算法处理影像
A. 图像处理的研究方向
图像处理的研究有三层或者三个主要方向:
图像认知理论研究;
图像处理算法研究;
图像处理的应用研究。
图像处理(imageprocessing),用计算机对图像进行分析,以达到所需结果的技术。又称影像处理。图像处理一般指数字图像处理。数字图像是指用工业相机、摄像机、扫描仪等设备经过拍摄得到的一个大的二维数组,该数组的元素称为像素,其值称为灰度值。图像处理技术的一般包括图像压缩,增强和复原,匹配、描述和识别3个部分。常见的系统有康耐视系统、图智能系统等,目前是正在逐渐兴起的技术。
B. 用ENVI处理遥感影像方法(植被分类方面的)
植被分类主要是根据植被波普特性,用的比较多的算法比如,比值植被指数、归一化植被指数等,主要利用植被在红光波段和近红外波段的反射特性。分类的话就在ENVI软件中做波段运算就就可以了。
ENVI软件和其有自带的IDL语言可以处理HJ卫星数据。
C. 数字图像处理的基本概念
(一)数字图像
数字图像,又称数字化图像,是一种以二维数组(矩阵)形式表示的图像。该数组由对连续变化的空间图像作等间距抽样所产生的抽样点——像元(像素)组成,抽样点的间距取决于图像的分辨率或服从有关的抽样定律抽样点(像元)的量值,通常为抽样区间内连续变化之量物的均值化量值,一般称作亮度值或灰度值,它们的最大、最小值区间代表该数字图像的动态范围。数字图像的物理含义取决于抽样对象的性质。对于遥感数字图像,就是相应成像区域内地物电磁辐射强度的二维分布。
在数字图像中,像元是最基本的构成单元。每一个像元的位置可由行、列(x,y)坐标确定;亮度值(z)通常以0(黑)到255(白)为取值范围。因此,任何一幅数字图像都可以通过X、Y、Z的三维坐标系表示出。例如,陆地卫星的MSS图像(图4-8),便可看作x=2340(行),y=3240(列),z=0-255的三维坐标系。TM、HRV等亦然,只是行、列数不同而已。
图4-8 陆地卫星MSS数字图像的构成原理
数字图像可以有各种不同的来源:大多数卫星遥感,如MSS、TM、HRV、AVERR等等,地面景像的遥感信息都直接记录在数字磁带上,有关的接收系统(遥感卫星地面站、气象卫星接收站等)均可提供相应的计算机兼容数字磁带(CCT)及其记录格式。应用人员只要按记录格式将CCT数据输入计算机图像处理系统,即可获得数字图像,并进行各种图像处理;对于胶片影像,则可通过透射密度计、飞点扫描器、鼓形扫描器及摄像扫描器等,将影像密度转换为数值,进而形成数字图像;对于非遥感的地学图件,如地形图、地质图、航磁图、重力图、化探元素异常图等等,也可通过数字化仪,转换为数字图像。同一地区不同来源的数字图像都可精确配准,并作复合处理。
与光学图像相比,数字图像量化等级高(256级)、失真度小、不同图像的配准精度高、传输及储存方便,尤为重要的是可由计算机进行各种灵活、可靠、有效的处理,使遥感图像获得更好的判读、分析等应用效果。
(二)数字图像处理
数字图像以不同亮度值像元的行、列矩阵组织数据,其最基本的特点就是像元的空间坐标和亮度取值都被离散化了,即只能取有限的、确定的值。所以,离散和有限是数字图像最基本的数学特征。所谓数字图像处理,就是依据数字图像的这一数字特征,构造各种数字模型和相应的算法,由计算机进行运算(矩阵变换)处理,进而获得更加有利于实际应用的输出图像及有关数据和资料。故数字图像处理通常也称为计算机增强处理。
数字图像处理在算法上基本可归为两类:一类为点处理,即施行图像变换运算时只输入图像空间上一个像元点的值,逐点处理,直到所有点都处理完毕,如反差增强、比值增强等;另一类为邻域处理,即为了产生一个新像元的输出,需要输入与该像元相邻的若干个像元的数值。这类算法一般用作空间特征的处理,如各种滤波处理。点处理和邻域处理有各自不同的适应面,在设计算法时,需针对不同的处理对象和处理目标加以选择。
