数据库语句优化
1、选取最适用的字段属性,尽可能减少定义字段长度,尽量把字段设置NOT NULL,例如'省份,性别',最好设置为ENUM
2、使用连接(JOIN)来代替子查询:
a.删除没有任何订单客户:DELETE FROM customerinfo WHERE customerid NOT in(SELECT customerid FROM orderinfo)
b.提取所有没有订单客户:SELECT FROM customerinfo WHERE customerid NOT in(SELECT customerid FROM orderinfo)
c.提高b的速度优化:SELECT FROM customerinfo LEFT JOIN orderid customerinfo.customerid=orderinfo.customerid
WHERE orderinfo.customerid IS NULL
3、使用联合(UNION)来代替手动创建的临时表
a.创建临时表:SELECT name FROM `nametest` UNION SELECT username FROM `nametest2`
4、事务处理:
a.保证数据完整性,例如添加和修改同时,两者成立则都执行,一者失败都失败
mysql_query("BEGIN");
mysql_query("INSERT INTO customerinfo (name) VALUES ('$name1')";
mysql_query("SELECT * FROM `orderinfo` where customerid=".$id");
mysql_query("COMMIT");
5、锁定表,优化事务处理:
a.我们用一个 SELECT 语句取出初始数据,通过一些计算,用 UPDATE 语句将新值更新到表中。
包含有 WRITE 关键字的 LOCK TABLE 语句可以保证在 UNLOCK TABLES 命令被执行之前,
不会有其它的访问来对 inventory 进行插入、更新或者删除的操作
mysql_query("LOCK TABLE customerinfo READ, orderinfo WRITE");
mysql_query("SELECT customerid FROM `customerinfo` where id=".$id);
mysql_query("UPDATE `orderinfo` SET ordertitle='$title' where customerid=".$id);
mysql_query("UNLOCK TABLES");
6、使用外键,优化锁定表
a.把customerinfo里的customerid映射到orderinfo里的customerid,
任何一条没有合法的customerid的记录不会写到orderinfo里
CREATE TABLE customerinfo
(
customerid INT NOT NULL,
PRIMARY KEY(customerid)
)TYPE = INNODB;
CREATE TABLE orderinfo
(
orderid INT NOT NULL,
customerid INT NOT NULL,
PRIMARY KEY(customerid,orderid),
FOREIGN KEY (customerid) REFERENCES customerinfo
(customerid) ON DELETE CASCADE
)TYPE = INNODB;
注意:'ON DELETE CASCADE',该参数保证当customerinfo表中的一条记录删除的话同时也会删除order
表中的该用户的所有记录,注意使用外键要定义事务安全类型为INNODB;
② 玉溪电脑培训学校告诉你mysql数据库的优化方法
我们都知道,服务器数据库的开发一般都是通过java或者是PHP语言来编程实现的,而为了提高我们数据库的运行速度和效率,数据库优化也成为了我们每日的工作重点,今天,玉溪IT培训http://www.kmbdqn.cn/就一起来了解一下mysql服务器数据库的优化方法。
为什么要了解索引
真实案例
案例一:大学有段时间学习爬虫,爬取了知乎300w用户答题数据,存储到mysql数据中。那时不了解索引,一条简单的“根据用户名搜索全部回答的sql“需要执行半分钟左右,完全满足不了正常的使用。
案例二:近线上应用的数据库频频出现多条慢sql风险提示,而工作以来,对数据库优化方面所知甚少。例如一个用户数据页面需要执行很多次数据库查询,性能很慢,通过增加超时时间勉强可以访问,但是性能上需要优化。
索引的优点
