走迷宫算法题
⑴ 求广度优先算法C++走迷宫程序,可以显示路径
一般迷宫寻路可以用递归的算法,或者用先进后出的栈数据结构实现
用的是深度优先的算法,可以寻找到走出迷宫的路径
但本题要求求出最短的路径,这就要使用广度优先的算法
一般在程序中需要用到先进先出的队列数据结构
下面是程序的代码,主要原理是用到
quei,quej和prep三个数组来构成队列
分别储存路径的行,列坐标和上一个节点在队列中的位置
大致算法如下,右三个嵌套的循环实现
首先是第一个节点进入队列
当队列不空(循环1)
{
遍历队列中每节点(循环2)
{
将八个方向能够走的节点加入队列(循环3)
}
旧的节点出列
}
#include<iostream>
#include<ctime>
usingnamespacestd;
#defineMAXNUM50
voidmain()
{
intm,n,i,j,x;
cout<<"请输入迷宫大小"<<endl;
cin>>m>>n;
intmaze[MAXNUM][MAXNUM];
srand((int)time(NULL));
for(i=0;i<=m+1;i++){
for(j=0;j<=n+1;j++){
if(i==0||j==0||i==m+1||j==n+1)
maze[i][j]=1;
else
{
x=rand()%1000;
if(x>700){maze[i][j]=1;}//控制矩阵中1的个数,太多1迷宫很容易走不通
else{maze[i][j]=0;}
}
cout<<maze[i][j]<<'';
}
cout<<endl;
}
//以上是输入和迷宫生成,一下是走迷宫
intmove[8][2]={0,1,1,0,0,-1,-1,0,1,1,-1,1,-1,-1,1,-1};
int*quei=newint[m*n];//储存行坐标队列
int*quej=newint[m*n];//储存列坐标队列
int*prep=newint[m*n];//储存之前一步在队列中的位置
inthead,rear,length;//队列头,队列尾,队列长度
head=0;rear=1;length=1;
quei[head]=1;quej[head]=1;prep[head]=-1;//入口位置进队列
intpos;//当前节点在队列中的位置,
intii,jj,ni,nj;//当前节点的坐标,新节点的坐标
intdir;//移动方向
if(maze[1][1]==1)length=0;//第一点就不能通过
elsemaze[1][1]=1;
while(length)//队列非空继续
{
for(pos=head;pos<head+length;pos++)//寻找这一层所有节点
{
ii=quei[pos];jj=quej[pos];//当前位置坐标
if(ii==m&&jj==n)break;
for(dir=0;dir<8;dir++)//寻找8个方向
{
ni=ii+move[dir][0];nj=jj+move[dir][1];//新坐标
if(maze[ni][nj]==0)//如果没有走过
{
quei[rear]=ni;quej[rear]=nj;prep[rear]=pos;//新节点入队
rear=rear+1;
maze[ni][nj]=1;//标记已经走过
}
}
}
if(ii==m&&jj==n)break;
head=head+length;
length=rear-head;//这一层节点出列
}
if(ii==m&&jj==n)
{
while(pos!=-1)
{
cout<<'('<<quei[pos]<<','<<quej[pos]<<')';
pos=prep[pos];
if(pos!=-1)cout<<',';
}
}
else
{
cout<<"THEREISNOPATH."<<endl;
}
delete[]quei;
delete[]quej;
delete[]prep;
}
⑵ 设计算法、编写程序找出由右上角的门进入,由左下角的门离开以下迷宫的路径
//走迷宫
//迷宫的布局可能与你的原图有差异,自己可以修改布局,但不要改迷宫的大小尺寸
//程序仅仅是找出一条可通行的路径,没有作找最优路径的选择。
#include<stdio.h>
inta[20][20];//记录迷宫的布局
intff[4][2]={1,0,-1,0,0,1,0,-1};//行走迷宫的四个方向
intplace[360][2];//记录走的步数
intfx=2,fy=19,tx=18,ty=1;//设置起点(2,19),终点(18,1)
intissame(intn){
inti;
for(i=0;i<n;i++)
if(place[n][0]==place[i][0]&&place[n][1]==place[i][1])
return1;
return0;
}
intnextstep(intn){//迷宫下一步行走
inti,k;
for(i=0;i<4;i++){
place[n][0]=place[n-1][0]+ff[i][0];
place[n][1]=place[n-1][1]+ff[i][1];
if(place[n][0]>19||place[n][0]<1)continue;//行越界
if(place[n][1]>19||place[n][1]<1)continue;//列越界
