智能优化算法的应用
㈠ 智能优化算法考博能转什么专业
智能优化算法考博能转计算机视觉,自然语言处理,与生物医学相关的专业方向都可以。考博可以换专业,但是如果分数不够所考的学校,是不容易被调剂的,因为没有学校愿意接受。
可以考虑选择计算机视觉(computer vision),简称CV, 是一门研究如何使机器“看”的科学,也是目前业界招聘最多的方向。比如我们常见的人脸识别技术,语音识别技术,制造业中的自动检测,工业机器人的控制过程等等,很多人工智能算法都最先应用于CV领域。
㈡ 智能优化算法:灰狼优化算法
@[toc]
摘要:受 灰 狼 群 体 捕 食 行 为 的 启 发,Mirjalili等[1]于 2014年提出了一种新型群体智能优化算法:灰狼优化算法。GWO通过模拟灰狼群体捕食行为,基于狼群群体协作的机制来达到优化的目的。 GWO算法具有结构简单、需要调节的参数少,容易实现等特点,其中存在能够自适应调整的收敛因子以及信息反馈机制,能够在局部寻优与全局搜索之间实现平衡,因此在对问题的求解精度和收敛速度方面都有良好的性能。
灰狼属于犬科动物,被认为是顶级的掠食者,它们处于生物圈食物链的顶端。灰狼大多喜欢群居,每个群体中平均有5-12只狼。特别令人感兴趣的是,它们具有非常严格的社会等级层次制度,如图1所示。金字塔第一层为种群中的领导者,称为 α 。在狼群中 α 是具有管理能力的个体,主要负责关于狩猎、睡觉的时间和地方、食物分配等群体中各项决策的事务。金字塔第二层是 α 的智囊团队,称为 β 。 β 主要负责协助α 进行决策。当整个狼群的 α 出现空缺时,β 将接替 α 的位置。 β 在狼群中的支配权仅次于 α,它将 α 的命令下达给其他成员,并将其他成员的执行情况反馈给 α 起着桥梁的作用。金字塔第三层是 δ ,δ 听从 α 和 β 的决策命令,主要负责侦查、放哨、看护等事务。适应度不好的 α 和 β 也会降为 δ 。金字塔最底层是 ω ,主要负责种群内部关系的平衡。
<center>图1.灰狼的社会等级制度
此外,集体狩猎是灰狼的另一个迷人的社会行为。灰狼的社会等级在群体狩猎过程中发挥着重要的作用,捕食的过程在 α 的带领下完成。灰狼的狩猎包括以下 3个主要部分:
1)跟踪、追逐和接近猎物;
2)追捕、包围和骚扰猎物,直到它停止移动;
3)攻击猎物
在狩猎过程中,将灰狼围捕猎物的行为定义如下:
式(1)表示个体与猎物间的距离,式(2)是灰狼的位置更新公式。其中, 是目前的迭代代数, 和 是系数向量, 和 分别是猎物的位置向量和灰狼的位置向量。 和 的计算公式如下:
其中, 是收敛因子,随着迭代次数从2线性减小到0, 和 的模取[0,1]之间的随机数。
灰狼能够识别猎物的位置并包围它们。当灰狼识别出猎物的位置后,β 和 δ 在 α 的带领下指导狼群包围猎物。在优化问题的决策空间中,我们对最佳解决方案(猎物的位置)并不了解。因此,为了模拟灰狼的狩猎行为,我们假设 α ,β 和 δ 更了解猎物的潜在位置。我们保存迄今为止取得的3个最优解决方案,并利用这三者的位置来判断猎物所在的位置,同时强迫其他灰狼个体(包括 ω )依据最优灰狼个体的位置来更新其位置,逐渐逼近猎物。狼群内个体跟踪猎物位置的机制如图2所示。
<center>图2.GWO 算法中灰狼位置更新示意图
灰狼个体跟踪猎物位置的数学模型描述如下:
其中, 分别表示分别表示 α , β 和 δ 与其他个体间的距离。 分别代表 α , β 和 δ 的当前位置; 是随机向量, 是当前灰狼的位置。
式(6)分别定义了狼群中 ω 个体朝向 α ,β 和 δ 前进的步长和方向,式(7)定义了 ω 的最终位置。
