最小二乘的递归算法
‘壹’ 最小二乘法计算公式是
最小二乘法公式为a=y(平均)-b*x(平均)。
在研究两个变量(x,y)之间的相互关系时,通常可以得到一系列成对的数据(x1,y1),(x2,y2)...(xm,ym);将这些数据描绘在x-y直角坐标系中,若发现这些点在一条直线附近,可以令这条直线方程如a=y(平均)-b*x(平均)。其中:a、b是任意实数。
(1)最小二乘的递归算法扩展阅读:
最小二乘法通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。还可用于曲线拟合,其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。
根据样本数据,采用最小二乘估计式可以得到简单线性回归模型参数的估计量。但是估计量参数与总体真实参数的接近程度如何,是否存在更好的其它估计式,这就涉及到最小二乘估计式或估计量的最小方差(或最佳)性、线性及无偏性。
‘贰’ 什么是最小二乘法及其原理
最小二乘法(又称最小平方法)是一种数学优化技术。
它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。
最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。
原理:
在我们研究两个变量(x,y)之间的相互关系时,通常可以得到一系列成对的数据(x1,y1.x2,y2... xm,ym);将这些数据描绘在x -y直角坐标系中,若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。
最小时,可用函数 φ 对a0、a1求偏导数,令这两个偏导数等于零。
∑2(a0 + a1*Xi - Yi)=0(式1-4)
∑2Xi(a0 +a1*Xi - Yi)=0(式1-5)
亦即:na0 + (∑Xi ) a1 = ∑Yi (式1-6)
(∑Xi ) a0 + (∑Xi^2 ) a1 = ∑(Xi*Yi) (式1-7)
得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出:
a0 = (∑Yi) / n - a1(∑Xi) / n (式1-8)
a1 = [n∑(Xi Yi) - (∑Xi ∑Yi)] / (n∑Xi^2 -∑Xi∑Xi)(式1-9)
这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的一元线性方程即:数学模型。
在回归过程中,回归的关联式不可能全部通过每个回归数据点(x1,y1. x2,y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。
R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) *
在(式1-10)中,m为样本容量,即实验次数;Xi、Yi分别为任意一组实验数据X、Y的数值。
‘叁’ 求回归方程的最小二乘法,是怎么计算的
计算方法:
y = Ax + B:a = sigma[(yi-y均值)*(xi-x均值)] / sigma[(xi-x均值)的平方];b = y均值 - a*x均值。
知识拓展
最小二乘法求回归直线方程的推导过程
这里的是为了区分Y的实际值y(这里的实际值就是统计数据的真实值,我们称之为观察值),当x取值(i=1,2,3……n)时,Y的观察值为,近似值为(或者说对应的纵坐标是)。
其中式叫做Y对x的回归直线方程,b叫做回归系数。要想确定回归直线方程,我们只需确定a与回归系数b即可。
设x,Y的一组观察值为:
i = 1,2,3……n
其回归直线方程为:
当x取值(i=1,2,3……n)时,Y的观察值为,差刻画了实际观察值与回归直线上相应点纵坐标之间的偏离程度,见下图:
‘肆’ 最小二乘法的原理是什么的
最小二乘大约是1795年高斯在他那星体运动轨道预报工作中提出的[1]。后来,最小二乘法就成了估计理论的奠基石。由于最小二乘法结构简单,编制程序也不困难,所以它颇受人们重视,应用相当广泛。
如用标准符号,最小二乘估计可被表示为:
ax=b
(2-43)
上式中的解是最小化
,通过下式中的伪逆可求得:
a'ax=a'b
(2-44)
(a'a)^(-1)a'ax=(a'a)^(-1)a'b
(2-45)
由于
(a'a)^-1a'a=i
(2-46)
所以有
x=(a'a)^(-1)a'b
(2-47)
此即最小二乘的一次完成算法,现代的递推算法,更适用于计算机的在线辨识。