合适的索引,可以大大减小mysql服务器扫描的数据量,避免内存排序和临时表,提高应用程序的查询性能。
索引的类型
mysql数据中有多种索引类型,primarykey,unique,normal,但底层存储的数据结构都是BTREE;有些存储引擎还提供hash索引,全文索引。
BTREE是常见的优化要面对的索引结构,都是基于BTREE的讨论。
B-TREE
查询数据简单暴力的方式是遍历所有记录;如果数据不重复,就可以通过组织成一颗排序二叉树,通过二分查找算法来查询,大大提高查询性能。而BTREE是一种更强大的排序树,支持多个分支,高度更低,数据的插入、删除、更新更快。
现代数据库的索引文件和文件系统的文件块都被组织成BTREE。
btree的每个节点都包含有key,data和只想子节点指针。
btree有度的概念d>=1。假设btree的度为d,则每个内部节点可以有n=[d+1,2d+1)个key,n+1个子节点指针。树的大高度为h=Logb[(N+1)/2]。
索引和文件系统中,B-TREE的节点常设计成接近一个内存页大小(也是磁盘扇区大小),且树的度非常大。这样磁盘I/O的次数,就等于树的高度h。假设b=100,一百万个节点的树,h将只有3层。即,只有3次磁盘I/O就可以查找完毕,性能非常高。
索引查询
建立索引后,合适的查询语句才能大发挥索引的优势。
另外,由于查询优化器可以解析客户端的sql语句,会调整sql的查询语句的条件顺序去匹配合适的索引。
③ 开发中,SQL语句优化有哪些方法
看你数据库类型和框架是否支持。
一般开发中遇到慢SQL存在3个问题(索引健全的情况下)。
数据量多导致总行数慢,因为数据在不归档、迁移、转总账的情况下会不断积压。权限越高看见的数据量就越大,数据量越大总行数就越高。一般框架是以分页的SQL为基础计算总行数的。这样就会导致扫描行数高物理读高查询速度慢。优化方案就是总行数进行状态归档,以归档+实时的方式展现出来
连表超过多,部分数据表是单独的,但是不同部门的数据又有关联性,领导要看全生命周期或者流程数据的情况下必须多表相连。这样由于N个明细表导致笛卡儿积先不说,逻辑复杂连表多会消耗CPU,哪怕你查询能500毫秒内显示但是如果多人同时查就让CPU超100%甚至做成锁等待等堵塞。这个情况就是要用类似“云计算”的分布式计算。通过触发器、存储过程等规定时间内吧业务表数据计算好并写到展示表中,直接通过展示表进行关联,这样锁表也于业务表无关,关联表也能变少达到减少CPU消耗的目的。
iops与cpu占比高导致数据库瘫痪。第2点看出如果CPU高数据库全SQL都会慢,IOPS也一样。SQL慢会导致事务中的查询慢,解放事务变慢了其他查询就会锁等待状态变成堵塞。所以遇到大规模的查询是否先查主键然后通过游标一个一个计算再进临时表。这个是消耗时间和内存换CPU和IOPS的一个例子。反正服务器资源最高怎样开发应该是了解的,如何管制资源之间的平衡这个很重要。
举个例子,部分MYSQL框架喜欢一次性把数据库都导出来,然后减少子查询,这个算法针对有效的基础数据这样是可行的。针对业务数据应该没人会用,但是基础数据中也可能会存在海量的情况,比如坐标轨迹、省市区、电话号码归属等。如果无脑应用这个框架会导致查询起来很慢。
④ 怎样进行sql数据库的优化
1、数据库空间是个概述,在sqlserver里,使用语句 exec sp_spaceused 'TableName' 这个语句来查。
⑤ 如何优化SQL语句
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统不是简单地能实现其功能就可,而是要写出高质量的SQL语句,提高系统的可用性。
在多数情况下,Oracle使用索引来更快地遍历表,优化器主要根据定义的索引来提高性能。但是,如果在SQL语句的where子句中写的SQL代码不合理,就会造成优化器删去索引而使用全表扫描,一般就这种SQL语句就是所谓的劣质SQL语句。在编写SQL语句时我们应清楚优化器根据何种原则来删除索引,这有助于写出高性能的SQL语句。
二、SQL语句编写注意问题
下面就某些SQL语句的where子句编写中需要注意的问题作详细介绍。在这些where子句中,即使某些列存在索引,但是由于编写了劣质的SQL,系统在运行该SQL语句时也不能使用该索引,而同样使用全表扫描,这就造成了响应速度的极大降低。
1.
IS
NULL
与
IS
NOT
NULL
不能用null作索引,任何包含null值的列都将不会被包含在索引中。即使索引有多列这样的情况下,只要这些列中有一列含有null,该列就会从索引中排除。也就是说如果某列存在空值,即使对该列建索引也不会提高性能。
任何在where子句中使用is
null或is
not
null的语句优化器是不允许使用索引的。
2.