当猎物停止移动时,灰狼通过攻击来完成狩猎过程。为了模拟逼近猎物, 的值被逐渐减小,因此 的波动范围也随之减小。换句话说,在迭代过程中,当 的值从2线性下降到0时,其对应的 的值也在区间[-a,a]内变化。如图3a所示,当 的值位于区间内时,灰狼的下一位置可以位于其当前位置和猎物位置之间的任意位置。当 时,狼群向猎物发起攻击(陷入局部最优)。
灰狼根据 α ,β 和 δ 的位置来搜索猎物。灰狼在寻找猎物时彼此分开,然后聚集在一起攻击猎物。基于数学建模的散度,可以用 大于1 或小于-1 的随机值来迫使灰狼与猎物分离,这强调了勘探(探索)并允许 GWO 算法全局搜索最优解。如图3b所示, 强迫灰狼与猎物(局部最优)分离,希望找到更合适的猎物(全局最优)。GWO 算法还有另一个组件 来帮助发现新的解决方案。由式(4)可知, 是[0,2]之间的随机值。 表示狼所在的位置对猎物影响的随机权重, 表示影响权重大,反之,表示影响权重小。这有助于 GWO算法更随机地表现并支持探索,同时可在优化过程中避免陷入局部最优。另外,与 不同 是非线性减小的。这样,从最初的迭代到最终的迭代中,它都提供了决策空间中的全局搜索。在算法陷入了局部最优并且不易跳出时, 的随机性在避免局部最优方面发挥了非常重要的作用,尤其是在最后需要获得全局最优解的迭代中。
<center>图4.算法流程图
[1] Seyedali Mirjalili,Seyed Mohammad Mirjalili,Andrew Lewis. Grey Wolf Optimizer[J]. Advances in Engineering Software,2014,69.
[2] 张晓凤,王秀英.灰狼优化算法研究综述[J].计算机科学,2019,46(03):30-38.
https://mianbaoo.com/o/bread/Z5ecmZc=
文献复现:
文献复现:基于翻筋斗觅食策略的灰狼优化算法(DSFGWO)
[1]王正通,程凤芹,尤文,李双.基于翻筋斗觅食策略的灰狼优化算法[J/OL].计算机应用研究:1-5[2021-02-01]. https://doi.org/10.19734/j.issn.1001-3695.2020.04.0102 .
文献复现:基于透镜成像学习策略的灰狼优化算法(LIS-GWO)
[1]龙文,伍铁斌,唐明珠,徐明,蔡绍洪.基于透镜成像学习策略的灰狼优化算法[J].自动化学报,2020,46(10):2148-2164.
文献复现:一种优化局部搜索能力的灰狼算法(IGWO)
[1]王习涛.一种优化局部搜索能力的灰狼算法[J].计算机时代,2020(12):53-55.
文献复现:基于自适应头狼的灰狼优化算法(ALGWO)
[1]郭阳,张涛,胡玉蝶,杜航.基于自适应头狼的灰狼优化算法[J].成都大学学报(自然科学版),2020,39(01):60-63+73.
文献复现:基于自适应正态云模型的灰狼优化算法 (CGWO)
[1]张铸,饶盛华,张仕杰.基于自适应正态云模型的灰狼优化算法[J/OL].控制与决策:1-6[2021-02-08]. https://doi.org/10.13195/j.kzyjc.2020.0233 .
文献复现:改进非线性收敛因子灰狼优化算法
[1]王正通,尤文,李双.改进非线性收敛因子灰狼优化算法[J].长春工业大学学报,2020,41(02):122-127.
文献复现:一种基于收敛因子改进的灰狼优化算法
[1]邢燕祯,王东辉.一种基于收敛因子改进的灰狼优化算法[J].网络新媒体技术,2020,9(03):28-34.
文献复现:基于莱维飞行和随机游动策略的灰狼算法(GWOM )
[1]李阳,李维刚,赵云涛,刘翱.基于莱维飞行和随机游动策略的灰狼算法[J].计算机科学,2020,47(08):291-296.
