linuxtcp关闭
Ⅰ linux 如何开放端口和关闭端口
1、查看哪些端口被打开netstat -anp。
(1)linuxtcp关闭扩展阅读:
liunx常见端口详细说明 :
1、端口:7
服务:Echo
说明:能看到许多人搜索Fraggle放大器时,发送到X.X.X.0和X.X.X.255的信息。
2、端口:21
服务:ftp
说明:FTP服务器所开放的端口,用于上传、下载。最常见的攻击者用于寻找打开anonymous的FTP服务器的方法。这些服务器带有可读写的目录。木马Doly
Trojan、Fore、Invisible FTP、WebEx、WinCrash和Blade Runner所开放的端口。
3、端口:22
服务:Ssh
说明:PcAnywhere建立的TCP和这一端口的连接可能是为了寻找ssh。这一服务有许多弱点,如果配置成特定的模式,许多使用RSAREF库的版本就会有不少的漏洞
存在。
4、端口:23
服务:Telnet
说明:远程登录,入侵者在搜索远程登录UNIX的服务。大多数情况下扫描这一端口是为了找到机器运行的操作系统。还有使用其他技术,入侵者也会找到密码。木马Tiny
Telnet Server就开放这个端口。
5、端口:25
服务:SMTP
说明:SMTP服务器所开放的端口,用于发送邮件。入侵者寻找SMTP服务器是为了传递他们的SPAM。入侵者的帐户被关闭,他们需要连接到高带宽的E-MAIL服务器上,将简单的信息传递到不同的地址。木马Antigen、Email Password Sender、Haebu Coceda、Shtrilitz Stealth、WinPC、WinSpy都开放这个端口。
6、端口:53
服务:Domain Name Server(DNS)
说明:DNS服务器所开放的端口,入侵者可能是试图进行区域传递(TCP),欺骗DNS(UDP)或隐藏其他的通信。因此防火墙常常过滤或记录此端口。
7、端口:80
服务:HTTP
说明:用于网页浏览。木马Executor开放此端口。
8、端口:102
服务:Message transfer agent(MTA)-X.400 over TCP/IP
说明:消息传输代理。
9、端口:110
服务:pop3
说明:POP3(Post Office Protocol
服务器开放此端口,用于接收邮件,客户端访问服务器端的邮件服务。POP3服务有许多公认的弱点。关于用户名和密码交换缓冲区溢出的弱点至少有20个,这意味着入侵者可以在真正登陆前进入系统。成功登陆后还有其他缓冲区溢出错误。
10、端口:137、138、139
服务:NETBIOS Name Service
说明:其中137、138是UDP端口,当通过网上邻居传输文件时用这个端口。而139端口:通过这个端口进入的连接试图获得NetBIOS/SMB服务。这个协议被用于windows文件和打印机共享和SAMBA。还有WINS Regisrtation也用它。
11、端口:143
服务:Interim Mail Access Protocol v2
说明:和POP3的安全问题一样,许多IMAP服务器存在有缓冲区溢出漏洞。
记住:一种LINUX蠕虫(admv0rm)会通过这个端口繁殖,因此许多这个端口的扫描来自不知情的已经被感染的用户。当REDHAT在他们的LINUX发布版本中默认允许IMAP后,这些漏洞变的很流行。这一端口还被用于IMAP2,但并不流行。
12、端口:161
服务:SNMP
说明:SNMP允许远程管理设备。所有配置和运行信息的储存在数据库中,通过SNMP可获得这些信息。许多管理员的错误配置将被暴露在Internet。Cackers将试图使用默认的密码public、private访问系统。他们可能会试验所有可能的组合。
SNMP包可能会被错误的指向用户的网络。
13、端口:389
服务:LDAP、ILS
说明:轻型目录访问协议和NetMeeting Internet Locator Server共用这一端口 。
14、端口:443
服务:Https
说明:网页浏览端口,能提供加密和通过安全端口传输的另一种HTTP。
15、端口:993
服务:IMAP
说明:SSL(Secure Sockets layer)
16、端口:1433
服务:SQL
说明:Microsoft的SQL服务开放的端口。
17、端口:1503
服务:NetMeeting T.120
说明:NetMeeting T.120
18、端口:1720
服务:NetMeeting
说明:NetMeeting H.233 call Setup。
19、端口:1731
服务:NetMeeting Audio Call Control