联接列
对于有联接的列,即使最后的联接值为一个静态值,优化器是不会使用索引的。我们一起来看一个例子,假定有一个职工表(employee),对于一个职工的姓和名分成两列存放(FIRST_NAME和LAST_NAME),现在要查询一个叫比尔.克林顿(Bill
Cliton)的职工。
下面是一个采用联接查询的SQL语句,
select
*
from
employss
where
first_name||''||last_name
='Beill
Cliton';
上面这条语句完全可以查询出是否有Bill
Cliton这个员工,但是这里需要注意,系统优化器对基于last_name创建的索引没有使用。
当采用下面这种SQL语句的编写,Oracle系统就可以采用基于last_name创建的索引。
***
where
first_name
='Beill'
and
last_name
='Cliton';
.
带通配符(%)的like语句
同样以上面的例子来看这种情况。目前的需求是这样的,要求在职工表中查询名字中包含cliton的人。可以采用如下的查询SQL语句:
select
*
from
employee
where
last_name
like
'%cliton%';
这里由于通配符(%)在搜寻词首出现,所以Oracle系统不使用last_name的索引。在很多情况下可能无法避免这种情况,但是一定要心中有底,通配符如此使用会降低查询速度。然而当通配符出现在字符串其他位置时,优化器就能利用索引。在下面的查询中索引得到了使用:
select
*
from
employee
where
last_name
like
'c%';
4.
Order
by语句
ORDER
BY语句决定了Oracle如何将返回的查询结果排序。Order
by语句对要排序的列没有什么特别的限制,也可以将函数加入列中(象联接或者附加等)。任何在Order
by语句的非索引项或者有计算表达式都将降低查询速度。
仔细检查order
by语句以找出非索引项或者表达式,它们会降低性能。解决这个问题的办法就是重写order
by语句以使用索引,也可以为所使用的列建立另外一个索引,同时应绝对避免在order
by子句中使用表达式。
5.
NOT
我们在查询时经常在where子句使用一些逻辑表达式,如大于、小于、等于以及不等于等等,也可以使用and(与)、or(或)以及not(非)。NOT可用来对任何逻辑运算符号取反。下面是一个NOT子句的例子:
...
where
not
(status
='VALID')
如果要使用NOT,则应在取反的短语前面加上括号,并在短语前面加上NOT运算符。NOT运算符包含在另外一个逻辑运算符中,这就是不等于(<>)运算符。换句话说,即使不在查询where子句中显式地加入NOT词,NOT仍在运算符中,见下例:
...
where
status
<>'INVALID';
对这个查询,可以改写为不使用NOT:
select
*
from
employee
where
salary<3000
or
salary>3000;
虽然这两种查询的结果一样,但是第二种查询方案会比第一种查询方案更快些。第二种查询允许Oracle对salary列使用索引,而第一种查询则不能使用索引。
虽然这两种查询的结果一样,但是第二种查询方案会比第一种查询方案更快些。第二种查询允许Oracle对salary列使用索引,而第一种查询则不能使用索引。
⑥ SQL语句的几种优化方法
1、尽可能建立索引,包括条件列,连接列,外键列等。
2、尽可能让where中的列顺序与复合索引的列顺序一致。
3、尽可能不要select *,而只列出自己需要的字段列表。
4、尽可能减少子查询的层数。
5、尽可能在子查询中进行数据筛选 。
⑦ 数据库如何优化
body{
line-height:200%;
}
如何优化MySQL数据库
当MySQL数据库邂逅优化,它有好几个意思,今天我们所指的是性能优化。
我们究竟该如何对MySQL数据库进行优化呢?下面我就从MySQL对硬件的选择、Mysql的安装、my.cnf的优化、MySQL如何进行架构设计及数据切分等方面来说明这个问题。
1.服务器物理硬件的优化
1)磁盘(I/O),MySQL每一秒钟都在进行大量、复杂的查询操作,对磁盘的读写量可想而知,所以推荐使用RAID1+0磁盘阵列,如果资金允许,可以选择固态硬盘做RAID1+0;
2)cpu对Mysql的影响也是不容忽视的,建议选择运算能力强悍的CPU。
2.MySQL应该采用编译安装的方式
MySQL数据库的线上环境安装,我建议采取编译安装,这样性能会较大的提升。
3.MySQL配置文件的优化
1)skip
-name
-resolve,禁止MySQL对外部连接进行DNS解析,使用这一选项可以消除MySQL进行DNS解析的时间;
2)back_log
=
384,back_log指出在MySQL暂时停止响应新请求之前,短时间内的多少个请求可以被存在堆栈中,对于Linux系统而言,推荐设置小于512的整数。
3)如果key_reads太大,则应该把my.cnf中key_buffer_size变大,保持key_reads/key_read_requests至少在1/100以上,越小越好。
4.MySQL上线后根据status状态进行适当优化
1)打开慢查询日志可能会对系统性能有一点点影响,如果你的MySQL是主-从结构,可以考虑打开其中一台从服务器的慢查询日志,这样既可以监控慢查询,对系统性能影响也会很小。
2)MySQL服务器过去的最大连接数是245,没有达到服务器连接数的上限256,应该不会出现1040错误。比较理想的设置是:Max_used_connections/max_connections
*
100%
=85%
5.MySQL数据库的可扩展架构方案
1)MySQL
cluster,其特点为可用性非常高,性能非常好,但它的维护非常复杂,存在部分Bug;
2)DRBD磁盘网络镜像方案,其特点为软件功能强大,数据可在底层块设备级别跨物理主机镜像,且可根据性能和可靠性要求配置不同级别的同步。
⑧ 数据库sql语句优化
select ...
