序列x(p)的频谱X(p)。
在计算机上很容易实现上述FFT算法程序,仅需要三个复数数组,编程步骤如下:
(1)设置复数数组X1(N-1),X2(N-1)和 (数组下界都从0开始);
(2)把样本序列x赋给X1,即X1(k)=x(k)(k=0,1,…,N-1);
(3)计算W,即正变换 反变换
(4)q=1,2,…,m,若q为偶数,执行(6),否则执行第(5)步;
(5)k=0,1,2,…,(2m-q-1)和j=0,1,2,…,(2q-1-1)循环,作
X2(2qk+j)=X1(2q-1k+j)+X1(2q-1k+j+2m-1)
X2(2qk+j+2q-1)=[X1(2q-1k+j)-X1(2q-1k+j+2m-1)]W(2q-1k)
至k,j循环结束;
(6)k=0,1,2,…,(2m-q-1)和j=0,1,2,…,(2q-1-1)循环,作
X1(2qk+j)=X2(2q-1k+j)+X2(2q-1k+j+2m-1)
X1(2qk+j+2q-1)=[X2(2q-1k+j)-X2(2q-1k+j+2m-1)]W(2q-1k)
至k,j循环结束;
(7)q循环结束,若m为偶数,输出X1(j),否则输出X2(j)(j=0,1,…,N-1),即为所求。
⑤ 求用C++实现的FFT算法
很早以前的,如果管用别忘了给我加分呀
/*
This computes an in-place complex-to-complex FFT
x and y are the real and imaginary arrays of 2^m points.
dir = 1 gives forward transform
dir = -1 gives reverse transform
*/
short FFT(short int dir,long m,double *x,double *y)
{
long n,i,i1,j,k,i2,l,l1,l2;
double c1,c2,tx,ty,t1,t2,u1,u2,z;
/* Calculate the number of points */
n = 1;
for (i=0;i<m;i++)
n *= 2;
/* Do the bit reversal */
i2 = n >> 1;
j = 0;
for (i=0;i<n-1;i++) {
if (i < j) {
tx = x[i];
ty = y[i];
x[i] = x[j];
y[i] = y[j];
x[j] = tx;
y[j] = ty;
}
k = i2;
while (k <= j) {
j -= k;
k >>= 1;
}
j += k;
}
/* Compute the FFT */
c1 = -1.0;
c2 = 0.0;
l2 = 1;
for (l=0;l<m;l++) {
l1 = l2;
l2 <<= 1;
u1 = 1.0;
u2 = 0.0;
for (j=0;j<l1;j++) {
for (i=j;i<n;i+=l2) {
i1 = i + l1;
t1 = u1 * x[i1] - u2 * y[i1];
t2 = u1 * y[i1] + u2 * x[i1];
x[i1] = x[i] - t1;
y[i1] = y[i] - t2;
x[i] += t1;
y[i] += t2;
}
z = u1 * c1 - u2 * c2;
u2 = u1 * c2 + u2 * c1;
u1 = z;
}
c2 = sqrt((1.0 - c1) / 2.0);
if (dir == 1)
c2 = -c2;
c1 = sqrt((1.0 + c1) / 2.0);
}
/* Scaling for forward transform */
if (dir == 1) {
for (i=0;i<n;i++) {
x[i] /= n;
y[i] /= n;
}
}
return(TRUE);
}
---------------------------------------------------------------------------------
/*****************fft programe*********************/
#include "typedef.h"
#include "math.h"
struct compx EE(struct compx b1,struct compx b2)
{
struct compx b3;
b3.real=b1.real*b2.real-b1.imag*b2.imag;
b3.imag=b1.real*b2.imag+b1.imag*b2.real;
return(b3);
}
void FFT(struct compx *xin,int N)
{
int f,m,nv2,nm1,i,k,j=1,l;
/*int f,m,nv2,nm1,i,k,j=N/2,l;*/
struct compx v,w,t;
nv2=N/2;
f=N;
for(m=1;(f=f/2)!=1;m++){;}
nm1=N-1;
/*变址运算*/
for(i=1;i <=nm1;i++)
{
if(i <j){t=xin[j];xin[j]=xin[i];xin[i]=t;}
k=nv2;
while(k <j){j=j-k;k=k/2;}
j=j+k;
}
{
int le,lei,ip;
float pi;
for(l=1;l <=m;l++)
{ le=pow(2,l);// 这里用的是L而不是1 !!!!