说明:NetMeeting音频调用控制。
20、端口:3389
服务:超级终端
说明:WINDOWS 2000终端开放此端口。
21、端口:4000
服务:QQ客户端
说明:腾讯QQ客户端开放此端口。
22、端口:5631
服务:pcAnywere
说明:有时会看到很多这个端口的扫描,这依赖于用户所在的位置。当用户打开pcAnywere时,它会自动扫描局域网C类网以寻找可能的代理(这里的代理是指agent而不是proxy)。入侵者也会寻找开放这种服务的计算机。所以应该查看这种扫描的源地址。一些搜寻pcAnywere的扫描包常含端口22的UDP数据包。
23、端口:6970
服务:RealAudio
说明:RealAudio客户将从服务器的6970-7170的UDP端口接收音频数据流。这是由TCP-7070端口外向控制连接设置的。
24、端口:7323
服务:[NULL]
说明:Sygate服务器端。
25、端口:8000
服务:OICQ
说明:腾讯QQ服务器端开放此端口。
26、端口:8010
服务:Wingate
说明:Wingate代理开放此端口。
27、端口:8080
服务:代理端口
说明:WWW代理开放此端口。
Ⅱ linux中的一个特殊文件: /dev/tcp
linux中的一个特殊文件: /dev/tcp ,打开这个文件就类似于发出了一个socket调用,建立一个socket连接,读写这个文件就相当于在这个socket连接中传输数据。
/dev/[tcp|upd]/host/port 只要读取或者写入这个文件,相当于系统会尝试连接:host 这台机器,对应port端口。如果主机以及端口存在,就建立一个socket 连接。将在,/proc/self/fd目录下面,有对应的文件出现。
以读写方式打开/dev/tcp,并指定服务器名为: www.csdn.net ,端口号为:80,指定描述符为8。
要注意的是:/dev/tcp本身是不存在的。
向文件中随便写一些数据:
GET请求发送给socket连接。
读取返回的信息:
从socket读取返回信息,显示为标准输出
关闭socket的输入,输出
https://blog.csdn.net/zhjutao/article/details/8622751
https://www.cnblogs.com/chengmo/archive/2010/10/22/1858302.html
Ⅲ LINUX下Tcp端口如何释放
端口只能打开或者关闭,需要释放的是连接到这个端口的链接,一般关闭这个端口等一段时间链接自动会被释放。打开或者关闭端口只能依靠各种服务,比如ssh服务,会默认打开22端口,只有关闭ssh服务,22端口才会被关闭,连接22端口的链接才会被逐渐释放。
Ⅳ 如何禁止Linux组合TCP小包
如何禁止Linux组合TCP小包,关于这个问题有以下解释:注册账号,与客服交流
killcx可以关闭一个linux上的tcp连接,而不管连接的状态是怎么样的(半开,已建立,等待或关闭状态)。
它是一个Perl的脚本程序,在linux上使用需要安装一下它的依赖的包。
它依赖三个包:Net::RawIP,Net::Pcap和Net::Pcap。
安装命令如下:
apt-getinstalllibnet-rawip-perl
apt-getinstalllibnet-pcap-perl
cpanNetPacket::Ethernet
安装完成就可以使用了,使用语法为:killcxip:port
注意如果关闭半开状态的连接(即只有一端有连接,另外一端没有连接),killcx需要运行在还有连接存在的主机上才可以关闭连接。
killcx官方文档
如何干掉一条tcp连接(活跃/非活跃)
Ⅳ linux下crt远程开启tcpmp抓包后,关掉crt后还在抓吗
通过你的描述,你把crt远程关闭了,
抓包
一段时间后,就会自动结束,如果要继续在后台运行,你在执行抓包命令时,在命令后面加上一个字符
&
,这样在你关闭远程crt后,抓包命令就会转入后台
继续执行
,直到你输入结束命令。
希望能帮到你,,,,,,
Ⅵ linux111/tcp怎么关闭
用netstat -antp |grep ':111' 找到这个进程,再kill掉。
比如
killall rpcbind
Ⅶ linux编程中,哪个tcp的套接字选项与nagle算法的开启和关闭有关
从函数调用上来分析(msdn):一旦完成了套接字的连接,应当将套接字关闭,并且释放其套接字句柄所占用的所有资源。真正释放一个已经打开的套接字句柄的资源直接调用closesocket即可,但要明白closesocket的调用可能会带来负面影响,具体的影响和...