遥感数字图像处理,数据量一般很大,往往要同时针对一组数字图像(多波段、多时相等)作多种处理,因此,需要依据遥感图像所具有的波谱特征、空间特征和时间特性,按照不同的对象和要求构造各种不同的数学模型,设计出不同的算法,不仅处理方法非常丰富,而且形成了自身的特色,已发展为一门专门的技术。根据处理目的和功能的不同,目前遥感数字图像处理主要包括以下四方面的内容。
1.图像恢复处理:旨在改正或补偿成像过程中的辐射失真、几何畸变、各种噪声以及高频信息的损失等。属预处理范畴,一般包括辐射校正、几何校正、数字放大、数字镶嵌等。
2.图像增强处理:对经过恢复处理的数据通过某种数学变换,扩大影像间的灰度差异,以突出目标信息或改善图像的视觉效果,提高可解译性。主要包括有反差增强、彩色增强、运算增强、滤波增强、变换增强等方法。
3.图像复合处理:对同一地区各种不同来源的数字图像按统一的地理坐标作空间配准叠合,以进行不同信息源之间的对比或综合分析。通常也称多元信息复合,既包括遥感与遥感信息的复合,也包括遥感与非遥感地学信息的复合。
4.图像分类处理:对多重遥感数据,根据其像元在多维波谱空间的特征(亮度值向量),按一定的统计决策标准,由计算机划分和识别出不同的波谱集群类型,据以实现地质体的自动识别分类。有监督和非监督两种分类方法。
遥感数字图像处理的过程和各部分内容的关系如图4-9。本节将从遥感地质应用的角度简要介绍其中几种常用的处理方法,有一些方法(如复合处理)将在有关的应用章节讨论。
数字图像处理既可在专用的图像处理系统上进行,也可自编程序在通用计算机或微机上进行;处理结果既可打印成数符图(图4-10),也可以在彩色显示器上作彩色显示;既可以输出单波段的黑白图像,也可以输出多波段合成或各种运算处理结果的彩色图像(参见图版③);既可以内拍或扫描到胶片上成像,也可以外摄翻拍成像;既可以直接形成成果图件,给出各种统计数据,也可以再记录到CCT上转存……。总之,十分灵活、方便,比光学图像处理有更强的适应性,越来越得到广泛的应用。
图4-9 遥感图像数字处理基本流程
(三)数字图像处理系统
遥感数字图像处理不仅数据量大,而且数据传输频繁,专业性强,因此,一般都要在专门的处理设备上进行。用以进行数字图像处理的专门计算机设备及其功能软件即称之为数字图像处理系统,通通由硬件系统和软件系统两大部分组成。
其中,硬件系统,按目前国内外的发展趋势可分为大型的专用机系统(如目前国内使用的I2S公司的S600系统)和微机图像处理系统两类。一般情况下,它们都包括以下一些基本的部件(图4-11):
1.主机:进行各种运算、预处理、统计分析和协调各种外围设备运转的控制中心,是最基本的设备。一般为速度快、内存大的计算机,如VAX-11、VAX-3600等。随着微机的内存日渐扩大、运算速度越来越快,已可以用微机取代,如PC386、PC486及各种工作站等。
图4-10 杭州三潭印月TM5波段数符图
图4-11 数字图像处理系统基本结构示意图
2.磁带机和磁盘机:连结数字磁带(CCT)和主机的数据传输装置,既可以输入CCT数据,也可以将中间处理和最终处理的结果再转存记录到CCT上;对于微机系统,图像数据的传输一般用软磁盘,但对大数据量的卫星CCT则需用具微机接口的磁带机(如F880);
3.图像处理机:数字图像处理专用的核心设备,既具体承担各种图像处理功能,如图像复原、几何校正、增强和分类等各种变换处理等等,也是主机和各种输出输入设备的纽带。就前者而言,它实际上是各种图像处理软件的硬件化。目前国内使用较多的M75图像处理机即是,它可以快速处理显示512×512或1024×1024的图像;对于微机系统,则可以用图像处理板(MVP-AT板)代替。
4.输出设备:用作处理结果的监视分析(彩色监视器或彩显)及记录、成图(包括宽行打印机、彩色喷墨打印机、绘图仪、胶片记录扫描仪等等)。
对于功能齐全的系统,除上述外,通常还包括有胶片影像的摄像或扫描数字化仪、图形数字化仪等输入设备。