lei =le/2;
pi=3.14159;
v.real=1.0;
v.imag=0.0;
w.real=cos(pi/lei);
w.imag=-sin(pi/lei);
for(j=1;j <=lei;j++)
{
/*double p=pow(2,m-l)*j;
double ps=2*pi/N*p;
w.real=cos(ps);
w.imag=-sin(ps);*/
for(i=j;i <=N;i=i+le)
{ /* w.real=cos(ps);
w.imag=-sin(ps);*/
ip=i+lei;
t=EE(xin[ip],v);
xin[ip].real=xin[i].real-t.real;
xin[ip].imag=xin[i].imag-t.imag;
xin[i].real=xin[i].real+t.real;
xin[i].imag=xin[i].imag+t.imag;
}
v=EE(v,w);
}
}
}
return;
}
/*****************main programe********************/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "typedef.h"
float result[257];
struct compx s[257];
int Num=256;
const float pp=3.14159;
main()
{
int i=1;
for(;i <0x101;i++)
{
s[i].real=sin(pp*i/32);
s[i].imag=0;
}
FFT(s,Num);
for(i=1;i <0x101;i++)
{
result[i]=sqrt(pow(s[i].real,2)+pow(s[i].imag,2));
}
}
-----------------------------------------------------------------------------------
FFT变换 C源代码
FFT C source code (Simple radix-2)
void fft_float (
unsigned NumSamples,
int InverseTransform,
float *RealIn,
float *ImagIn,
float *RealOut,
float *ImagOut )
{
unsigned NumBits; /* Number of bits needed to store indices */
unsigned i, j, k, n;
unsigned BlockSize, BlockEnd;
double angle_numerator = 2.0 * DDC_PI;
double tr, ti; /* temp real, temp imaginary */
if ( !IsPowerOfTwo(NumSamples) )
{
fprintf (
stderr,
"Error in fft(): NumSamples=%u is not power of two\n",
NumSamples );
exit(1);
}
if ( InverseTransform )
angle_numerator = -angle_numerator;
CHECKPOINTER ( RealIn );
CHECKPOINTER ( RealOut );
CHECKPOINTER ( ImagOut );
NumBits = NumberOfBitsNeeded ( NumSamples );
/*
** Do simultaneous data and bit-reversal ordering into outputs...
*/
for ( i=0; i < NumSamples; i++ )
{
j = ReverseBits ( i, NumBits );
RealOut[j] = RealIn;
ImagOut[j] = (ImagIn == NULL) ? 0.0 : ImagIn;
}
/*
** Do the FFT itself...
*/
BlockEnd = 1;
for ( BlockSize = 2; BlockSize <= NumSamples; BlockSize <<= 1 )
{
double delta_angle = angle_numerator / (double)BlockSize;
double sm2 = sin ( -2 * delta_angle );
double sm1 = sin ( -delta_angle );
double cm2 = cos ( -2 * delta_angle );
double cm1 = cos ( -delta_angle );
double w = 2 * cm1;
double ar[3], ai[3];
double temp;
for ( i=0; i < NumSamples; i += BlockSize )
{
ar[2] = cm2;
ar[1] = cm1;
ai[2] = sm2;
ai[1] = sm1;
for ( j=i, n=0; n < BlockEnd; j++, n++ )
{
ar[0] = w*ar[1] - ar[2];
ar[2] = ar[1];
ar[1] = ar[0];
ai[0] = w*ai[1] - ai[2];
ai[2] = ai[1];
ai[1] = ai[0];
k = j + BlockEnd;
tr = ar[0]*RealOut[k] - ai[0]*ImagOut[k];
ti = ar[0]*ImagOut[k] + ai[0]*RealOut[k];
RealOut[k] = RealOut[j] - tr;
ImagOut[k] = ImagOut[j] - ti;
RealOut[j] += tr;
ImagOut[j] += ti;
}
}
BlockEnd = BlockSize;