if(a[place[n][0]][place[n][1]]!=1)continue;//不是1
if(place[n][0]==tx&&place[n][1]==ty)returnn;//到终点
if(issame(n)==1)continue;//走老路
k=nextstep(n+1);
if(k!=0)returnk;
}
return0;
}
intmigong(){//行走迷宫初始化
place[0][0]=fx;place[0][1]=fy;
returnnextstep(1);
}
voidprintit(){//显示迷宫
inti,j;
for(i=1;i<=19;i++){
for(j=1;j<=19;j++)
if(a[i][j]==2)printf("");
elseprintf("%2d",a[i][j]);
printf(" ");
}
}
intmain(){
chars[20][20]={
"0000000000000000000",
"0111111111111111111",
"0000000001000001000",
"0111110101111101111",
"0001010100000100000",
"0101010101110111111",
"0101000100010000010",
"0111111111110111111",
"0100000000010100000",
"0101111111010101111",
"0101000111010101010",
"0111011111010111010",
"0100010000000100010",
"0101011111110101111",
"0101000000010101011",
"0101010101011101011",
"0101010101000001011",
"1101110111111111010",
"0000000000000000000"
};
inti,j,n;
for(i=1;i<=19;i++)
for(j=1;j<=19;j++)
a[i][j]=s[i-1][j-1]-48;
//显示迷宫
printf("原始迷宫模样 ");
printit();
n=migong();
if(n==0)
printf("没有路径到达 ");
else{
for(i=0;i<=n;i++)
a[place[i][0]][place[i][1]]=2;
printf("走迷宫的路径显示 ");
printit();
}
}
⑶ python走迷宫算法题怎么解
示例:
#coding:UTF-8
globalm,n,path,minpath,pathnum
m=7
n=7
k=[0,1,2,3,4,5,6,7]#循环变量取值范围向量
a=[[0,0,1,0,0,0,0,0],
[1,0,1,0,1,1,1,0],
[0,0,0,0,1,0,0,0],
[1,1,1,1,1,0,0,0],
[0,0,0,0,0,1,1,0],
[0,0,0,0,0,0,0,0],
[0,0,1,1,1,1,1,1],
[0,0,0,0,0,0,0,0]]#迷宫矩阵
b=[[1,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0]] #状态矩阵
path=[]
minpath=[]
min=10000
step=0
pathnum=0
#print(a)
#print(b)
defnextone(x,y):
globalpath,minpath,m,n,min,step,pathnum
if(x==0)and(y==0):
path=[]
step=0
if(x==m)and(y==n):
pathnum+=1
print("step=",step)
print("path=",path)
ifstep<min:
min=step
minpath=path[:]
else:
if(x+1ink)and(yink):
if(b[x+1][y]==0)and(a[x+1][y]==0):
b[x+1][y]=1
path.append([x+1,y])
step+=1
nextone(x+1,y)
step-=1
path.remove([x+1,y])
b[x+1][y]=0#回溯
if(xink)and(y+1ink):
if(b[x][y+1]==0)and(a[x][y+1]==0):
b[x][y+1]=1
path.append([x,y+1])
step+=1
nextone(x,y+1)
step-=1
path.remove([x,y+1])
b[x][y+1]=0#回溯
if(x-1ink)and(yink):
if(b[x-1][y]==0)and(a[x-1][y]==0):
b[x-1][y]=1
path.append([x-1,y])
step+=1
nextone(x-1,y)
step-=1
path.remove([x-1,y])
b[x-1][y]=0#回溯
if(xink)and(y-1ink):
if(b[x][y-1]==0)and(a[x][y-1]==0):
b[x][y-1]=1
path.append([x,y-1])
step+=1
nextone(x,y-1)
step-=1
path.remove([x,y-1])