文献复现:一种改进的灰狼优化算法(EGWO)
[1]龙文,蔡绍洪,焦建军,伍铁斌.一种改进的灰狼优化算法[J].电子学报,2019,47(01):169-175.
文献复现:改进收敛因子和比例权重的灰狼优化算法(CGWO)
[1]王秋萍,王梦娜,王晓峰.改进收敛因子和比例权重的灰狼优化算法[J].计算机工程与应用,2019,55(21):60-65+98.
文献复现:一种改进非线性收敛方式的灰狼优化算法研究(CGWO)
[1]谈发明,赵俊杰,王琪.一种改进非线性收敛方式的灰狼优化算法研究[J].微电子学与计算机,2019,36(05):89-95.
文献复现:一种基于Tent 映射的混合灰狼优化的改进算法(PSOGWO)
[1]滕志军,吕金玲,郭力文,许媛媛.一种基于Tent映射的混合灰狼优化的改进算法[J].哈尔滨工业大学学报,2018,50(11):40-49.
文献复现:基于差分进化与优胜劣汰策略的灰狼优化算法(IGWO)
[1]朱海波,张勇.基于差分进化与优胜劣汰策略的灰狼优化算法[J].南京理工大学学报,2018,42(06):678-686.
文献复现:基于 Iterative 映射和单纯形法的改进灰狼优化算法(SMIGWO)
[1]王梦娜,王秋萍,王晓峰.基于Iterative映射和单纯形法的改进灰狼优化算法[J].计算机应用,2018,38(S2):16-20+54.
文献复现:一种基于混合策略的灰狼优化算法(EPDGWO)
[1]牛家彬,王辉.一种基于混合策略的灰狼优化算法[J].齐齐哈尔大学学报(自然科学版),2018,34(01):16-19+32.
文献复现:基于随机收敛因子和差分变异的改进灰狼优化算法(IGWO)
[1]徐松金,龙文.基于随机收敛因子和差分变异的改进灰狼优化算法[J].科学技术与工程,2018,18(23):252-256.
文献复现:一种基于差分进化和灰狼算法的混合优化算法(DEGWO)
[1]金星,邵珠超,王盛慧.一种基于差分进化和灰狼算法的混合优化算法[J].科学技术与工程,2017,17(16):266-269.
文献复现:协调探索和开发能力的改进灰狼优化算法(IGWO)
[1]龙文,伍铁斌.协调探索和开发能力的改进灰狼优化算法[J].控制与决策,2017,32(10):1749-1757.
文献复现:基于Cat混沌与高斯变异的改进灰狼优化算法(IGWO)
[1]徐辰华,李成县,喻昕,黄清宝.基于Cat混沌与高斯变异的改进灰狼优化算法[J].计算机工程与应用,2017,53(04):1-9+50.
文献复现:具有自适应搜索策略的灰狼优化算法(SAGWO)
[1]魏政磊,赵辉,韩邦杰,孙楚,李牧东.具有自适应搜索策略的灰狼优化算法[J].计算机科学,2017,44(03):259-263.
文献复现:采用动态权重和概率扰动策略改进的灰狼优化算法(IGWO)
[1]陈闯,Ryad Chellali,邢尹.采用动态权重和概率扰动策略改进的灰狼优化算法[J].计算机应用,2017,37(12):3493-3497+3508.
文献复现:具有自适应调整策略的混沌灰狼优化算法(CLSGWO)
[1]张悦,孙惠香,魏政磊,韩博.具有自适应调整策略的混沌灰狼优化算法[J].计算机科学,2017,44(S2):119-122+159.
文献复现:强化狼群等级制度的灰狼优化算法(GWOSH)
[1]张新明,涂强,康强,程金凤.强化狼群等级制度的灰狼优化算法[J].数据采集与处理,2017,32(05):879-889.
文献复现:一种新型非线性收敛因子的灰狼优化算法(NGWO)
[1]王敏,唐明珠.一种新型非线性收敛因子的灰狼优化算法[J].计算机应用研究,2016,33(12):3648-3653.