软件系统系指与硬件系统配套的用于图像处理及操作实施的各种软件。一般包括系统软件和应用软件两部分。前者又包括操作系统和编译系统,主要用于输入指令、参数及与计算机“对话”;后者则是以某种语言编制的应用软件,存于硬件系统的应用程序库中,用户可按研究任务采用对话方式或菜单方式,发出相应的指令使用这些程序,由主机作运算处理,获得所需的结果。不同专业往往设计有各自的应用软件系统,故国际上已涌现出各种各样的软件系统,如JPL的VICAR系统、LARSYS系统等等;目前微机上则普遍采用C语言编程,也已开发了一系列的微机图像处理的应用软件。
D. 手机算法合成照片和高像素手机拍出来的照片区别在哪
近日金立通过官方微博公布E8将拍出1亿像素的照片,顿时哗然的互联网也各种YY出1亿像素的照片能看清对面女孩洗澡的毛细血孔等等,怀疑金立真的还要推出一款配备1亿像素镜头的E8。但也有不少理性网友推测E8很有可能通过“图像插值”的方法实现1亿像素样张,毕竟OPPO之前也通过这种方式实现高像素照片拍摄。在这款手机还未真正发布之前,我们不妨猜想一下金立E8如何能做到1亿像素照片拍摄: 一、定制1亿像素摄像头 金立E8推1亿像素的微博海报,直觉就让人猜想到其将会推出1亿像素摄像头元件。按照目前手机拍照的成像原理,1亿像素需要有很大面积的CMOS,我们在诺基亚Lumia1020上的“奥利奥”就可以窥看这得花费多少功夫来实现与手机的兼容。 诺基亚 Lumia 1020 而且,较大的CMOS元件会增加摄像头部分的厚度,虽然金立在ELIFE S5.1和S7上都能把摄像头堆平整,但按照目前的摄像头技术,即使金立独特的工艺面对这枚1亿像素的摄像头,机身厚度也得超过10mm。 金立ELIFE S5.1平整的800万像素镜头 从目前手机摄像头供应商来看,也并没有哪家厂商推出如此怪兽级的高像素摄像头,除非金立秘密与某家供应商定制出CMOS,但对于1亿像素摄像头来说,CMOS、镜头、驱动马达甚至是手机CPU都需要定制,背后厂商的研发成本不可估量。 二、采用插值方式实现1亿像素样张 除却花大成本在摄像头感光硬件上发力,金立E8很有可能采用特殊的插值方式来实现1亿像素照片拍摄。简单来说,插值是利用图像邻近的像素点灰度值来产生位置像素点的灰度值,让原始图像再生出更高分辨率的图片。这种插值技术无论在数码设备还是在行车记录仪上都屡见不鲜。 多帧合成原理图 但金立很有可能采用手机近来年非常热门的多帧合成技术,让1亿像素样张色彩更加丰富物体更加饱和。其实多帧合成也不是什么新东西,我们在手机上采用HDR功能就与这种技术有同工异曲之妙。其会在同一个场景上用不同的测光生成多张照片,增加信息量,从而去除暗光噪点和提升画质细节。这种技术需要有手机复杂的优化算法做支撑,我们在看到OPPO Find 7利用该技术生成5000万像素照片时,都要在拍完照后缓冲一下才能生成。 虽然目前较高性能的高通骁龙810在搭载有14位双ISP(图像信号处理器)下,最高也支持5500万像素摄像头,而最近发布的联发科十核心处理器Helio X20(MT6797)最高则支持2100万像素摄像头,如此高性能的手机芯片在处理1亿像素照片时,也需要手机厂商在处理速度上优化。而金立E8要让用户在1亿像素照片处理速度上等多久,就得看金立的功力了。 三、多摄像头 笔者在网上也挖到硅谷有一家公司正在研发5200万像素的摄像头,其基本原理就是把多个镜头和感光元件一起拼凑在手机上,在软硬件上实现同时拍照和处理影像。其实这种形式和去年年底推出的荣耀6Plus差不多,金立若想实现1亿像素照片拍摄,也很有可能内置有多个高像素摄像头,并通过自家算法实现迅速插值。 Light公司开发的5200万像素摄像头 综上所述,金立要实现1亿像素照片拍摄,在软硬件方面都要有扎实,笔者保守估计,金立E8应该是采用上述1、2种方案,在双管齐下中对目前较高像素摄像头(OV23850,2380万像素)实现多帧合成,拍摄出惊为天人的1亿像素照片。近期还听闻金立想借此申请吉尼斯纪录,而且金立集团总裁卢伟冰先生也在微博宣布金立E8惊喜不止一亿像素,如此卖力的营销,消费者会买账么?