b[x][y-1]=0#回溯
nextone(0,0)
print()
print("min=",min)
print("minpath=",minpath)
print("pathnum=",pathnum)
⑷ c语言迷宫问题,求该算法的时间和空间的复杂度。写出求解的过程,比如如下的求解格式
时间复杂度应该是O(n)吧,因为每个迷宫上的位置最多入栈一次。空间复杂度应该也一样吧。
⑸ 编程:走迷宫。不会反复走重复的路径
简单点说叫做寻路,涉及到深度优先搜索和广度优先搜索,当然在存在类似“战争迷雾”效果的同时还要涉及到动态规划和回溯。
⑹ 数据结构算法 用C++ 迷宫最短路径
一般迷宫寻路可以用递归的算法,或者用先进后出的栈数据结构实现
用的是深度优先的算法,可以寻找到走出迷宫的路径
但本题要求求出最短的路径,这就要使用广度优先的算法
一般在程序中需要用到先进先出的队列数据结构
下面是程序的代码,主要原理是用到
quei,quej和prep三个数组来构成队列
分别储存路径的行,列坐标和上一个节点在队列中的位置
大致算法如下,右三个嵌套的循环实现
首先是第一个节点进入队列
当队列不空(循环1)
{
遍历队列中每节点(循环2)
{
将八个方向能够走的节点加入队列(循环3)
}
旧的节点出列
}
#include<iostream>
#include<ctime>
usingnamespacestd;
#defineMAXNUM50
voidmain()
{
intm,n,i,j,x;
cout<<"请输入迷宫大小"<<endl;
cin>>m>>n;
intmaze[MAXNUM][MAXNUM];
srand((int)time(NULL));
for(i=0;i<=m+1;i++){
for(j=0;j<=n+1;j++){
if(i==0||j==0||i==m+1||j==n+1)
maze[i][j]=1;
else
{
x=rand()%1000;
if(x>700){maze[i][j]=1;}//控制矩阵中1的个数,太多1迷宫很容易走不通
else{maze[i][j]=0;}
}
cout<<maze[i][j]<<'';
}
cout<<endl;
}
//以上是输入和迷宫生成,一下是走迷宫
intmove[8][2]={0,1,1,0,0,-1,-1,0,1,1,-1,1,-1,-1,1,-1};
int*quei=newint[m*n];//储存行坐标队列
int*quej=newint[m*n];//储存列坐标队列
int*prep=newint[m*n];//储存之前一步在队列中的位置
inthead,rear,length;//队列头,队列尾,队列长度
head=0;rear=1;length=1;
quei[head]=1;quej[head]=1;prep[head]=-1;//入口位置进队列
intpos;//当前节点在队列中的位置,
intii,jj,ni,nj;//当前节点的坐标,新节点的坐标
intdir;//移动方向
if(maze[1][1]==1)length=0;//第一点就不能通过
elsemaze[1][1]=1;
while(length)//队列非空继续
{
for(pos=head;pos<head+length;pos++)//寻找这一层所有节点
{
ii=quei[pos];jj=quej[pos];//当前位置坐标
if(ii==m&&jj==n)break;
for(dir=0;dir<8;dir++)//寻找8个方向
{
ni=ii+move[dir][0];nj=jj+move[dir][1];//新坐标
if(maze[ni][nj]==0)//如果没有走过
{
quei[rear]=ni;quej[rear]=nj;prep[rear]=pos;//新节点入队
rear=rear+1;
maze[ni][nj]=1;//标记已经走过
}
}
}
if(ii==m&&jj==n)break;
head=head+length;
length=rear-head;//这一层节点出列
}
if(ii==m&&jj==n)
{
while(pos!=-1)
{
cout<<'('<<quei[pos]<<','<<quej[pos]<<')';
pos=prep[pos];
if(pos!=-1)cout<<',';
}
}
else
{
cout<<"THEREISNOPATH."<<endl;
}
delete[]quei;
delete[]quej;
delete[]prep;
}
⑺ C语言迷宫问题,求该算法的时间和空间的复杂度。迷宫的路径已经定义好,求出路的算法。
该算法是不稳定的,其时空复杂度不仅和m,n有关,还和mg[][]的具体数值有关。
最坏情况下:每个点都试探过才走到终点。此时时间复杂度为:(m*n-1)*4,(其中4为4个方向),空间复杂度m*n*2,(其中m*n为存储迷宫图空间,m*n为栈空间);
再好情况下:一次试探过就走到终点。此时时间复杂度为:(min(m,n)-1),空间复杂度m*n;
所以:
该算法时间复杂度为:[(m*n-1)*4+(min(m,n)-1)]/2,约为2×m×n
空间复杂度为3*m*n/2
⑻ 深度优先算法的例1.迷宫问题