}
/*
** Need to normalize if inverse transform...
*/
if ( InverseTransform )
{
double denom = (double)NumSamples;
for ( i=0; i < NumSamples; i++ )
{
RealOut /= denom;
ImagOut /= denom;
}
}
}
int IsPowerOfTwo ( unsigned x )
{
if ( x < 2 )
return FALSE;
if ( x & (x-1) ) // Thanks to 'byang' for this cute trick!
return FALSE;
return TRUE;
}
unsigned NumberOfBitsNeeded ( unsigned PowerOfTwo )
{
unsigned i;
if ( PowerOfTwo < 2 )
{
fprintf (
stderr,
">>> Error in fftmisc.c: argument %d to NumberOfBitsNeeded is too small.\n",
PowerOfTwo );
exit(1);
}
for ( i=0; ; i++ )
{
if ( PowerOfTwo & (1 << i) )
return i;
}
}
unsigned ReverseBits ( unsigned index, unsigned NumBits )
{
unsigned i, rev;
for ( i=rev=0; i < NumBits; i++ )
{
rev = (rev << 1) | (index & 1);
index >>= 1;
}
return rev;
}
double Index_to_frequency ( unsigned NumSamples, unsigned Index )
{
if ( Index >= NumSamples )
return 0.0;
else if ( Index <= NumSamples/2 )
return (double)Index / (double)NumSamples;
return -(double)(NumSamples-Index) / (double)NumSamples;
}
⑥ FFT的公式是什么和算法是怎样实现
二维FFT相当于对行和列分别进行一维FFT运算。具体的实现办法如下:
先对各行逐一进行一维FFT,然后再对变换后的新矩阵的各列逐一进行一维FFT。相应的伪代码如下所示:
for (int i=0; i<M; i++)
FFT_1D(ROW[i],N);
for (int j=0; j<N; j++)
FFT_1D(COL[j],M);
其中,ROW[i]表示矩阵的第i行。注意这只是一个简单的记法,并不能完全照抄。还需要通过一些语句来生成各行的数据。同理,COL[i]是对矩阵的第i列的一种简单表示方法。
所以,关键是一维FFT算法的实现。下面讨论一维FFT的算法原理。
【1D-FFT的算法实现】
设序列h(n)长度为N,将其按下标的奇偶性分成两组,即he和ho序列,它们的长度都是N/2。这样,可以将h(n)的FFT计算公式改写如下 :
(A)
由于
所以,(A)式可以改写成下面的形式:
按照FFT的定义,上面的式子实际上是:
其中,k的取值范围是 0~N-1。
我们注意到He(k)和Ho(k)是N/2点的DFT,其周期是N/2。因此,H(k)DFT的前N/2点和后N/2点都可以用He(k)和Ho(k)来表示
⑦ FFT 算法 C编程 求救~~
#include<graphics.h>
#include<stdio.h>
#include<math.h>
#include<conio.h>
#include<dos.h>
#define pi 3.14159
float ar[512],ai[512];
float a[1025];
void testdata()
{
int i;
for(i=0;i<512;i++)
{
ar[i]=50*cos(i*pi/32)+60*cos(i*pi/16)+53*cos(i*pi/64)+24*cos(i*pi/8)+10*cos(i*pi/128);
ai[i]=0;
}
}
void fft(int nn,int t)
{
int n1,n2,i,j,k,l,m,s,l1;
float t1,t2,x,y;
float w1,w2,u1,u2,z;
switch(nn)
{
case 1024: s=10; break;
case 512: s=9; break;
case 256: s=8; break;
}
n1=nn/2; n2=nn-1;
j=1;
for(i=1;i<=nn;i++)
{
a[2*i]=ar[i-1];
a[2*i+1]=ai[i-1];