Ⅷ 查看linux中的TCP连接数
1)统计80端口连接数
2)统计httpd协议连接数
3)、统计已连接上的,状态为“established
4)、查出哪个IP地址连接最多,将其封了.
1、查看apache当前并发访问数:
对比httpd.conf中MaxClients的数字差距多少。
2、查看有多少个进程数:
3、可以使用如下参数查看数据
统计httpd进程数,连个请求会启动一个进程,使用于Apache服务器。
表示Apache能够处理1388个并发请求,这个值Apache可根据负载情况自动调整。
4341
netstat -an会打印系统当前网络链接状态,而grep -i "80"是用来提取与80端口有关的连接的,wc -l进行连接数统计。
最终返回的数字就是当前所有80端口的请求总数。
netstat -an会打印系统当前网络链接状态,而grep ESTABLISHED 提取出已建立连接的信息。 然后wc -l统计。
最终返回的数字就是当前所有80端口的已建立连接的总数。
查看Apache的并发请求数及其TCP连接状态:
TIME_WAIT 8947 等待足够的时间以确保远程TCP接收到连接中断请求的确认
FIN_WAIT1 15 等待远程TCP连接中断请求,或先前的连接中断请求的确认
FIN_WAIT2 1 从远程TCP等待连接中断请求
ESTABLISHED 55 代表一个打开的连接
SYN_RECV 21 再收到和发送一个连接请求后等待对方对连接请求的确认
CLOSING 2 没有任何连接状态
LAST_ACK 4 等待原来的发向远程TCP的连接中断请求的确认
TCP连接状态详解
LISTEN: 侦听来自远方的TCP端口的连接请求
SYN-SENT: 再发送连接请求后等待匹配的连接请求
SYN-RECEIVED:再收到和发送一个连接请求后等待对方对连接请求的确认
ESTABLISHED: 代表一个打开的连接
FIN-WAIT-1: 等待远程TCP连接中断请求,或先前的连接中断请求的确认
FIN-WAIT-2: 从远程TCP等待连接中断请求
CLOSE-WAIT: 等待从本地用户发来的连接中断请求
CLOSING: 等待远程TCP对连接中断的确认
LAST-ACK: 等待原来的发向远程TCP的连接中断请求的确认
TIME-WAIT: 等待足够的时间以确保远程TCP接收到连接中断请求的确认
CLOSED: 没有任何连接状态
LAST_ACK 5
SYN_RECV 30
ESTABLISHED 1597
FIN_WAIT1 51
FIN_WAIT2 504
TIME_WAIT 1057
其中的
SYN_RECV表示正在等待处理的请求数;
ESTABLISHED表示正常数据传输状态;
TIME_WAIT表示处理完毕,等待超时结束的请求数。
查看Apache并发请求数及其TCP连接状态
查看httpd进程数(即prefork模式下Apache能够处理的并发请求数):
返回结果示例:
1388
表示Apache能够处理1388个并发请求,这个值Apache可根据负载情况自动调整,我这组服务器中每台的峰值曾达到过2002。
查看Apache的并发请求数及其TCP连接状态:
返回结果示例:
LAST_ACK 5
SYN_RECV 30
ESTABLISHED 1597
FIN_WAIT1 51
FIN_WAIT2 504
TIME_WAIT 1057
其中的SYN_RECV表示正在等待处理的请求数;ESTABLISHED表示正常数据传输状态;TIME_WAIT表示处理完毕,等待超时结束的请求数。
状态:描述
CLOSED:无连接是活动 的或正在进行
LISTEN:服务器在等待进入呼叫
SYN_RECV:一个连接请求已经到达,等待确认
SYN_SENT:应用已经开始,打开一个连接
ESTABLISHED:正常数据传输状态
FIN_WAIT1:应用说它已经完成
FIN_WAIT2:另一边已同意释放
ITMED_WAIT:等待所有分组死掉
CLOSING:两边同时尝试关闭
TIME_WAIT:另一边已初始化一个释放
LAST_ACK:等待所有分组死掉
vim /etc/sysctl.conf
编辑文件,加入以下内容:
net.ipv4.tcp_syncookies = 1
net.ipv4.tcp_tw_reuse = 1
net.ipv4.tcp_tw_recycle = 1
net.ipv4.tcp_fin_timeout = 30
然后执行 /sbin/sysctl -p 让参数生效。
net.ipv4.tcp_syncookies = 1 表示开启SYN cookies。当出现SYN等待队列溢出时,启用cookies来处理,可防范少量SYN攻击,默认为0,表示关闭;
net.ipv4.tcp_tw_reuse = 1 表示开启重用。允许将TIME-WAIT sockets重新用于新的TCP连接,默认为0,表示关闭;
net.ipv4.tcp_tw_recycle = 1 表示开启TCP连接中TIME-WAIT sockets的快速回收,默认为0,表示关闭。
net.ipv4.tcp_fin_timeout 修改系统默认的 TIMEOUT 时间
客户端与服务器端建立TCP/IP连接后关闭SOCKET后,服务器端连接的端口
状态为TIME_WAIT
是不是所有执行主动关闭的socket都会进入TIME_WAIT状态呢?