E. 影像数据白化处理算法
在影像上,小目标往往表现为低概率分布,与影像背景相比较,其信息量很微小,若要从这些大量信息中提取出所需要的微量信息,必须对图像背景做抑制处理。白化处理(White Processing,WP)使影像数据各波段方差为1,波段间信息相关性为0,很好地缩减了图像信息量大的方向,放大了信息量较小的方向。这使得低概率目标(小目标)游离于图像背景的数据“云团”之外,从而使小目标探测变得相对容易。WP的具体算法如下(童庆禧等,2006):
1)计算S的均值向量μ:
2)计算S的协方差矩阵K:Kij=[(ri-μ)T(rj-μ)]/L;
3)求白化矩阵F,使:FTKF=I,FTF=△-1;式中,Δ=diag{λ1,λ2,…,λL}为K的特征值组成的对角矩阵。
经计算,F=EΔ-1/2,E由K的特征向量组成,且ETKE=Δ。那么,将F作用于S,得白化数据S*为
高光谱遥感影像信息提取技术
F. 汽车的360度影像是什么原理为什么能在屏幕上看到整个车周围的环境
360全景影像在汽车上的应用是通过自己车前置的摄像头,后置摄像头以及后视镜上面的摄像头来工作的,这样一来的话,能看到车的四周并不稀奇了。
值得注意的是,在行车的过程中,千万不要让摄像头沾到了泥巴,或者说进到了水质,这样的话对于信号的传感,画面的传感是非常有影响的,一个不留意就容易撞到后面的老人或者说是小孩,这种情况是呃需要时刻警惕的。或者在开车之前或者说停车之后,看一下摄像头的情况如何,有的时候在行车的过程中,摄像头会被一些石头或者树枝碰掉,这种情况都是有的,这对于安全驾驶来说都是很不好的。
G. 基于特征的影像匹配算法有哪些
基于局部约束的方法:有区域匹配(主要是基于窗口)、特征匹配(基于特征点,如SIFT)、相位匹配(主要用滤波来做)。
基于全局约束的方法:主要有动态规划算法、图割算法、人工智能算法、协同算法、置信度传播算法、非线性扩散算法等。
那个发展史就找两本摄影测量的书或下几篇论文看看就知道了
H. 高分辨率影像数据处理及数据建库技术方法研究
潘振祥
(河南省国土资源厅信息中心 郑州 450016)
摘 要:本文通过开展高分辨率卫星遥感影像数据(SPOT5)处理及建库技术方法研究和探索,制定了《高分辨率影像数据处理及基于遥感影像土地利用数据库建设技术要求》和《省级基于遥感影像 1∶1 万土地利用数据库标准》,制作了覆盖河南全省的 1∶1 万数字正射影像图,建立了河南省基于 SPOT 5 的 GPS 像控点图形图像数据库、高分辨率卫星影像数据库和基于影像信息土地利用数据库,为全国土地利用二次调查基础底图制作进行了有益的探索。
关键词:土地资源 卫星影像 遥感 数据库 像控点
0 引 言
随着信息技术的快速发展,卫星遥感影像处理技术得到了突破性进展,高分辨率卫星影像在土地资源调查评价、土地利用动态遥感监测、土地执法监察、土地变更调查以及大中比例尺地形图测绘等方面应用已取得显着成效。
针对河南省高分辨率遥感影像数据处理及数据库建设项目任务,项目组提出了利用 GPS 外业静态实测坐标作为影像数据校正的控制资料,制定了《高分辨率影像数据处理及基于遥感影像土地利用数据库建设技术要求》和《省级基于遥感影像 1∶1 万土地利用数据库标准》等,并根据项目任务要求,制定了切合河南实际的基于遥感影像信息的土地利用分类体系,同时,通过项目开展,制作了覆盖河南全省的 SPOT 5 数字正射影像图(DOM),并建立了河南省基于 SPOT 5的 GPS 像控点图形图像数据库,为土地利用二次调查基础底图制作进行了有益的探索。
1 影像数据处理及数据库建设技术路线
(1)多源遥感信息相结合。选取最佳波段组合的多光谱影像与高分辨率全色影像融合,生产具有高分辨率空间信息和丰富光谱信息的融合影像。
(2)GPS 像控点、基础图件(数据库)和 DEM 相结合。根据实际情况,采用 GPS 像控点,同时利用 1∶5 万 DEM 对遥感影像进行正射校正。
(3)人机交互与计算机自动提取相结合。以人机交互解译为主,进行土地分类信息提取。
(4)遥感解译与地面调查相结合。对提取的地类图斑信息进行外业验证,对在室内不确定的地类图斑,进行外业实地调查。
2 GPS 像控点图形图像数据库建立
为保证像控点选取精度,首先在 2.5 m 分辨率的全色影像上,按照像控点选取的技术要求,每景均匀选取了 25 个像控点,并对像控点进行了全外业 GPS 静态测量,在 MapGIS 平台下编辑像控点属性结构,建立 GPS 像控点图形图像数据库,并将像控点外业测量成果表以图片方式保存在属性表中。如图1所示。