最小二乘是一种最基本的辨识方法,但它具有两方面的缺陷[1]:一是当模型噪声是有色噪声时,最小二乘估计不是无偏、一致估计;二是随着数据的增长,将出现所谓的“数据饱和”现象。针对这两个问题,出现了相应的辨识算法,如遗忘因子法、限定记忆法、偏差补偿法、增广最小二乘、广义最小二乘、辅助变量法、二步法及多级最小二乘法等。
‘伍’ CVX工具包解决最小二乘问题的原理和算法是什么
“递归最小二次方算法”——RLS算法,其又称最小二乘法。
在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据
(x1, y1、x2, y2 xm , ym);
将这些数据描绘在x -y直角坐标系中
若发现这些点在一条直线附近,
可以令这条直线方程如(式1-1)。
Y计= a0 + a1 X (式1-1)
其中:a0、a1 是任意实数
为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,
将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差
(Yi-Y计)的平方和〔∑(Yi - Y计)2〕最小为“优化判据”。
令: φ = ∑(Yi - Y计)2 (式1-2)
把(式1-1)代入(式1-2)中得: φ = ∑(Yi - a0 - a1 Xi)2 (式1-3)
当∑(Yi-Y计)平方最小时,可用函数
φ 对a0、a1求偏导数,令这两个偏导数等于零。
亦即:
m a0 + (∑Xi ) a1 = ∑Yi
(∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi)
得到的两个关于a0、a1为未知数的两个方程组,解这两个方程组得出:
a0 = (∑Yi) / m - a1(∑Xi) / m
a1 = [∑Xi Yi - (∑Xi ∑Yi)/ m] / [∑Xi2 - (∑Xi)2 / m)]
这时把a0、a1代入(式1-1)中, 此时的(式1-1)
就是我们回归的元线性方程即:数学模型。
‘陆’ RLS算法的原理
“递归最小二次方算法”——RLS算法,其又称最小二乘法。
在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据
(x1, y1、x2, y2... xm , ym);
将这些数据描绘在x -y直角坐标系中
若发现这些点在一条直线附近,
可以令这条直线方程如(式1-1)。
Y计= a0 + a1 X (式1-1)
其中:a0、a1 是任意实数
为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,
将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差
(Yi-Y计)的平方和〔∑(Yi - Y计)2〕最小为“优化判据”。
令: φ = ∑(Yi - Y计)2 (式1-2)
把(式1-1)代入(式1-2)中得: φ = ∑(Yi - a0 - a1 Xi)2 (式1-3)
当∑(Yi-Y计)平方最小时,可用函数
φ 对a0、a1求偏导数,令这两个偏导数等于零。
亦即:
m a0 + (∑Xi ) a1 = ∑Yi
(∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi)
得到的两个关于a0、a1为未知数的两个方程组,解这两个方程组得出:
a0 = (∑Yi) / m - a1(∑Xi) / m
a1 = [∑Xi Yi - (∑Xi ∑Yi)/ m] / [∑Xi2 - (∑Xi)2 / m)]
这时把a0、a1代入(式1-1)中, 此时的(式1-1)
就是我们回归的元线性方程即:数学模型。
‘柒’ 最小二乘法计算公式是什么
最小二乘法公式是一个数学的公式,在数学上称为曲线拟合,此处所讲最小二乘法,专指线性回归方程!最小二乘法公式为a=y(平均)-b*x(平均)。
最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。
(7)最小二乘的递归算法扩展阅读:
普通最小二乘估计量具有上述三特性:
1、线性特性
所谓线性特性,是指估计量分别是样本观测值的线性函数,亦即估计量和观测值的线性组合。
2、无偏性
无偏性,是指参数估计量的期望值分别等于总体真实参数。
3、最小方差性
所谓最小方差性,是指估计量与用其它方法求得的估计量比较,其方差最小,即最佳。最小方差性又称有效性。这一性质就是着名的高斯一马尔可夫( Gauss-Markov)定理。这个定理阐明了普通最小二乘估计量与用其它方法求得的任何线性无偏估计量相比,它是最佳的。