有没有什么情况使主动关闭的socket直接进入CLOSED状态呢?
主动关闭的一方在发送最后一个 ack 后
就会进入 TIME_WAIT 状态 停留2MSL(max segment lifetime)时间
这个是TCP/IP必不可少的,也就是“解决”不了的。
也就是TCP/IP设计者本来是这么设计的
主要有两个原因
1。防止上一次连接中的包,迷路后重新出现,影响新连接
(经过2MSL,上一次连接中所有的重复包都会消失)
2。可靠的关闭TCP连接
在主动关闭方发送的最后一个 ack(fin) ,有可能丢失,这时被动方会重新发
fin, 如果这时主动方处于 CLOSED 状态 ,就会响应 rst 而不是 ack。所以
主动方要处于 TIME_WAIT 状态,而不能是 CLOSED 。
TIME_WAIT 并不会占用很大资源的,除非受到攻击。
还有,如果一方 send 或 recv 超时,就会直接进入 CLOSED 状态
如何合理设置apache httpd的最大连接数?
手头有一个网站在线人数增多,访问时很慢。初步认为是服务器资源不足了,但经反复测试,一旦连接上,不断点击同一个页面上不同的链接,都能迅速打开,这种现象就是说明apache最大连接数已经满了,新的访客只能排队等待有空闲的链接,而如果一旦连接上,在keeyalive 的存活时间内(KeepAliveTimeout,默认5秒)都不用重新打开连接,因此解决的方法就是加大apache的最大连接数。
1.在哪里设置?
apache 2.24,使用默认配置(FreeBSD 默认不加载自定义MPM配置),默认最大连接数是250
在/usr/local/etc/apache22/httpd.conf中加载MPM配置(去掉前面的注释):
Include etc/apache22/extra/httpd-mpm.conf
可见的MPM配置在/usr/local/etc/apache22/extra/httpd-mpm.conf,但里面根据httpd的工作模式分了很多块,哪一部才是当前httpd的工作模式呢?可通过执行 apachectl -l 来查看:
Compiled in moles:
core.c
prefork.c
http_core.c
mod_so.c
看到prefork 字眼,因此可见当前httpd应该是工作在prefork模式,prefork模式的默认配置是:
<IfMole mpm_prefork_mole>
StartServers 5
MinSpareServers 5
MaxSpareServers 10
MaxClients 150
MaxRequestsPerChild 0
</IfMole>
2.要加到多少?