图1 像控点图形图像数据库示意图
2.1 GPS 像控点选取
为保证像控点外业测量精度,像控点选取时,点位分布要相对均匀,特征明显,交通便利,数量足够,尽可能在全色影像上选取,尽量避开高压线、大面积水域等干扰因素。
为提高外业测量效率,将选取的待测像控点制作成“像控点外业测量成果表”,成果表包括像控点编号、点位及放大的示意图、WGS84、1954 北京、1980 年西安三套坐标和点位说明等内容。
2.2 GPS 像控点外业施测
像控点外业测量采用附合路线法,各像控点平均间距约 13 km,像控点与 C 级 GPS 控制点组成 GPS 控制网。GPS 像控点外业测量利用河南省 C 级 GPS 控制网成果的三套数据(分别为WGS 84、1954 北京和 1980 年西安坐标)作为起算数据,依据《全球定位系统(GPS)测量规范》,采用静态方式同步进行观测,三台套 GPS 接收机为一组,观测时段长度不少于 45 分钟,卫星高度角≥ 15°,有效观测卫星总数≥ 4 个。测量数据采用南方测绘软件进行基线解算、平差处理并进行高程拟合,最后解算出像控点基于三套坐标系统的三套数据和拟合高程。
2.3 GPS 像控点图形图像数据库的建立
GPS 像控点图形图像数据库以河南省 1∶50 万地理底图作为工作底图,输入像控点空间坐标,并采集像控点属性与图形信息,建立数学基准统一的像控点图形图像文件。像控点图形图像信息,除像控点所具有的地理坐标信息之外,还包括与待纠正影像相关的特征地物的纹理信息、分辨率信息等。
3 影像数据处理
影像数据处理包括卫星影像全色数据与多光谱数据的配准、融合和影像数据正射校正、镶嵌及正射影像图(DOM)的制作等。本项目所使用到的 SPOT 5 数据是由视宝公司提供的 1A 级数据,只经过了探测器的均衡化处理,为了进行多元数据的复合,制作正射影像图,必须对图像进行正射校正,建立地理坐标。影像数据处理技术流程如图 2 所示。
图2 影像数据处理技术流程
3.1 影像配准
本项目使用的单景多光谱数据与全色数据是同步接收到的,其图形的几何相关性较好,多光谱数据与全色配准难度小、精度高,因此采用相对配准的方法,SPOT 5 多光谱数据波段组合采用 XS2(红)、XS3(绿)、XS1(蓝)形式,影像重采样间隔为 2.5 m,重采样方法采用双线性内插,以景为配准单元,以 SPOT 5 全色数据为配准基础,均匀选取配准控制点,对接收侧视角较大,地势起伏对配准影响较为严重的区域相应增加控制点密度,将 SPOT 5 多光谱数据与之精确配准,并随机选择配准后全色与多光谱数据上的同名点进行检查,以确保数据的配准精度。
3.2 影像融合
图像融合处理采用最基本的乘积组合算法直接对两种空间分辨率的遥感数据进行合成,融合后图像则采用直方图调整、USM 锐化、彩色平衡、色度饱和度调整和反差增强等手段,以使整景影像色彩均匀、明暗程度适中、清晰,增强专题信息,特别是加强纹理信息。
3.3 影像正射校正
影像正射校正采用 ERDAS 的 LPS 正射模块,利用 SPOT 5 物理模型,每景 25 个像控点均匀分布于整景影像,各相邻景影像重叠区有 2 个以上共用点。正射校正以实测点和 1∶5 万 DEM为校正基础,以景为单元,对融合后的数据进行正射校正,采样间隔为 2.5 m。
3.4 影像镶嵌
影像镶嵌采用 ERDAS 的 LPS 正射模块中批量处理模块,相邻两幅影像,均采集了两个以上共用点,大大提高了影像镶嵌精度。为验证镶嵌精度,以县(市、区)为单位,在其镶嵌区随机选择 25 个以上检查点进行镶嵌精度检查。
3.5 数字正射影像图制作
数字正射影像图(DOM)制作采用 Image Info 工具,按照 1∶1 万标准分幅进行裁切,覆盖完整的县级行政辖区。图幅整饰依据《高分辨率影像数据处理及数据库建设技术要求》,利用MapGIS 数据库平台,按照 1954 北京坐标系、1985 年国家高程基准的生成 1∶1 万标准分幅图幅整饰。
4 创新成果
项目组在圆满完成项目任务的前提下,结合项目进展和土地管理需要,创造性地开展工作。总结项目进展和取得的成果,创新成果主要体现在:
(1)影像校正控制点 GPS 外业实测数据作为影像校正控制资料,改变了以往利用地形图、土地利用现状图(数据库)作为控制资料的传统方式,极大地提高了影像校正精度,节省了项目投入经费。
