当前位置:首页 » 操作系统 » 医学图像分割算法

医学图像分割算法

发布时间: 2022-09-25 19:14:49

⑴ 图像分割算法分为几类

从学术角度讲图像分割主要分成3大类,一是基于边缘的,二是基于区域的,三是基于纹理的。由于基于纹理的也可以看成是基于区域的,所以有些专家也把分割方法分成基于边缘和基于区域两大类。
选择算法的时候主要参考你要分割的图像样本的特点。
如果图像的边界特别分明,比如绿叶和红花,在边界处红绿明显不同,可以精确提取到边界,这时候用基于边缘的方法就可行。但如果是像医学图像一样,轮廓不是特别明显,比如心脏图像,左心房和左心室颜色比较接近,它们之间的隔膜仅仅是颜色比它们深一些,但是色彩上来说很接近,这时候用基于边缘的方法就不合适了,用基于区域的方法更好。再比如带纹理的图像,例如条纹衫,如果用基于边缘的方法很可能就把每一条纹都分割成一个物体,但实际上衣服是一个整体,这时候用基于纹理的方法就能把纹理相同或相似的区域分成一个整体。
不过总体来说,基于区域的方法近些年更热一些,如Meanshift分割方法、测地线活动轮廓模型、JSEG等。

⑵ 图像分割算法总结

       图像处理的很多任务都离不开图像分割。因为图像分割在cv中实在太重要(有用)了,就先把图像分割的常用算法做个总结。

        接触机器学习和深度学习时间已经不短了。期间看过各种相关知识但从未总结过。本文过后我会尽可能详细的从工程角度来总结,从传统机器学习算法,传统计算机视觉库算法到深度学习目前常用算法和论文,以及模型在各平台的转化,量化,服务化部署等相关知识总结。

        图像分割常用算法大致分为下面几类。由于图像的能量范函,边缘追踪等方法的效果往往只能解决特定问题,效果并不理想,这里不再阐述。当然二值化本身也可以分割一些简单图像的。但是二值化算法较多,我会专门做一个文章来总结。这里不再赘述。

        1.基于边缘的图像分割算法:

            有利用图像梯度的传统算法算子的sobel,roberts,prewitt,拉普拉斯以及canny等。

            这些算法的基本思想都是采用合适的卷积算子,对图像做卷积。从而求出图像对应的梯度图像。(至于为什么通过如图1这样的算子卷积,即可得到图像的梯度图像,请读者复习下卷积和倒数的概念自行推导)由于图像的边缘处往往是图像像素差异较大,梯度较大地方。因此我们通过合适的卷积核得到图像的梯度图像,即得到了图像的边缘图像。至于二阶算子的推导,与一阶类似。优点:传统算子梯度检测,只需要用合适的卷积核做卷积,即可快速得出对应的边缘图像。缺点:图像边缘不一定准确,复杂图像的梯度不仅仅出现在图像边缘,可以能出现在图像内部的色彩和纹理上。

             也有基于深度学习方法hed,rcf等。由于这类网络都有同一个比较严重的缺陷,这里只举例hed网络。hed是基于FCN和VGG改进,同时引出6个loss进行优化训练,通过多个层输出不同scale的粒度的边缘,然后通过一个训练权重融合各个层的边缘结果。hed网络结构如下:

可以得到一个比较完整的梯度图像,可参考github的hed实现。优点:图像的梯度细节和边缘完整性,相比传统的边缘算子要好很多。但是hed对于边缘的图像内部的边缘并不能很好的区分。当然我们可以自行更改loss来尝试只拟合外部的图像边缘。但最致命的问题在于,基于vgg的hed的网络表达能力有限,对于图像和背景接近,或者图像和背景部分相融的图片,hed似乎就有点无能为力了。

        2.基于区域分割的算法:

            区域分割比较常用的如传统的算法结合遗传算法,区域生长算法,区域分裂合并,分水岭算法等。这里传统算法的思路是比较简单易懂的,如果有无法理解的地方,欢迎大家一起讨论学习。这里不再做过多的分析。

            基于区域和语意的深度学习分割算法,是目前图像分割成果较多和研究的主要方向。例如FCN系列的全卷积网络,以及经典的医学图像分割常用的unet系列,以及rcnn系列发展下的maskrcnn,以及18年底的PAnet。基于语意的图像分割技术,无疑会成为图像分割技术的主流。

            其中,基于深度学习语意的其他相关算法也可以间接或直接的应用到图像分割。如经典的图像matting问题。18年又出现了许多非常优秀的算法和论文。如Deep-Image-Matting,以及效果非常优秀的MIT的 semantic soft segmentation(sss).