连接数理论上当然是支持越大越好,但要在服务器的能力范围内,这跟服务器的CPU、内存、带宽等都有关系。
查看当前的连接数可以用:
ps aux | grep httpd | wc -l
或:
pgrep httpd|wc -l
计算httpd占用内存的平均数:
ps aux|grep -v grep|awk '/httpd/{sum+=$6;n++};END{print sum/n}'
由于基本都是静态页面,CPU消耗很低,每进程占用内存也不算多,大约200K。
服务器内存有2G,除去常规启动的服务大约需要500M(保守估计),还剩1.5G可用,那么理论上可以支持1.5 1024 1024*1024/200000 = 8053.06368
约8K个进程,支持2W人同时访问应该是没有问题的(能保证其中8K的人访问很快,其他的可能需要等待1、2秒才能连上,而一旦连上就会很流畅)
控制最大连接数的MaxClients ,因此可以尝试配置为:
<IfMole mpm_prefork_mole>
StartServers 5
MinSpareServers 5
MaxSpareServers 10
ServerLimit 5500
MaxClients 5000
MaxRequestsPerChild 100
</IfMole>
注意,MaxClients默认最大为250,若要超过这个值就要显式设置ServerLimit,且ServerLimit要放在MaxClients之前,值要不小于MaxClients,不然重启httpd时会有提示。
重启httpd后,通过反复执行pgrep httpd|wc -l 来观察连接数,可以看到连接数在达到MaxClients的设值后不再增加,但此时访问网站也很流畅,那就不用贪心再设置更高的值了,不然以后如果网站访问突增不小心就会耗光服务器内存,可根据以后访问压力趋势及内存的占用变化再逐渐调整,直到找到一个最优的设置值。
(MaxRequestsPerChild不能设置为0,可能会因内存泄露导致服务器崩溃)
更佳最大值计算的公式:
apache_max_process_with_good_perfermance < (total_hardware_memory / apache_memory_per_process ) * 2
apache_max_process = apache_max_process_with_good_perfermance * 1.5
附:
实时检测HTTPD连接数:
watch -n 1 -d "pgrep httpd|wc -l"
Ⅸ 我想关闭LINUX系统上的某个端口,请问相关命令是什么详细一点的,谢谢。
前提:首先你必须知道,端口不是独立存在的,它是依附于进程的。某个进程开启,那么它对应的端口就开启了,进程关闭,则该端口也就关闭了。下次若某个进程再次开启,则相应的端口也再次开启。而不要纯粹的理解为关闭掉某个端口,不过可以禁用某个端口。
1. 可以通过"~$ netstat -anp" 来查看哪些端口被打开。
(注:加参数'-n'会将应用程序转为端口显示,即数字格式的地址,如:nfs->2049, ftp->21,因此可以开启两个终端,一一对应一下程序所对应的端口号)
2. 然后可以通过"~$ lsof -i:$PORT"查看应用该端口的程序($PORT指对应的端口号)。或者你也可以查看文件/etc/services,从里面可以找出端口所对应的服务。
(注:有些端口通过netstat查不出来,更可靠的方法是"~$ sudo nmap -sT -O localhost")
3. 若要关闭某个端口,则可以:
1)通过iptables工具将该端口禁掉,如:
"~$ sudo iptables -A INPUT -p tcp --dport $PORT -j DROP"
"~$ sudo iptables -A OUTPUT -p tcp --dport $PORT -j DROP"
2)或者关掉对应的应用程序,则端口就自然关闭了,如:
"~$ kill -9 PID" (PID:进程号)
如: 通过"~$ netstat -anp | grep ssh"
有显示: tcp 0 127.0.0.1:2121 0.0.0.0:* LISTEN 7546/ssh
则: "~$ kill -9 7546"
(可通过"~$ chkconfig"查看系统服务的开启状态)
本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/yjier/archive/2011/05/25/6444198.aspx
Ⅹ 畅谈linux下TCP(上)
tcp 协议 是互联网中最常用的协议 , 开发人员基本上天天和它打交道,对它进行深入了解。 可以帮助我们排查定位bug和进行程序优化。下面我将就TCP几个点做深入的探讨
客户端:收到 ack 后 分配连接资源。 发送数据
服务器 : 收到 syn 后立即 分配连接资源
客户端:收到ACK, 立即分配资源
服务器:收到ACK, 立即分配资源
既然三次握手也不是100%可靠, 那四次,五次,六次。。。呢? 其实都一样,不管多少次都有丢包问题。