覆盖河南全省 1∶1 万标准分幅地形图共计 6565 幅,而实有地形图仅 5600 余幅,项目组在征求部课题组同意的前提下,提出采用 GPS 外业实测控制点作为影像校正控制资料的思路。基于这一思路,项目组进行了一系列研究和论证,制定了 GPS 外业测量技术要求,并对覆盖全省的每景 SPOT 5 卫星影像相对均匀地选取了 25 个控制点,相邻景影像不少于 2 个共用控制点的原则,全省共选取影像校正控制点 1421 个,GPS 大地控制 C 级点 94 个。根据影像数据接收时间和项目进度,共分 13 个测区,对所有控制点采用附和路线法进行了静态测量,分别计算出各控制点和检查点的 WGS84、1954 北京和 1980 年西安三套坐标。
(2)河南省像控点图形图像数据库的建立,为今后河南全省土地利用遥感监测、卫片执法监察等提供了技术保障。
为使外业测量成果长期保存和今后使用,项目组在项目任务之外,在 MapGIS 平台上,基于河南省 1∶50 万地理底图,建立了 GPS 像控点图形图像数据库。GPS 像控点图形图像数据库的建立,不仅满足 SPOT 5_2.5 m 高分辨率卫星影像的校正精度要求,同时为今后河南全省土地利用遥感监测、卫片执法检查、矿山环境监测等奠定了基础。
(3)高分辨率影像数据大区域整体正射校正和镶嵌处理技术的探索,为影像数据批处理技术的推广进行了有益的探索。
由于本次试点项目涉及的范围广、影像处理工作量大,因此,项目组在保证影像纠正精度的前提下,为提高工作效率,探索和使用了遥感影像专业处理软件 ERDAS 的 LPS 模块提供的大区域整体正射纠正和影像镶嵌处理功能,达到了较好的应用效果。
鉴于本次试点项目所使用的影像数据均为同步接收的 SPOT 5 多光谱与全色数据,其图形的几何相关性较好,多光谱数据与全色配准难度小、精度高,因此,影像数据处理采用先单景融合、后大区域整体正射校正、最后进行大区域镶嵌配准的技术流程进行影像处理。
正射纠正采用 ERDAS 的 LPS 批量正射模块。纠正采用 SPOT 5 物理模型,控制点均匀分布于整景影像,每景控制点个数为 25 个,各相邻影像重叠区有 2 个以上共用点。正射纠正以 GPS外业实测控制点和预处理的河南省 1∶5 万 DEM 为纠正基础 , 对 SPOT 5 融合数据进行批量纠正,采样间隔为 2.5 m。影像镶嵌采用的是 ERDAS 的 LPS 批处理模块,由于各相邻景影像均采集了两个以上的共用点,大大提高了影像镶嵌精度。
(4)基于遥感影像信息土地利用分类标准体系的制定,为国家和省级快速掌握和提取土地利用变化信息进行了有益的探索。
项目组根据部课题组要求及国家和省土地管理工作需要,结合 SPOT 5 卫星影像光谱特征和纹理信息,经充分研究和论证,制定了切合河南实际、满足“高分辨率影像数据处理及数据库建设”试点项目需要的基于遥感影像信息的土地利用分类标准,该标准中将土地利用类型分为农用地、建设用地和未利用地等 3 个大类,耕地、园林地、其他农用地、城市用地、建制镇用地、农村居民点用地、铁路用地、公路用地、其他建设用地、未利用地等 10 个二级类,此外,根据个别地类特点,又分别从农用地、建设用地和未利用地中单独划分出公路林带、农业水利用地、水利设施用地、未利用水面和黄河滩地等 5 个三级类,分类标准与现有的土地利用分类体系协调、一致,符合国土资源土地分类标准体系。
(5)基于遥感影像土地利用数据库建设,为国家和省土地宏观管理提供了现势性较强的土地利用电子数据,为国内同类工作的开展提供了技术依据。
考虑到国家和省级土地宏观管理的需要,根据项目制定的“基于遥感影像土地利用分类体系”,结合中地公司 MapGIS 土地利用数据库管理系统框架结构,项目组在 MapGIS 数据库管理系统平台的基础上,分别制定了《高分辨率影像数据处理及数据库建设技术要求》和《基于遥感影像 1∶1 万土地利用数据库标准》等,并在标准中明确了基于遥感影像的土地分类、文件命名规则、数据分层格式及要求等,保证了数据标准和数据格式的一致性及数据库建设质量,为国家和省提供了翔实的土地利用现势数据。
5 结 语
随着遥感技术和计算机技术的飞速发展,高分辨率遥感影像数据在土地管理工作中的应用越来越普遍,同时,遥感影像数据处理的技术手段也越来越科学、越来越先进,尤其是全国第二次土地调查工作的全面开展,将遥感影像在土地管理方面的应用推到一个前所未有的水平,因此,如何在影像数据处理过程中尽可能减少人力和财力投入已显得尤为重要。本项目针对上述问题,在科研与生产过程中,提出的采用 GPS 外业实测控制点作为影像校正控制资料、GPS 像控点图形图像数据建库及基于国家和省级土地管理需要而提出的基于遥感影像信息土地利用数据库标准等,进行了较好的诠释,为今后同类工作的开展进行了有益的探索。