            基于语意的图像分割效果明显要好于其他的传统算法。我在解决图像分割的问题时,首先尝试用了hed网络。最后的效果并不理想。虽然也参考github,做了hed的一些fine-tune,但是还是上面提到的原因,在我多次尝试后,最终放弃。转而适用FCN系列的网络。但是fcn也无法解决图像和背景相融的问题。图片相融的分割,感觉即需要大的感受野,又需要未相融部分原图像细节,所以单原FCN的网络,很难做出准确的分割。中间还测试过很多其他相关的网络,但都效果不佳。考虑到感受野和原图像细节,尝试了resnet和densenet作为图像特征提取的底层。最终我测试了unet系列的网络:

                unet的原始模型如图所示。在自己拍照爬虫等手段采集了将近1000张图片。去掉了图片质量太差的,图片内容太过类似的。爬虫最终收集160多张,自己拍照收集200张图片后,又用ps手动p了边缘图像,采用图像增强变换,大约有300*24张图片。原生unet网络的表现比较一般。在将unet普通的卷积层改为resnet后,网络的表达能力明显提升。在将resnet改为resnet101,此时,即使对于部分相融的图像,也能较好的分割了。但是unet的模型体积已经不能接受。

                在最后阶段,看到maskrcnn的实例分割。maskrcnn一路由rcnn,fasterrcnn发展过来。于是用maskrcnn来加入自己的训练数据和label图像进行训练。maskrcnn的结果表现并不令人满意,对于边缘的定位,相比于其他算法,略显粗糙。在产品应用中,明显还不合适。                

        3.基于图的分割算法

            基于深度学习的deepgrab,效果表现并不是十分理想。deepgrab的git作者backbone采用了deeplabv2的网络结构。并没有完全安装原论文来做。

论文原地址参考: https://arxiv.org/pdf/1707.00243.pdf

整体结构类似于encode和decoder。并没有太仔细的研究,因为基于resent101的结构,在模型体积,速度以及deeplab的分割精度上,都不能满足当前的需求。之前大致总结过计算机视觉的相关知识点,既然目前在讨论移动端模型,那后面就分模块总结下移动端模型的应用落地吧。