client 只发送一个 SYN, server 分配一个tcb, 放入syn队列中。 这时候连接叫 半连接 状态;如果server 收不到 client 的ACK, 会不停重试 发送 ACK-SYN 给client 。重试间隔 为 2 的 N 次方 叠加(2^0 , 2^1, 2^2 ....);直至超时才释放syn队列中的这个 TCB;
在半连接状态下, 一方面会占用队列配额资源,另一方面占用内存资源。我们应该让半连接状态存在时间尽可能的小
当client 向一个未打开的端口发起连接请求时,会收到一个RST回复包
当listen 的 backlog 和 somaxconn 都设置了得时候, 取两者min值
Recv-Q 是accept 队列当前个数, Send-Q 设置最大值
这种SYN洪水攻击是一种常见攻击方式,就是利用半连接队列特性,占满syn 队列的 资源,导致 client无法连接上。
解决方案:
为什么不像握手那样合并成三次挥手? 因为和刚开始连接情况,连接是大家都从0开始, 关闭时有历史包袱的。server(被动关闭方) 收到 client(主动关闭方) 的关闭请求FIN包。 这时候可能还有未发送完的数据,不能丢弃。 所以需要分开。事实可能是这样
当然,在没有待发数据,并且允许 Delay ACK 情况下, FIN-ACK合并还是非常常见的事情,这是三次挥手是可以的。
同上
CLOSE_WAIT 是被动关闭方才有的状态 。
被动关闭方 [收到 FIN 包 发送 ACK 应答] 到 [发送FIN, 收到ACK ] 期间的状态为 CLOSE_WAIT, 这个状态仍然能发送数据。 我们叫做 半关闭 , 下面用个例子来分析:
这个是我实际生产环境碰到的一个问题,长连接会话场景,server端收到client的rpc call 请求1,处理发现请求包有问题,就强制关闭结束这次会话, 但是 因为client 发送 第二次请求之前,并没有去调用recv,所以并不知道 这个连接被server关闭, 继续发送 请求2 , 此时是半连接,能够成功发送到对端机器,但是recv结果后,遇到连接已经关闭错误。
如果 client 和 server 恰好同时发起关闭连接。这种情况下,两边都是主动连接,都会进入 TIME_WAIT状态
1、 被动关闭方在LAST_ACK状态(已经发送FIN),等待主动关闭方的ACK应答,但是 ACK丢掉, 主动方并不知道,以为成功关闭。因为没有TIME_WAIT等待时间,可以立即创建新的连接, 新的连接发送SYN到前面那个未关闭的被动方,被动方认为是收到错误指令,会发送RST。导致创建连接失败。
2、 主动关闭方断开连接,如果没有TIME_WAIT等待时间,可以马上建立一个新的连接,但是前一个已经断开连接的,延迟到达的数据包。 被新建的连接接收,如果刚好seq 和 ack字段 都正确, seq在滑动窗口范围内(只能说机率非常小,但是还是有可能会发生),会被当成正确数据包接收,导致数据串包。 如果不在window范围内,则没有影响( 发送一个确认报文(ack 字段为期望ack的序列号,seq为当前发送序列号),状态变保持原样)
TIME_WAIT 问题比较比较常见,特别是CGI机器,并发量高,大量连接后段服务的tcp短连接。因此也衍生出了多种手段解决。虽然每种方法解决不是那么完美,但是带来的好处一般多于坏处。还是在日常工作中会使用。
1、改短TIME_WAIT 等待时间
这个是第一个想到的解决办法,既然等待时间太长,就改成时间短,快速回收端口。但是实际情况往往不乐观,对于并发的机器,你改多短才能保证回收速度呢,有时候几秒钟就几万个连接。太短的话,就会有前面两种问题小概率发生。
2、禁止Socket lingering
这种情况下关闭连接,会直接抛弃缓冲区中待发送的数据,会发送一个RST给对端,相当于直接抛弃TIME_WAIT, 进入CLOSE状态。同样因为取消了 TIME_WAIT 状态,会有前面两种问题小概率发生。
3、tcp_tw_reuse
net.ipv4.tcp_tw_reuse选项是 从 TIME_WAIT 状态的队列中,选取条件:1、remote 的 ip 和端口相同, 2、选取一个时间戳小于当前时间戳; 用来解决端口不足的尴尬。
现在端口可以复用了,看看如何面对前面TIME_WAIT 那两种问题。 我们仔细回顾用一下前面两种问题。 都是在新建连接中收到老连接的包导致的问题 , 那么如果我能在新连接中识别出此包为非法包,是不是就可以丢掉这些无用包,解决问题呢。
需要实现这些功能,需要扩展一下tcp 包头。 增加 时间戳字段。 发送者 在每次发送的时候。 在tcp包头里面带上发送时候的时间戳。 当接收者接收的时候,在ACK应答中除了TCP包头中带自己此时发送的时间戳,并且把收到的时间戳附加在后面。也就是说ACK包中有两个时间戳字段。结构如下:
那我们接下来一个个分析tcp_tw_reuse是如何解决TIME_WAIT的两个问题的
4、tcp_tw_recycle
tcp_tw_recycle 也是借助 timestamp机制。顾名思义, tcp_tw_reuse 是复用 端口,并不会减少 TIME-WAIT 数量。你去查询机器上TIME-WAIT 数量,还是 几千几万个,这点对有强迫症的同学感觉很不舒服。tcp_tw_recycle 是 提前 回收 TIME-WAIT资源。会减少 机器上 TIME-WAIT 数量。
tcp_tw_recycle 工作原理是。