}
for(l=1;l<n2;l++)
{
if(l<j)
{
t1=a[2*j];
t2=a[2*j+1];
a[2*j]=a[2*l];
a[2*j+1]=a[2*l+1];
a[2*l]=t1;
a[2*l+1]=t2;
}
k=n1;
while (k<j)
{
j=j-k;
k=k/2;
}
j=j+k;
}
for(i=1;i<=s;i++)
{
u1=1;
u2=0;
m=(1<<i);
k=m>>1;
w1=cos(pi/k);
w2=t*sin(pi/k);
for(j=1;j<=k;j++)
{
for(l=j;l<nn;l=l+m)
{
l1=l+k;
t1=a[2*l1]*u1-a[2*l1+1]*u2;
t2=a[2*l1]*u2+a[2*l1+1]*u1;
a[2*l1]=a[2*l]-t1;
a[2*l1+1]=a[2*l+1]-t2;
a[2*l]=a[2*l]+t1;
a[2*l+1]=a[2*l+1]+t2;
}
z=u1*w1-u2*w2;
u2=u1*w2+u2*w1;
u1=z;
}
}
for(i=1;i<=nn/2;i++)
{
ar[i]=a[2*i+2]/nn;
ai[i]=-a[2*i+3]/nn;
a[i]=4*sqrt(ar[i]*ar[i]+ai[i]*ai[i]);
}
}
int main ()
{
int i;
int gdriver=DETECT,gmode;
initgraph(&gdriver,&gmode,"");
setfillstyle(SOLID_FILL,WHITE);
bar(0,0,639,479);
//模拟测试数据
testdata();
//波形显示
setcolor(BLACK);
line(10,119,550,119); // x轴
line(10,10,10,239); // y轴
setcolor(BLUE);
for(i=0;i<511;i++)
line(i+10,119-ar[i],i+10+1,119-ar[i+1]);
//FFT
fft(512,-1);
//频谱显示
setcolor(BLACK);
line(10,459,550,459); // x轴
line(10,259,10,459); // y轴
setcolor(RED);
for(i=0;i<256;i++)
line(2*i+10,459-a[i],2*i+10,459);
getch();
closegraph();
return 0;
}
⑧ 基于FFT的算法优化 要C语言完整程序(利用旋转因子的性质),有的请留言,答谢!!!(有核心代码,望指教
实现(C描述)
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
//#include "complex.h"
// --------------------------------------------------------------------------
#define N 8 //64
#define M 3 //6 //2^m=N
#define PI 3.1415926
// --------------------------------------------------------------------------
float twiddle[N/2] = {1.0, 0.707, 0.0, -0.707};
float x_r[N] = {1, 1, 1, 1, 0, 0, 0, 0};
float x_i[N]; //N=8
/*
float twiddle[N/2] = {1, 0.9951, 0.9808, 0.9570, 0.9239, 0.8820, 0.8317, 0.7733,
0.7075, 0.6349, 0.5561, 0.4721, 0.3835, 0.2912, 0.1961, 0.0991,
0.0000,-0.0991,-0.1961,-0.2912,-0.3835,-0.4721,-0.5561,-0.6349,
-0.7075,-0.7733, 0.8317,-0.8820,-0.9239,-0.9570,-0.9808,-0.9951}; //N=64
float x_r[N]={1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,};
float x_i[N];
*/
FILE *fp;
// ----------------------------------- func -----------------------------------
/**
* 初始化输出虚部
*/
static void fft_init( void )
{
int i;
for(i=0; i<N; i++) x_i[i] = 0.0;
}
/**
* 反转算法.将时域信号重新排序.