文献复现:重选精英个体的非线性收敛灰狼优化算法(EGWO)
[1]黎素涵,叶春明.重选精英个体的非线性收敛灰狼优化算法[J].计算机工程与应用,2021,57(01):62-68.
https://mianbaoo.com/o/bread/aZ2Wl54=
㈢ deepthinker是什么软件
deepthinker是深度智能算法软件。
深度智能算法PaaS平台-沉思者(DeepThinker),集成公司自主研发的算法系统,由6大个子系统,自主改进融合了7种RNN网络以及10种CNN网络,对多种信号的多模态语义进行分析、关联和映射,得出更加完整、准确的算法识别分析结果。
平台提供可视化可编辑的场景化算法组件,为各个行业实现从场景化的算法构建,模型训练,推理验证,应用发布等全栈式算法服务。
相关信息
智能优化算法要解决的一般是最优化问题。优化思想里面经常提到邻域函数,它的作用是指出如何由当前解得到一个(组)新解。其具体实现方式要根据具体问题分析来定。局部搜索就是基于贪婪思想利用邻域函数进行搜索,若找到一个比现有值更优的解就弃前者而取后者。
优化算法有很多,经典算法包括:有线性规划,动态规划等;改进型局部搜索算法包括爬山法,最速下降法等,本文介绍的模拟退火、遗传算法以及禁忌搜索称作指导性搜索法。而神经网络,混沌搜索则属于系统动态演化方法。
㈣ 智能优化算法解决了哪些问题
智能优化主要是用来求最优解的,通过多次迭代计算找出稳定的收敛的最优解或近似最优解,例如复杂的单模态或多模态函数的求最值问题。
㈤ 多目标智能优化算法及其应用的序言
大多数工程和科学问题都是多目标优化问题,存在多个彼此冲突的目标,如何获取这些问题的最优解,一直都是学术界和工程界关注的焦点问题.与单目标优化问题不同,多目标优化的本质在于,大多数情况下,某目标的改善可能引起其他目标性能的降低,同时使多个目标均达到最优是不可能的,只能在各目标之间进行协调权衡和折中处理,使所有目标函数尽可能达到最优,而且问题的最优解由数量众多,甚至无穷大的Pareto最优解组成。
智能优化算法是一类通过模拟某一自然现象或过程而建立起来的优化方法’这类算法包括进化算法、粒子群算法、禁忌搜索、分散搜索、模拟退火、人工免疫系统和蚁群算法等。和传统的数学规划法相比,智能优化算法更适合求解多目标优化问题。首先,大多数智能优化算法能同时处理一组解,算法每运行一次,能获得多个有效解。其次,智能优化算法对Pareto最优前端的形状和连续性不敏感,能很好地逼近非凸或不连续的最优前端。目前,智能优化算法作为一类启发式搜索算法,已被成功应用于多目标优化领域,出现了一些热门的研究方向,如进化多目标优化,同时,多目标智能优化算法在电力系统、制造系统和控制系统等方面的应用研究也取得了很大的进展。
本书力图全面总结作者和国内外同行在多目标智能优化算法的理论与应用方面所取得的一系列研究成果。全书包括两部分,共8章。第一部分为第1-4主要介绍了各种多目标智能优化算法的理论。其中第1章为绪论,介绍各种智能优化算法的基本思想和原理。第2章介绍多目标进化算法,主要描述多目标进化算法的基本原理、典型算法和各种进化机制与策略,如混合策略、协同进化和动态进化策略等。第3章介绍多目标粒子群算法,包括基本原理、典型算法、混合算法和交互粒子群算法等。第4章描述除粒子群算法和进化算法之外的其他多目标智能优化算法,主要介绍多目标模拟退火算法、多目标蚁群算法、多目标免疫算法、多目标差分进化算法和多目标分散搜索等。
第二部分为第5-8章,主要介绍了多目标智能优化算法的应用’包括神经网络优化、生产调度、交通与物流系统优化、电力系统优化及其他。第5章描述人工神经网络的多目标优化,主要包括Pareto进化神经网络、径向基神经网络、递归神经网络和模糊神经网络。第6章介绍交通与物流系统优化,主要描述了智能优化算法在物流配送、城市公交路线网络和公共交通调度等方面的应用。
㈥ 优化算法是什么