由于时间实在有限。这里并没有针对每个算法进行详细的讲解。后续我会从基础的机器学习算法开始总结。

⑶ 图像分割的特定理论

图像分割至今尚无通用的自身理论。随着各学科许多新理论和新方法的提出,出现了许多与一些特定理论、方法相结合的图像分割方法。 特征空间聚类法进行图像分割是将图像空间中的像素用对应的特征空间点表示,根据它们在特征空间的聚集对特征空间进行分割,然后将它们映射回原图像空间,得到分割结果。其中,K均值、模糊C均值聚类(FCM)算法是最常用的聚类算法。K均值算法先选K个初始类均值,然后将每个像素归入均值离它最近的类并计算新的类均值。迭代执行前面的步骤直到新旧类均值之差小于某一阈值。模糊C均值算法是在模糊数学基础上对K均值算法的推广,是通过最优化一个模糊目标函数实现聚类,它不像K均值聚类那样认为每个点只能属于某一类,而是赋予每个点一个对各类的隶属度,用隶属度更好地描述边缘像素亦此亦彼的特点,适合处理事物内在的不确定性。利用模糊C均值(FCM)非监督模糊聚类标定的特点进行图像分割,可以减少人为的干预,且较适合图像中存在不确定性和模糊性的特点。
FCM算法对初始参数极为敏感,有时需要人工干预参数的初始化以接近全局最优解,提高分割速度。另外,传统FCM算法没有考虑空间信息,对噪声和灰度不均匀敏感。 模糊集理论具有描述事物不确定性的能力,适合于图像分割问题。1998年以来,出现了许多模糊分割技术,在图像分割中的应用日益广泛。模糊技术在图像分割中应用的一个显着特点就是它能和现有的许多图像分割方法相结合,形成一系列的集成模糊分割技术,例如模糊聚类、模糊阈值、模糊边缘检测技术等。
模糊阈值技术利用不同的S型隶属函数来定义模糊目标,通过优化过程最后选择一个具有最小不确定性的S函数。用该函数增强目标及属于该目标的像素之间的关系,这样得到的S型函数的交叉点为阈值分割需要的阈值,这种方法的困难在于隶属函数的选择。基于模糊集合和逻辑的分割方法是以模糊数学为基础,利用隶属图像中由于信息不全面、不准确、含糊、矛盾等造成的不确定性问题。该方法在医学图像分析中有广泛的应用,如薛景浩 等人提出的一种新的基于图像间模糊散度的阈值化算法以及它在多阈值选择中的推广算法,采用了模糊集合分别表达分割前后的图像,通过最小模糊散度准则来实现图像分割中最优阈值的自动提取。该算法针对图像阈值化分割的要求构造了一种新的模糊隶属度函数,克服了传统S函数带宽对分割效果的影响,有很好的通用性和有效性,方案能够快速正确地实现分割,且不需事先认定分割类数。实验结果令人满意。 概述
小波变换是2002年来得到了广泛应用的数学工具,它在时域和频域都具有良好的局部化性质,而且小波变换具有多尺度特性,能够在不同尺度上对信号进行分析,因此在图像处理和分析等许多方面得到应用。
小波变换的分割方法
基于小波变换的阈值图像分割方法的基本思想是首先由二进小波变换将图像的直方图分解为不同层次的小波系数,然后依据给定的分割准则和小波系数选择阈值门限,最后利用阈值标出图像分割的区域。整个分割过程是从粗到细,有尺度变化来控制,即起始分割由粗略的L2(R)子空间上投影的直方图来实现,如果分割不理想,则利用直方图在精细的子空间上的小波系数逐步细化图像分割。分割算法的计算馈与图像尺寸大小呈线性变化。

⑷ 骨髓细胞图像分割算法研究的意义

这个题目有几个元素

一是骨髓细胞.骨髓细胞内有多种细胞,识别,计数这些细胞对医学研究和临床诊断有重要意义--这个就不多说了吧?比如某种细胞形态异常/数量异常与某种疾病有联系,等等.

二是图像.以上的目的都是通过观察细胞来实现的.人工来看,很直观,但有几个问题:一是费时费力,随便一个样品就有成千上万个细胞,人工计数都是一个一个地数,重复性强,效率低;二是不同的人来看得到的结果相差可能很大,这跟经验有关,跟人的疲劳程度也有关.所以为了高效,稳定地,统一标准地识别计数骨髓细胞,最好是让电脑来做,这就是一个图像处理的问题.

三是分割算法.这是图像处理的一个基本技术,并不算生物学的范畴.大致意思是说为了识别图像中的有用信息,需要把图像分割成小块.哪里是目标物(在这里就是细胞啦),哪块是背景。更细的可能还需要分割细胞内部哪个区域是细胞核,以及其他的细胞器(为了识别细胞的种类)。

又想了想,其实同样的目的,把样品放到流式细胞仪来做,结果可能更可靠。但是样品的处理和染色都需要时间,自然没有直接做个涂片快,而且免疫荧光染色的抗体可是一大笔开销啊。。。。