* 这个算法有改进的空间
*/
static void bitrev( void )
{
int p=1, q, i;
int bit_rev[ N ]; //
float xx_r[ N ]; //
bit_rev[ 0 ] = 0;
while( p < N )
{
for(q=0; q<p; q++)
{
bit_rev[ q ] = bit_rev[ q ] * 2;
bit_rev[ q + p ] = bit_rev[ q ] + 1;
}
p *= 2;
}
for(i=0; i<N; i++) xx_r[ i ] = x_r[ i ];
for(i=0; i<N; i++) x_r[i] = xx_r[ bit_rev[i] ];
}
/* ------------ add by sshc625 ------------ */
static void bitrev2( void )
{
return ;
}
/* */
void display( void )
{
printf("\n\n");
int i;
for(i=0; i<N; i++)
printf("%f\t%f\n", x_r[i], x_i[i]);
}
/**
*
*/
void fft1( void )
{ fp = fopen("log1.txt", "a+");
int L, i, b, j, p, k, tx1, tx2;
float TR, TI, temp; // 临时变量
float tw1, tw2;
/* 深M. 对层进行循环. L为当前层, 总层数为M. */
for(L=1; L<=M; L++)
{
fprintf(fp,"----------Layer=%d----------\n", L);
/* b的意义非常重大,b表示当前层的颗粒具有的输入样本点数 */
b = 1;
i = L - 1;
while(i > 0)
{
b *= 2;
i--;
}
// -------------- 是否外层对颗粒循环, 内层对样本点循环逻辑性更强一些呢! --------------
/*
* outter对参与DFT的样本点进行循环
* L=1, 循环了1次(4个颗粒, 每个颗粒2个样本点)
* L=2, 循环了2次(2个颗粒, 每个颗粒4个样本点)
* L=3, 循环了4次(1个颗粒, 每个颗粒8个样本点)
*/
for(j=0; j<b; j++)
{
/* 求旋转因子tw1 */
p = 1;
i = M - L; // M是为总层数, L为当前层.
while(i > 0)
{
p = p*2;
i--;
}
p = p * j;
tx1 = p % N;
tx2 = tx1 + 3*N/4;
tx2 = tx2 % N;
// tw1是cos部分, 实部; tw2是sin部分, 虚数部分.
tw1 = ( tx1>=N/2)? -twiddle[tx1-N/2] : twiddle[ tx1 ];
tw2 = ( tx2>=N/2)? -twiddle[tx2-(N/2)] : twiddle[tx2];
/*
* inner对颗粒进行循环
* L=1, 循环了4次(4个颗粒, 每个颗粒2个输入)
* L=2, 循环了2次(2个颗粒, 每个颗粒4个输入)
* L=3, 循环了1次(1个颗粒, 每个颗粒8个输入)
*/
for(k=j; k<N; k=k+2*b)
{
TR = x_r[k]; // TR就是A, x_r[k+b]就是B.
TI = x_i[k];
temp = x_r[k+b];
/*
* 如果复习一下 (a+j*b)(c+j*d)两个复数相乘后的实部虚部分别是什么
* 就能理解为什么会如下运算了, 只有在L=1时候输入才是实数, 之后层的
* 输入都是复数, 为了让所有的层的输入都是复数, 我们只好让L=1时候的
* 输入虚部为0
* x_i[k+b]*tw2是两个虚数相乘
*/
fprintf(fp, "tw1=%f, tw2=%f\n", tw1, tw2);
x_r[k] = TR + x_r[k+b]*tw1 + x_i[k+b]*tw2;
x_i[k] = TI - x_r[k+b]*tw2 + x_i[k+b]*tw1;
x_r[k+b] = TR - x_r[k+b]*tw1 - x_i[k+b]*tw2;
x_i[k+b] = TI + temp*tw2 - x_i[k+b]*tw1;
fprintf(fp, "k=%d, x_r[k]=%f, x_i[k]=%f\n", k, x_r[k], x_i[k]);
fprintf(fp, "k=%d, x_r[k]=%f, x_i[k]=%f\n", k+b, x_r[k+b], x_i[k+b]);
} //
} //
} //
}
/**
* ------------ add by sshc625 ------------
* 该实现的流程为
* for( Layer )
* for( Granule )
* for( Sample )
*
*
*
*
*/
void fft2( void )
{ fp = fopen("log2.txt", "a+");
int cur_layer, gr_num, i, k, p;
float tmp_real, tmp_imag, temp; // 临时变量, 记录实部
float tw1, tw2;// 旋转因子,tw1为旋转因子的实部cos部分, tw2为旋转因子的虚部sin部分.