实现这一算法,我们要用到编程的一大利器--递归。“递归”是一个很抽象的概念, 但是在日常生活中,我们还是能够看到的。拿两面镜子来,把他们面对着面,你会看到什么?你会看到镜子中 有无数个镜子?怎么回事?A镜子中有B镜子的象,B镜子中有A镜子的象,A镜子的象就是A镜子本身的真实写照,也就是说A镜子的象包括了A镜子,还有B镜子在A镜子中的象………………好累啊,又烦又绕口,还不好理解。换成计算机语言就是A调用B,而B又调用A,这样间接的,A就调用了A本身,这实现了一个重复的功能。
再举一个例子:从前有座山,山里有座庙,庙里有个老和尚,老和尚在讲故事,讲什么呢?讲:从前有座山,山里有座庙,庙里有个老和尚,老和尚在讲故事,讲什么呢?讲:从前有座山,山里有座庙,庙里有个老和尚, 老和尚在讲故事,讲什么呢?讲:…………。好家伙,这样讲到世界末日还讲不完,老和尚讲的故事实际上就是前面的故事情节,这样不断地调用程序本身,就形成了递归。 万一这个故事中的某一个老和尚看这个故事不顺眼,就把他要讲的故事换成:“你有完没完啊!”,这样,整个故事也就嘎然而止了。我们编程就要注意这一点,在适当的时候,就必须要有一个这样的和尚挺身而出,把整个故事给停下来,或者使他不再往深一层次搜索,要不,递归就会因计算机存储容量的限制而被迫溢出,切记,切记。 这是一道很经典的题目了,我们先要明确一下思路,如何运用深度优先搜索法,完 成这道题目。我们先建立一个8*8格的棋盘,在棋盘的第一行的任意位置安放一只皇后。紧接着,我们就来放 第二行,第二行的安放就要受一些限制了,因为与第一行的皇后在同一竖行或同一对角线的位置上是不能安放 皇后的,接下来是第三行,……,或许我们会遇到这种情况,在摆到某一行的时候,无论皇后摆放在什么位 置,她都会被其他行的皇后吃掉,这说明什么呢?这说明,我们前面的摆放是失败的,也就是说,按照前面 的皇后的摆放方法,我们不可能得到正确的解。那这时怎么办?改啊,我们回到上一行,把原先我们摆好的 皇后换另外一个位置,接着再回过头摆这一行,如果这样还不行或者上一行的皇后只有一个位置可放,那怎 么办?我们回到上一行的上一行,这和老鼠碰了壁就回头是一个意思。就这样的不断的尝试,修正,我们最终会得到正确的结论的。
⑼ 数据结构算法(c语言) 迷宫求解
注释非常详细,希望对你有所帮助。
#include<stdio.h>
#include<stdlib.h>
#define M 15
#define N 15
struct mark //定义迷宫内点的坐标类型
{
int x;
int y;
};
struct Element //"恋"栈元素,嘿嘿。。
{
int x,y; //x行,y列
int d; //d下一步的方向
};
typedef struct LStack //链栈
{
Element elem;
struct LStack *next;
}*PLStack;
/*************栈函数****************/
int InitStack(PLStack &S)//构造空栈
{
S=NULL;
return 1;
}
int StackEmpty(PLStack S)//判断栈是否为空
{
if(S==NULL)
return 1;
else
return 0;
}
int Push(PLStack &S, Element e)//压入新数据元素
{
PLStack p;
p=(PLStack)malloc(sizeof(LStack));
p->elem=e;
p->next=S;
S=p;
return 1;
}
int Pop(PLStack &S,Element &e) //栈顶元素出栈
{
PLStack p;
if(!StackEmpty(S))
{
e=S->elem;
p=S;
S=S->next;
free(p);
return 1;
}
else
return 0;
}
/***************求迷宫路径函数***********************/
void MazePath(struct mark start,struct mark end,int maze[M][N],int diradd[4][2])
{
int i,j,d;int a,b;
Element elem,e;
PLStack S1, S2;
InitStack(S1);
InitStack(S2);
maze[start.x][start.y]=2; //入口点作上标记
elem.x=start.x;
elem.y=start.y;
elem.d=-1; //开始为-1
Push(S1,elem);
while(!StackEmpty(S1)) //栈不为空 有路径可走
{
Pop(S1,elem);
i=elem.x;
j=elem.y;
d=elem.d+1; //下一个方向
while(d<4) //试探东南西北各个方向
{
a=i+diradd[d][0];
b=j+diradd[d][1];
if(a==end.x && b==end.y && maze[a][b]==0) //如果到了出口
{
elem.x=i;
elem.y=j;
elem.d=d;
Push(S1,elem);
elem.x=a;
elem.y=b;
elem.d=886; //方向输出为-1 判断是否到了出口
Push(S1,elem);
printf("\n0=东 1=南 2=西 3=北 886为则走出迷宫\n\n通路为:(行坐标,列坐标,方向)\n");