⑸ 图像分割的分割方法

灰度阈值分割 法是一种最常用的并行区域技术,它是图像分割中应用数量最多的一类。阈值分割方法实际上是输入图像f到输出图像g的如下变换:
其中,T为阈值,对于物体的图像元素g(i,j)=1,对于背景的图像元素g(i,j)=0。
由此可见,阈值分割算法的关键是确定阈值,如果能确定一个合适的阈值就可准确地将图像分割开来。阈值确定后,将阈值与像素点的灰度值逐个进行比较,而且像素分割可对各像素并行地进行,分割的结果直接给出图像区域。
阈值分割的优点是计算简单、运算效率较高、速度快。在重视运算效率的应用场合(如用于硬件实现),它得到了广泛应用。
人们发展了各种各样的阈值处理技术,包括全局阈值、自适应阈值、最佳阈值等等。
全局阈值是指整幅图像使用同一个阈值做分割处理,适用于背景和前景有明显对比的图像。它是根据整幅图像确定的:T=T(f)。但是这种方法只考虑像素本身的灰度值,一般不考虑空间特征,因而对噪声很敏感。常用的全局阈值选取方法有利用图像灰度直方图的峰谷法、最小误差法、最大类间方差法、最大熵自动阈值法以及其它一些方法。
在许多情况下,物体和背景的对比度在图像中的各处不是一样的,这时很难用一个统一的阈值将物体与背景分开。这时可以根据图像的局部特征分别采用不同的阈值进行分割。实际处理时,需要按照具体问题将图像分成若干子区域分别选择阈值,或者动态地根据一定的邻域范围选择每点处的阈值,进行图像分割。这时的阈值为自适应阈值。
阈值的选择需要根据具体问题来确定,一般通过实验来确定。对于给定的图像,可以通过分析直方图的方法确定最佳的阈值,例如当直方图明显呈现双峰情况时,可以选择两个峰值的中点作为最佳阈值。
图1(a)和(b)分别为用全局阈值和自适应阈值对经典的Lena图像进行分割的结果。
区域生长和分裂合并法是两种典型的串行区域技术,其分割过程后续步骤的处理要根据前面步骤的结果进行判断而确定。 区域生长 区域生长的基本思想是将具有相似性质的像素集合起来构成区域。具体先对每个需要分割的区域找一个种子像素作为生长的起点,然后将种子像素周围邻域中与种子像素有相同或相似性质的像素(根据某种事先确定的生长或相似准则来判定)合并到种子像素所在的区域中。将这些新像素当作新的种子像素继续进行上面的过程,直到再没有满足条件的像素可被包括进来。这样一个区域就长成了。
区域生长需要选择一组能正确代表所需区域的种子像素,确定在生长过程中的相似性准则,制定让生长停止的条件或准则。相似性准则可以是灰度级、彩色、纹理、梯度等特性。选取的种子像素可以是单个像素,也可以是包含若干个像素的小区域。大部分区域生长准则使用图像的局部性质。生长准则可根据不同原则制定,而使用不同的生长准则会影响区域生长的过程。区域生长法的优点是计算简单,对于较均匀的连通目标有较好的分割效果。它的缺点是需要人为确定种子点,对噪声敏感,可能导致区域内有空洞。另外,它是一种串行算法,当目标较大时,分割速度较慢,因此在设计算法时,要尽量提高效率。
区域分裂合并
区域生长是从某个或者某些像素点出发,最后得到整个区域,进而实现目标提取。分裂合并差不多是区域生长的逆过程:从整个图像出发,不断分裂得到各个子区域,然后再把前景区域合并,实现目标提取。分裂合并的假设是对于一幅图像,前景区域由一些相互连通的像素组成的,因此,如果把一幅图像分裂到像素级,那么就可以判定该像素是否为前景像素。当所有像素点或者子区域完成判断以后,把前景区域或者像素合并就可得到前景目标。
在这类方法中,最常用的方法是四叉树分解法(如图3所示)。设R代表整个正方形图像区域,P代表逻辑谓词。基本分裂合并算法步骤如下:(1)对任一个区域,如果H(Ri)=FALSE就将其分裂成不重叠的四等份;
(2)对相邻的两个区域Ri和Rj,它们也可以大小不同(即不在同一层),如果条件H(Ri∪Rj)=TRUE满足,就将它们合并起来。
(3)如果进一步的分裂或合并都不可能,则结束。
分裂合并法的关键是分裂合并准则的设计。这种方法对复杂图像的分割效果较好,但算法较复杂,计算量大,分裂还可能破坏区域的边界。 图像分割的一种重要途径是通过边缘检测,即检测灰度级或者结构具有突变的地方,表明一个区域的终结,也是另一个区域开始的地方。这种不连续性称为边缘。不同的图像灰度不同,边界处一般有明显的边缘,利用此特征可以分割图像。
图像中边缘处像素的灰度值不连续,这种不连续性可通过求导数来检测到。对于阶跃状边缘,其位置对应一阶导数的极值点,对应二阶导数的过零点(零交叉点)。因此常用微分算子进行边缘检测。常用的一阶微分算子有Roberts算子、Prewitt算子和Sobel算子,二阶微分算子有Laplace算子和Kirsh算子等。在实际中各种微分算子常用小区域模板来表示,微分运算是利用模板和图像卷积来实现。这些算子对噪声敏感,只适合于噪声较小不太复杂的图像。
由于边缘和噪声都是灰度不连续点,在频域均为高频分量,直接采用微分运算难以克服噪声的影响。因此用微分算子检测边缘前要对图像进行平滑滤波。LoG算子和Canny算子是具有平滑功能的二阶和一阶微分算子,边缘检测效果较好,如图4所示。其中loG算子是采用Laplacian算子求高斯函数的二阶导数,Canny算子是高斯函数的一阶导数,它在噪声抑制和边缘检测之间取得了较好的平衡。关于微分算子的边缘检测的详细内容可参考文献 。 与其他图像分割方法相比,基于直方图的方法是非常有效的图像分割方法,因为他们通常只需要一个通过像素。在这种方法中,直方图是从图像中的像素的计算,并在直方图的波峰和波谷是用于定位图像中的簇。颜色和强度可以作为衡量。
这种技术的一种改进是递归应用直方图求法的集群中的形象以分成更小的簇。重复此操作,使用更小的簇直到没有更多的集群的形成。
基于直方图的方法也能很快适应于多个帧,同时保持他们的单通效率。直方图可以在多个帧被考虑的时候采取多种方式。同样的方法是采取一个框架可以应用到多个,和之后的结果合并,山峰和山谷在以前很难识别,但现在更容易区分。直方图也可以应用于每一个像素的基础上,将得到的信息被用来确定的像素点的位置最常见的颜色。这种方法部分基于主动对象和一个静态的环境,导致在不同类型的视频分割提供跟踪。