int step; // 步进
int sample_num; // 颗粒的样本总数(各层不同, 因为各层颗粒的输入不同)
/* 对层循环 */
for(cur_layer=1; cur_layer<=M; cur_layer++)
{
/* 求当前层拥有多少个颗粒(gr_num) */
gr_num = 1;
i = M - cur_layer;
while(i > 0)
{
i--;
gr_num *= 2;
}
/* 每个颗粒的输入样本数N' */
sample_num = (int)pow(2, cur_layer);
/* 步进. 步进是N'/2 */
step = sample_num/2;
/* */
k = 0;
/* 对颗粒进行循环 */
for(i=0; i<gr_num; i++)
{
/*
* 对样本点进行循环, 注意上限和步进
*/
for(p=0; p<sample_num/2; p++)
{
// 旋转因子, 需要优化...
tw1 = cos(2*PI*p/pow(2, cur_layer));
tw2 = -sin(2*PI*p/pow(2, cur_layer));
tmp_real = x_r[k+p];
tmp_imag = x_i[k+p];
temp = x_r[k+p+step];
/*(tw1+jtw2)(x_r[k]+jx_i[k])
*
* real : tw1*x_r[k] - tw2*x_i[k]
* imag : tw1*x_i[k] + tw2*x_r[k]
* 我想不抽象出一个
* typedef struct {
* double real; // 实部
* double imag; // 虚部
* } complex; 以及针对complex的操作
* 来简化复数运算是否是因为效率上的考虑!
*/
/* 蝶形算法 */
x_r[k+p] = tmp_real + ( tw1*x_r[k+p+step] - tw2*x_i[k+p+step] );
x_i[k+p] = tmp_imag + ( tw2*x_r[k+p+step] + tw1*x_i[k+p+step] );
/* X[k] = A(k)+WB(k)
* X[k+N/2] = A(k)-WB(k) 的性质可以优化这里*/
// 旋转因子, 需要优化...
tw1 = cos(2*PI*(p+step)/pow(2, cur_layer));
tw2 = -sin(2*PI*(p+step)/pow(2, cur_layer));
x_r[k+p+step] = tmp_real + ( tw1*temp - tw2*x_i[k+p+step] );
x_i[k+p+step] = tmp_imag + ( tw2*temp + tw1*x_i[k+p+step] );
printf("k=%d, x_r[k]=%f, x_i[k]=%f\n", k+p, x_r[k+p], x_i[k+p]);
printf("k=%d, x_r[k]=%f, x_i[k]=%f\n", k+p+step, x_r[k+p+step], x_i[k+p+step]);
}
/* 开跳!:) */
k += 2*step;
}
}
}
/*
* 后记:
* 究竟是颗粒在外层循环还是样本输入在外层, 好象也差不多, 复杂度完全一样.
* 但以我资质愚钝花费了不少时间才弄明白这数十行代码.
* 从中我发现一个于我非常有帮助的教训, 很久以前我写过一部分算法, 其中绝大多数都是递归.
* 将数据量减少, 减少再减少, 用归纳的方式来找出数据量加大代码的规律
* 比如FFT
* 1. 先写死LayerI的代码; 然后再把LayerI的输出作为LayerII的输入, 又写死代码; ......
* 大约3层就可以统计出规律来. 这和递归也是一样, 先写死一两层, 自然就出来了!
* 2. 有的功能可以写伪代码, 不急于求出结果, 降低复杂性, 把逻辑结果定出来后再添加.
* 比如旋转因子就可以写死, 就写1.0. 流程出来后再写旋转因子.
* 寥寥数语, 我可真是流了不少汗! Happy!