智能优化算法是一种启发式优化算法,包括遗传算法、蚁群算法、禁忌搜索算法、模拟退火算法、粒子群算法等。·智能优化算法一般是针对具体问题设计相关的算法,理论要求弱,技术性强。一般,我们会把智能算法与最优化算法进行比较,相比之下,智能算法速度快,应用性强。
群体智能优化算法是一类基于概率的随机搜索进化算法,各个算法之间存在结构、研究内容、计算方法等具有较大的相似性。
各个群体智能算法之间最大不同在于算法更新规则上,有基于模拟群居生物运动长更新的(如PSO,AFSA与SFLA),也有根据某种算法机理设置更新规则(如ACO)。
(6)智能优化算法的应用扩展阅读:
优化算法有很多,关键是针对不同的优化问题,例如可行解变量的取值(连续还是离散)、目标函数和约束条件的复杂程度(线性还是非线性)等,应用不同的算法。 对于连续和线性等较简单的问题,可以选择一些经典算法,例如梯度、Hessian 矩阵、拉格朗日乘数、单纯形法、梯度下降法等;而对于更复杂的问题,则可考虑用一些智能优化算法。
㈦ 什么是智能优化算法
群体智能优化算法是一类基于概率的随机搜索进化算法,各个算法之间存在结构、研究内容、计算方法等具有较大的相似性。因此,群体智能优化算法可以建立一个基本的理论框架模式:
Step1:设置参数,初始化种群;
Step2:生成一组解,计算其适应值;
Step3:由个体最有适应着,通过比较得到群体最优适应值;
Step4:判断终止条件示否满足?如果满足,结束迭代;否则,转向Step2;
各个群体智能算法之间最大不同在于算法更新规则上,有基于模拟群居生物运动步长更新的(如PSO,AFSA与SFLA),也有根据某种算法机理设置更新规则(如ACO)。
(7)智能优化算法的应用扩展阅读
优化算法有很多,经典算法包括:有线性规划,动态规划等;改进型局部搜索算法包括爬山法,最速下降法等,模拟退火、遗传算法以及禁忌搜索称作指导性搜索法。而神经网络,混沌搜索则属于系统动态演化方法。
优化思想里面经常提到邻域函数,它的作用是指出如何由当前解得到一个(组)新解。其具体实现方式要根据具体问题分析来定。
㈧ 智能优化算法在人工智能中的作用
在复杂环境与多体交互中做出最优决策。
智能优化算法是一种启发式优化算法,包括遗传算法、蚁群算法、禁忌搜索算法、模拟退火算法、粒子群算法等。·智能优化算法一般是针对具体问题设计相关的算法,理论要求弱,技术性强。
㈨ 智能优化算法:生物地理学优化算法
@[toc]
摘要:Alfred Wallace和Charles Darwin在19世纪提出了生物地理学理论,研究生物物种栖息地的分布、迁移和灭绝规律。Simon受到生物地理学理论的启发,在对生物物种迁移数学模型的研究基础上,于 2008年提出了一种新的智能优化算法 — 生物地理学优化算法(Biogeography-Based Optimization,BBO)。BBO算法是一种基于生物地理学理论的新型算法,具有良好的收敛性和稳定性,受到越来越多学者的关注。
BO算法的基本思想来源于生物地理学理论。如图1所示,生物物种生活在多个栖息地(Habitat)上,每个栖息地用栖息适宜指数(Habitat Suitability Index,HSI)表示,与HSI相关的因素有降雨量、植被多样性、地貌特征、土地面积、温度和湿度等,将其称为适宜指数变量(Suitability Index Variables,SIV)。
HSI是影响栖息地上物种分布和迁移的重要因素之一。较高 HSI的栖息地物种种类多;反之,较低 HSI的栖息地物种种类少。可见,栖息地的HSI与生物多样性成正比。高 HSI的栖息地由于生存空间趋于饱和等
问题会有大量物种迁出到相邻栖息地,并伴有少量物种迁入;而低 HSI的栖息地其物种数量较少,会有较多物种的迁入和较少物种的迁出。但是,当某一栖息地HSI一直保持较低水平时,则该栖息地上的物种会趋于灭绝,或寻找另外的栖息地,也就是突变。迁移和突变是BBO算法的两个重要操作。栖息地之间通过迁移和突变操作,增强物种间信息的交换与共享,提高物种的多样性。