⑹ 影像分割流程

影像分割是获取目标区域的一个重要手段。多尺度影像分割法采用不同的分割尺度生成不同尺度的影像对象层,使得具有固定分辨率的影像数据由不同分辨率的数据组成,从而构建一个与地表实体相似的层次等级结构,实现原始像元数据在不同空间尺度间的传递,以适应特定的应用需要,从而有效地将目标区域从背景中分离出来。

Definiens 软件中的多尺度影像分割采用异质性最小的区域合并算法,其允许两个方向生成层次: 从下到上 ( Create Above) 和从上到下 ( Create Below) 。从下到上的分割 ( 由小尺度到大尺度的分割) 相对较简单,合并子对象形成父对象,这种区域合并算法计算过程中的对象只有第一次是像元,以后的均针对对象进行,时间代价较小。从上到下的分割( 由大尺度到小尺度的多种分割) 需要在父对象范围内以像元为单位用区域合并算法形成子对象,区域合并算法每次均是针对单个像元进行,时间代价大。多尺度分割两种方向生成层次在时间利用和生成对象个数方面有很大差异,以研究区某一子区域为例,如表5 -1所示。

表 5 -1 多尺度分割两种方向生成层次消耗的时间

从上表可以看出两点: ① 两个方向的分割结果略有差异,主要表现为对象个数不尽相同; ②“从下到上”的分割由于是在子对象基础上的合并,所以除了第一次针对像元的分割速度稍慢之外,其后进行的各次分割速度明显快于第一次分割; 而 “从上到下”的分割,由于每次分割操作都是针对像元重新进行,除了分割尺度最小的基于像元的那次操作之外,每次分割所耗费的时间都远远多于同一尺度 “从下到上”的分割。

从下到上的多尺度分割方法主要思想是一种从像元开始由下至上、逐级进行区域合并的过程。经过多次迭代过程,小的同质区域变成大的同质区域。

Definiens 软件中多尺度分割的具体算法步骤如下 ( 图 5 - 12) :

1) 设置分割参数,包括设定一个尺度阈值,以此阈值作为判断是否停止像元合并的条件,根据影像信息的纹理特征以及所提取的专题信息的要求,确定光谱因子和形状因子的权重; 在形状因子中根据大多数地物类别的结构属性确定紧致度和光滑度因子的权重,以及在计算光谱差异性时需要用到的每一个波段的权重值; 必要时,也可考虑是否加入专题图进行分割。

2) 以影像中任意一个像元为中心开始分割,第一次分割时单个像元被看做是一个最小的多边形对象参与异质性值的计算; 第一次分割后,以生成的多边形对象为基础进行第二次分割,同样计算异质性值。