*/
void dft( void )
{
int i, n, k, tx1, tx2;
float tw1,tw2;
float xx_r[N],xx_i[N];
/*
* clear any data in Real and Imaginary result arrays prior to DFT
*/
for(k=0; k<=N-1; k++)
xx_r[k] = xx_i[k] = x_i[k] = 0.0;
// caculate the DFT
for(k=0; k<=(N-1); k++)
{
for(n=0; n<=(N-1); n++)
{
tx1 = (n*k);
tx2 = tx1+(3*N)/4;
tx1 = tx1%(N);
tx2 = tx2%(N);
if(tx1 >= (N/2))
tw1 = -twiddle[tx1-(N/2)];
else
tw1 = twiddle[tx1];
if(tx2 >= (N/2))
tw2 = -twiddle[tx2-(N/2)];
else
tw2 = twiddle[tx2];
xx_r[k] = xx_r[k]+x_r[n]*tw1;
xx_i[k] = xx_i[k]+x_r[n]*tw2;
}
xx_i[k] = -xx_i[k];
}
// display
for(i=0; i<N; i++)
printf("%f\t%f\n", xx_r[i], xx_i[i]);
}
// ---------------------------------------------------------------------------
int main( void )
{
fft_init( );
bitrev( );
// bitrev2( );
//fft1( );
fft2( );
display( );
system( "pause" );
// dft();
return 1;
}
本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/sshcx/archive/2007/06/14/1651616.aspx
⑨ MATLAB中fft的频率轴怎么计算
假设你的信号是 8个点,采样频率是 100Hz。
那么,该信号的频率是50Hz,那么频率轴每个间隔是 50/(8-1), 设为df
那么,频率轴是 0 df 2*df 3*df 4*df
也就是说,对于8个点的信号,你会得到频率间隔是 50/(8-1), 可以得到 8/2+1个频率点。
也就是说,对于N个点的信号,你会得到频率间隔是 50/(N-1), 可以得到 N/2+1个频率点。
注意,N是2的某次幂
⑩ 怎么用C语言实现FFT算法 呀
float ar[1024],ai[1024];/* 原始数据实部,虚部 */
float a[2050];
void fft(int nn) /* nn数据长度 */
{
int n1,n2,i,j,k,l,m,s,l1;
float t1,t2,x,y;
float w1,w2,u1,u2,z;
float fsin[10]={0.000000,1.000000,0.707107,0.3826834,0.1950903,0.09801713,0.04906767,0.02454123,0.01227154,0.00613588,};
float fcos[10]={-1.000000,0.000000,0.7071068,0.9238796,0.9807853,0.99518472,0.99879545,0.9996988,0.9999247,0.9999812,};
switch(nn)
{
case 1024: s=10; break;
case 512: s=9; break;
case 256: s=8; break;
}
n1=nn/2; n2=nn-1;
j=1;
for(i=1;i<=nn;i++)
{
a[2*i]=ar[i-1];
a[2*i+1]=ai[i-1];
}
for(l=1;l<n2;l++)
{
if(l<j)
{
t1=a[2*j];
t2=a[2*j+1];
a[2*j]=a[2*l];
a[2*j+1]=a[2*l+1];
a[2*l]=t1;
a[2*l+1]=t2;
}
k=n1;
while (k<j)
{
j=j-k;
k=k/2;
}
j=j+k;
}
for(i=1;i<=s;i++)
{
u1=1;
u2=0;
m=(1<<i);
k=m>>1;
w1=fcos[i-1];
w2=-fsin[i-1];
for(j=1;j<=k;j++)
{
for(l=j;l<nn;l=l+m)
{
l1=l+k;
t1=a[2*l1]*u1-a[2*l1+1]*u2;
t2=a[2*l1]*u2+a[2*l1+1]*u1;
a[2*l1]=a[2*l]-t1;
a[2*l1+1]=a[2*l+1]-t2;
a[2*l]=a[2*l]+t1;
a[2*l+1]=a[2*l+1]+t2;
}
z=u1*w1-u2*w2;
u2=u1*w2+u2*w1;
u1=z;
}
}
for(i=1;i<=nn/2;i++)
{
ar[i]=4*a[2*i+2]/nn; /* 实部 */
ai[i]=-4*a[2*i+3]/nn; /* 虚部 */
a[i]=4*sqrt(ar[i]*ar[i]+ai[i]*ai[i]); /* 幅值 */
}
}
(http://..com/question/284943905.html?an=0&si=2)