while(S1) //逆置序列 并输出迷宫路径序列
{
Pop(S1,e);
Push(S2,e);
}
while(S2)
{
Pop(S2,e);
printf("-->(%d,%d,%d)",e.x,e.y,e.d);
}
return; //跳出两层循环,本来用break,但发现出错,exit又会结束程序,选用return还是不错滴
}
if(maze[a][b]==0) //找到可以前进的非出口的点
{
maze[a][b]=2; //标记走过此点
elem.x=i;
elem.y=j;
elem.d=d;
Push(S1,elem); //当前位置入栈
i=a; //下一点转化为当前点
j=b;
d=-1;
}
d++;
}
}
printf("没有找到可以走出此迷宫的路径\n");
}
/*************建立迷宫*******************/
void initmaze(int maze[M][N])
{
int i,j;
int m,n; //迷宫行,列 [/M]
printf("请输入迷宫的行数 m=");
scanf("%d",&m);
printf("请输入迷宫的列数 n=");
scanf("%d",&n);
printf("\n请输入迷宫的各行各列:\n用空格隔开,0代表路,1代表墙\n",m,n);
for(i=1;i<=m;i++)
for(j=1;j<=n;j++)
scanf("%d",&maze[i][j]);
printf("你建立的迷宫为(最外圈为墙)...\n");
for(i=0;i<=m+1;i++) //加一圈围墙
{
maze[i][0]=1;
maze[i][n+1]=1;
}
for(j=0;j<=n+1;j++)
{
maze[0][j]=1;
maze[m+1][j]=1;
}
for(i=0;i<=m+1;i++) //输出迷宫
{
for(j=0;j<=n+1;j++)
printf("%d ",maze[i][j]);
printf("\n");
}
}
void main()
{
int sto[M][N];
struct mark start,end; //start,end入口和出口的坐标
int add[4][2]={{0,1},{1,0},{0,-1},{-1,0}};//行增量和列增量 方向依次为东西南北 [/M]
initmaze(sto);//建立迷宫
printf("输入入口的横坐标,纵坐标[逗号隔开]\n");
scanf("%d,%d",&start.x,&start.y);
printf("输入出口的横坐标,纵坐标[逗号隔开]\n");
scanf("%d,%d",&end.x,&end.y);
MazePath(start,end,sto,add); //find path
system("PAUSE");
}
测试数据,算法复杂度你就自己来写吧,如果你连这都不自己做,那你一定是在应付作业。劝你还是自己运行测试一下吧,免得答辩时老师问你,什么都不知道,那你就悲剧了。祝你好运!!
⑽ C语言数据结构 老鼠走迷宫问题
/* 迷宫矩阵
1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 1 0 0 0 1
1 1 1 0 0 1 0 1 0 1
1 0 0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 1 0 1
1 1 0 1 0 0 0 0 0 1
1 0 0 1 1 1 0 1 1 1
1 1 0 0 0 1 0 0 0 1
1 1 1 1 1 1 1 1 1 1
*/
#include<stdio.h>
#define m 7
#define n 8
void path()
{
int maze[m+2][n+2] ;
int move[4][2]={ {0,-1},{-1,0},{0,1},{1,0} };
int s[54][3];
int top=0;
int i,j,k,f=0;
int g,h,p;
for(i=0;i<m+2;++i)
for(j=0;j<n+2;++j)
scanf("%d",&maze[i][j]);
maze[1][1]=2;
s[top][0]=1;
s[top][1]=1;
s[top][2]=0;
++top;
while(top!=0&&f==0)
{
--top;
i=s[top][0];
j=s[top][1];
k=s[top][2];
while(k<4)
{
g=i+move[k][0];
h=j+move[k][1];
if(g==m&&h==n&&maze[g][h]==0)
{
for(p=0;p<top;++p)
printf("%3d,%d\n",s[p][0],s[p][1]);
printf("%3d,%d\n",i,j);
printf("%3d,%d\n",m,n);
f=1;
}//if
if(maze[g][h]==0)
{
maze[g][h]=2;
s[top][0]=i;
s[top][1]=j;
s[top][2]=k;
++top;
i=g;
j=h;
k=0;
}//if
k=k+1;
}//while
}//while
if(f==0)
printf("no path\n");
}//pathvoid main()
{
path();
}