3) 假设 f 为最小异质性值,s 为分割尺度值。每次判断 f 与预定的阈值之间的差异,若 f 小于阈值 s,则继续进行下一次分割,以此循环。

4) 若 f 等于或大于阈值 s,则停止影像的分割工作,形成一个固定尺度值的影像对象层。

大多数情况下,光谱因子是生成有意义对象的最重要的一条标准,而形状因子则有助于避免产生不规则破碎的对象,适合高纹理的影像数据。因此,Definiens 软件建议,在进行影像分割的过程中应遵循两条原则: ① 尽可能设置大的颜色因子权重,因为光谱信息是影像数据中所包含的主要数据,形状因子权重过大将导致光谱均质性的损失; ② 对于边界不太光滑但是聚集度较高的影像对象,尽可能地使用必要的形状因子。

图 5 -12 异质性最小的区域合并影像分割流程

⑺ unet医学图像分割的国内外发展状况

咨询记录 · 回答于2021-11-18

⑻ 图像分割算法那么多 如何正确的使用适合的算法

从学术角度讲图像分割主要分成3大类,一是基于边缘的,二是基于区域的,三是基于纹理的。由于基于纹理的也可以看成是基于区域的,所以有些专家也把分割方法分成基于边缘和基于区域两大类。
选择算法的时候主要参考你要分割的图像样本的特点。
如果图像的边界特别分明,比如绿叶和红花,在边界处红绿明显不同,可以精确提取到边界,这时候用基于边缘的方法就可行。但如果是像医学图像一样,轮廓不是特别明显,比如心脏图像,左心房和左心室颜色比较接近,它们之间的隔膜仅仅是颜色比它们深一些,但是色彩上来说很接近,这时候用基于边缘的方法就不合适了,用基于区域的方法更好。再比如带纹理的图像,例如条纹衫,如果用基于边缘的方法很可能就把每一条纹都分割成一个物体,但实际上衣服是一个整体,这时候用基于纹理的方法就能把纹理相同或相似的区域分成一个整体。
不过总体来说,基于区域的方法近些年更热一些,如Meanshift分割方法、测地线活动轮廓模型、JSEG等。

⑼ OCR图像文字识别图像分割算法

对于文字ocr中的分割步骤应用的算法一般是个综合体,不是像你说的单一某种算法可完成的
比如不粘连的 可以用连通检测分割, 粘连的一般会用投影分割加验知,粘连厉害的可以用像滴水法等

⑽ 跪求图像分割snake算法详细解释

主要公式为曲线能量Esnake(公式1);Esnake由内部能量Eint(公式2)及外部能量Eext(公式3)组成;而根据公式2内部能量Eint是由一阶导得到的平滑性约束(弹性绳子)二阶导得到的气球约束(刚性棍子)共同决定;根据公式3外部能Eext由梯度场决定(另一个分量不考虑)那么粗略表示为Esnake=Vs+Vss+Eext;可以认为当Esnake的能量达到最小时snake曲线和物体的边缘一致。

上面这些基本是每个论文上面都有的,下面照我的理解来讲。结合很多论文上用的那个U形物体,snake检测它的轮廓时,预先以一个圆形的像素圈套住它作为初始的snake线,可以取一定个数的点来离散化snake线,那么这时就可以求这条snake线与原始图像间的曲线能量Esnake了;Vs对应的是一阶的平滑性,可转化为snake线中相邻像素之间的坐标差;差值越大能量越大平滑性也就越差;Vss对应的是二阶的刚性;可转化为snake线中某点和它相邻的线上点间的法线方向的增长度量;Eext是梯度场能量,是由原本的灰度图决定的,可转化为snake中某点在灰度图中的邻域梯度。求出了这三个;再以一定的方式进行循环逼近那个使Esnake最小的snake线就找到了轮廓。
过奖了~我也是在研究中,你留个邮箱,我发个程序给你,看实例好理解点

热点内容
内置存储卡可以拆吗 发布:2025-05-18 04:16:35 浏览:333
编译原理课时设置 发布:2025-05-18 04:13:28 浏览:374
linux中进入ip地址服务器 发布:2025-05-18 04:11:21 浏览:610
java用什么软件写 发布:2025-05-18 03:56:19 浏览:31
linux配置vim编译c 发布:2025-05-18 03:55:07 浏览:106
砸百鬼脚本 发布:2025-05-18 03:53:34 浏览:940
安卓手机如何拍视频和苹果一样 发布:2025-05-18 03:40:47 浏览:737
为什么安卓手机连不上苹果7热点 发布:2025-05-18 03:40:13 浏览:801
网卡访问 发布:2025-05-18 03:35:04 浏览:507
接收和发送服务器地址 发布:2025-05-18 03:33:48 浏览:370