from prpsauditmain this_
where 1=1
and auditNo > ''
and exists (
select 1
from PrpDcompany a
where 1=1
and this_.comCode = a.comCode
and a.upperPath like '00000000,65000000%'
)
and this_.auditflag<>?
order by this_.inserttimeforhis desc
⑨ 请问SQL语句优化的策略都有哪些
●
创建表的时候。应尽量建立主键,根据主键查询数据;
●
大数据表删除,用truncate
table代替delete。
●
合理使用索引,在OLTP应用中一张表的索引不要太多。组合索引的列顺序尽量与查询条件列顺序保持一致;对于数据操作频繁的表,索引需要定期重建,以减少失效的索引和碎片。
●
查询尽量用确定的列名,少用*号。
尽量少嵌套子查询,这种查询会消耗大量的CPU资源;对于有比较多
or运算的查询,建议分成多个查询,用union
all联结起来;多表查询
的查询语句中,选择最有效率的表名顺序(基于规则的优化器中有效)。Oracle解析器对表解析从右到左,所以记录少的表放在右边。
●
尽量多用commit语句提交事务,可以及时释放资源、解
锁、释放日志空间、减少管理花费;在频繁的、性能要求比较高的
数据操作中,尽量避免远程访问,如数据库链等,访问频繁的表可以常驻内存:alter
table...cache;
⑩ 2020-10-11:一条sql语句执行时间过长,应该如何优化从哪些方面进行优化
改进数据库sql语句进行优化的理由 应用程序之优化通常可分为两个方面:源代码之优化和sql语句之优化。源代码之优化在时间成本和风险上代价很高;另一方面,源代码之优化对数据库系统性能之提升收效有限。 优化之理由 1)sql语句是对数据库(数据)进行操作之惟一途径; 2)sql语句消耗了70%~90%之数据库资源; 3)sql语句独立于程序设计逻辑,相对于对程序源代码之优化,对sql语句之优化在时间成本和风险上之代价都很低; 4)sql语句可以有不同之写法; 5)sql语句易学,难精通。 优化技术之发展 第一代之sql优化工具是执行计划分析工具。这类之工具对输入之sql语句从数据库提取执行计划,并解释执行计划中关键字之含义;第二代之sql优化工具只能提供增加索引之建议,它通过对输入之sql语句之执行计划之分析来产生是否要增加索引之建议。该类工具存在着致命之缺点——只分析了一条sql语句就得出增加某个索引之结论,根本不理会(实际上也无法评估到)增加之索引对整体数据库系统性能之影响。其破坏性在于: 1、不理会增加之索引对其他增、删、改sql语句之负面影响; 2、没有考虑增加之索引可能导致数据库判断失误; 3、对由于增加索引引起之数据库系统负担忽略不计。 同时,这些工具由于技术水平之限制存在着以下缺点: 1、无法保证建议或改写之正确性; 2、无法进行重写,仅仅提供了建议或有限程度之改写,重写工作还是需要人工完成,优化工作所需之时间和工作量同人工进行优化差不多; 3、改写之规则和hints有限,难以处理复杂之sql语句; 4、必须人手逐条进行测试。 这类工具曾经盛极一时,直到人工智能自动sql优化之出现。