参 考 文 献
常庆瑞,等.2004.遥感技术导论[M]. 北京:科学出版社
陈述彭,等.1998.遥感信息机理研究[M].北京:科学出版社
党安荣,等.2003.ERDAS IMAGING 遥感图像处理方法[M].北京:清华大学出版社
汤国安,等.2004.遥感数字影像处理[M]. 北京:科学出版社
徐柏清.1988.正射投影技术与影像地图[M].北京:测绘出版社
尤淑撑,刘顺喜.2002.GPS 在土地变更调查中的应用研究[J].测绘通报(5):1~3
张继贤,等.2000.图形图像控制点库及应用[J].测绘通报(1)
(原载《测绘通报》2008 年第 10 期)
I. 一文了解遥感卫星影像处理及其发展趋势
当空中的遥感卫星获取了地球数字影像,并传回地面,是否工作就结束了?答案显然是否定的,相反, 这正是遥感数字图像处理工作的开始 。
遥感数字图像 (Digital image,后简称“遥感影像”)是数字形式的遥感图像,地球表面不同区域和地物能够反射或辐射不同波长的电磁波,利用这种特性,遥感系统可以产生不同的遥感数字图像。
让其与一般的数字图像,也就是我们平时拍摄的电子照片拉开距离的,是遥感影像的 成像范围与精细度 。遥感卫星的摄影区域是地球级的宏观维度,影像中的每个像素都对应着三维真实世界中的某几个、某个或某部分地物实体,根据卫星成像分辨率的不同,其中一个像素就有可能是一棵树、一辆车或是一幢大楼的某个窗户。
所以,图像每个像素点的亮度值(DN值,Digital Number)都有着重要的信息意义,要获取其中的准确信息,用户需要根据自身应用目标,对卫星影像中的像素进行管理、转换、校正、增强、提取一系列的“神操作”,便于后续深入挖掘与业务融合应用。
DN值(Digital Number ):遥感影像像元亮度值,记录地物的灰度值。无单位,是一个整数值,值大小与传感器的辐射分辨率、地物发射率、大气透过率和散射率等相关,反映地物的辐射率(Radiance)。
我们可以回到“P图界”进行比喻,为了让自己的社交媒体形象更加完美,我们打开某图秀秀软件,美白、瘦身、磨皮、祛痘....当然,遥感影像的数据处理复杂专业多了,到什么地步呢?它可以被写成 一本教科书 ——
今天,我们就来了解一下,这其中到底有哪些“神操作”,又如何应用?以及在遥感产业飞速发展的今天,高频的数据产出、算法和人工智能的冲击,会否让这些“神操作”的传统模式和底层逻辑,发生变革?
01、 什么是遥感影像处理?
遥感影像处理,是利用 计算机图像处理系统 对 遥感图像中的像素 进行系列操作的过程。
遥感影像中包含着很多信息,通过数字化(成像系统的采样和量化、数字存储)后,才能有效地进行信息分析和内容提取。在此基础上,对影像数据进行处理“再加工”,如校正图形对齐坐标、增强地物轮廓,能够极大地 提升图像处理的精度和信息提取的效率, 这个过程都可以称为“遥感数字图像处理”。
作为“对地观测”过程的一个基本而重要的组成部分,在卫星应用产业链中,遥感影像处理环节处于中下游、承前启后的重要位置,前端承接卫星地面设施,后端面向农林、气象、自然资源等行业具体的业务应用,提供“就绪”的数据服务或工具。
02、 为什么遥感影像处理是应用的“必经之路”?
在我们看到整齐美观的谷歌地球这类数字地球产品,或是遥感卫星应用在自然资源管理、环保、农业、气象等领域的专题图或解译图,都需要经过影像处理的中间“洗礼”。
因为遥感卫星在高空“作业”,其成像环境复杂程度远远超越我们日常地面的拍照环境,会遇到传感器不稳定,地球曲率、大气条件、光照变化、地形变化等系统与非系统因素造成的图形几何变形、失真、模糊、噪点等。遥感数据中心对图像进行去除条带、几何粗校正等初步处理,数据到达各终端用户手中时,还需要对数据做进一步的精细处理,使其更加接近真实世界的实体空间环境与坐标,并根据其自身业务分析目标,进行专业处理,为接下来的遥感影像分析、解译、业务应用做好准备。
总的来说,遥感影像处理的主要目标为以下三点:
图像校正 :恢复、复原图像。在进行信息提取前,必须对遥感图像进行校正处理,以使影像能够正确地反映实际地物信息或物理过程。
图像增强 :压抑或去除图像噪声。为使遥感图像所包含的地物信息可读性更强,感兴趣目标更突出、容易理解和判读,需要对整体图像或特定地物信息进行增强处理。
信息提取 :根据地物光谱特征和几何特征,确定不同地物信息的提取规则,在此基础上,利用该规则从校正后的遥感数据中提取各种有用的地物信息。
03、 遥感数据处理有哪些功能?