BBO算法具有一般进化算法简单有效的特性,与其他进化算法具有类似特点。
(1)栖息适宜指数HSI表示优化问题的适应度函数值,类似于遗传算法中的适应度函数。HSI是评价解集好坏的标准。
(2)栖息地表示候选解,适宜指数变量 SIV 表示解的特征,类似于遗传算法中的“基因”。
(3)栖息地的迁入和迁出机制提供了解集中信息交换机制。高 HSI的解以一定的迁出率将信息共享给低HSI的解。
(4)栖息地会根据物种数量进行突变操作,提高种群多样性,使得算法具有较强的自适应能力。
BBO算法的具体流程为:
步骤1 初始化BBO算法参数,包括栖息地数量 、迁入率最大值 和迁出率最大值 、最大突变率 等参数。
步骤2 初始化栖息地,对每个栖息地及物种进行随机或者启发式初始化。
步骤3 计算每个栖息地的适宜指数HSI;判断是否满足停止准则,如果满足就停止,输出最优解;否则转步骤4。
步骤4 执行迁移操作,对每个栖息地计算其迁入率和迁出率,对SIV进行修改,重新计算适宜指数HSI。
步骤5 执行突变操作,根据突变算子更新栖息地物种,重新计算适宜指数HSI。
步骤6 转到步骤3进行下一次迭代。
1.1 迁移操作
如图2所示,该模型为单个栖息地的物种迁移模型。
横坐标为栖息地种群数量 S ,纵坐标为迁移比率 η,λ(s) 和 μ(s) 分别为种群数量的迁入率和迁出率。当种群数量为 0 时,种群的迁出率 μ(s) 为 0,种群的迁入率λ(s) 最大;当种群数量达到 S max 时,种群的迁入率 λ(s)为0,种群迁出率 u(s) 达到最大。当种群数量为 S 0 时,迁出率和迁入率相等,此时达到动态平衡状态。根据图2,得出迁入率和迁出率为:
迁移操作的步骤可以描述为:
Step1:for i= 1 to N do
Step2: 用迁入率 选取
Step3: if (0,1)之间的均匀随机数小于 then
Step4: for j= 1 to N do
Step5: 用迁出率 选取
Step6: if (0,1)之间的均匀随机数小于 then
Step7: 从 中随机选取一个变量SIV
Step8: 用SIV替换 中的一个随机SIV
Step9: end if
Step10: end for
Step11: end if
Step12:end for
1.2 突变(Mutation)操作
突变操作是模拟栖息地生态环境的突变,改变栖息地物种的数量,为栖息地提供物种的多样性,为算法提供更多的搜索目标。栖息地的突变概率与其物种数量概率成反比。即
其中: 为最大突变率; 为栖息地中物种数量为 对应的概率; 为 的最大值; 是栖息地中物种数量为 对应的突变概率。
突变操作的步骤可以描述为:
Step1:for i= 1 to N do
Step2: 计算突变概率
Step3: 用突变概率 选取一个变量
Step4: if (0,1)之间的均匀随机数小于 then
Step5: 随机一个变量代替 中的SIV
Step6: end if
Step7:end for
[1] Simon D.Biogeography-based optimization[J].IEEE Trans-
actions on Evolutionary Computation,2008(6):702-713.
[2]张国辉,聂黎,张利平.生物地理学优化算法理论及其应用研究综述[J].计算机工程与应用,2015,51(03):12-17.
https://mianbaoo.com/o/bread/aJqZmZ8=
https://mianbaoo.com/o/bread/YZaXmJpq
㈩ 智能优化算法有哪些
就是通过程序来模拟自然界已知的进化方法来进行优化的方法,比如模拟生物进化的遗传算法,模拟自然选择进行筛选,逐步归向最大值