完整的遥感数字图像处理包含了硬件系统和软件系统两大部分,遥感数据存储量庞大,需要大容量数字存储设备与软件共同配合存储处理,这里主要介绍软件处理部分。下面展示的是一个专业的图像处理软件界面,与常用的办公软件相比,图像处理系统的各个功能显得比较分散,各个菜单之间的联系不紧密。
从某种意义上看,图像处理系统更像一个图像处理综合 工具箱 ,由于图像处理目标不同,用户可以调用某个功能、某几项功能的组合,并非所有流程都选用。这里将一些典型的处理功能进行归纳,并对基础步骤进行介绍。
数字存储与管理
遥感影像本身内存较大,1景7波段的landsat遥感影像至少有200MB,而高光谱影像可能达到1GB;而进入时间与空间双重高分时代以来,数据高频产出与累积,也促使遥感进入大数据时代,让遥感云服务、存储管理、快速分发共享趋势愈加明显。基于私有云、混合云的遥感影像数字存储、在线更新、管理检索、发布浏览,已经逐步成为与遥感数据处理不可分割的重要基础,并将大幅度提升后续遥感影像专业处理与业务应用效率。
影像预处理
辐射校正(Radiometric Correction)
指对由于外界因素,数据获取和传输系统产生的系统的、随机的辐射失真或畸变进行的校正,消除或改正因辐射误差而引起影像畸变的过程。
简单概括,就是 去除传感器或大气“噪声” ,更准确地表示地面条件, 提高图像的“保真度” ,主要是恢复数据缺失、去除薄雾,或为镶嵌和变化监测做好准备。
辐射校正在动态监测中的作用 :在多时相遥感图像中,除了地物的变化会引起图像中辐射值的变化外,不变的地物在不同时相图像中的辐射值也会有差异。如果需要利用多时相遥感图像的光谱信息对地物变化状况进行动态监测,首要消除不变地物的辐射值差异。
通过相对辐射校正,将一图像作为参考(或基准)图像,调整另一图像的DN值,使得两时相图像上同名的地物具有相同的DN值,这个过程也叫 多时相遥感图像的光谱归一化 。这样就可以通过分析不同时相遥感图像上的辐射值差异来实现变化监测,从而完成 地物动态变化的遥感动态监测 。
几何校正(Geometric correction)
遥感成像过程中,因摄影材料变形、物镜畸变、大气折光、地球曲率、地球自转、地形起伏等因素导致的综合影响,原始图像上地物的几何位置、形状、大小、尺寸、方位等特征与其对应的地面地物的特征往往是不一致的,这种不一致为几何变形,也称几何畸变。几何校正就是通过一系列的数学模型来改正和消除这种几何畸变,使其定位准确。
几何校正原理示意:真实世界的地形是立体而凹凸不平的,但遥感卫星传感器只能获取平面二维像素,这就带来了地形扭曲 | 图源:网络;重制图:超擎时空
图像增强
图像对比度增强 (Image Contrast Enhancement)
统计每幅图像的各亮度的像元数而得到的随机分布图,即为该幅图像的直方图。 一般来说,包含大量像元的图像,像元的亮度随机分布应是正态分布。直方图为非正态分布,说明图像的亮度分布偏亮、偏暗或亮度过于集中,图像的对比度小,需要调整该直方图到正态分布,以改善图像的质量,并便于分辨地物轮廓并提取信息。
彩色合成
为了充分利用色彩在遥感图像判读和信息提取中的优势,常利用彩色合成的方法对多光谱图像进行处理,以得到彩色图像。如上图,彩色图像可以分为真彩色图像和假彩色图像。
密度分割
将灰度图像按照像元的灰度值进行分级,再分级赋以不同的颜色,使原有灰度图像变成伪彩色图像,达到图像增强的目的。
图像运算
两幅或多幅单波段图像,空间配准后可进行算术运算,实现图像的增强。根据地物在不同波段的灰度差异,通过不同波段的代数运算产生新的“波段”,常见的有加法运算、减法运算、比值运算和综合运算,如:
减法运算:可突现出两波段差值大的地物,如红外-红,可突现植被信息。
比值运算:常用于计算植被指数、消除地形阴影等。
植被指数:NDVI=(IR-R)/(IR+R)
图像融合
遥感图像信息融合是有效提升图像分辨率与信息量的手段,将多源遥感数据在统一的地理坐标系中,采用一定的算法生成一组新的信息或合成图像的过程。
不同的遥感数据具有不同的空间分辨率、波谱分辨率和时相分辨率,将低分辨率的多光谱影像与高分辨率的单波段影像重采样生成一副高分辨率多光谱影像遥感的图像处理技术,使得处理后的影像既有较高的空间分辨率,又具有多光谱特征。
图像裁剪
在遥感实际应用中,用户可能只对遥感影像中的一个特定的范围内的信息感兴趣,这就需要将遥感影像裁减成研究范围的大小。常用的裁剪方式有,按ROI(兴趣区域)裁剪、按文件裁剪(按照指定影像文件的范围大小)、按地图裁剪(根据地图的地理坐标或经纬度的范围)。
图像镶嵌
也叫图像拼接,是将两幅或多幅数字影像(它们有可能是在不同的摄影条件下获取的)拼在一起,构成一幅整体图像的技术过程。 通常是先对每幅图像进行几何校正,将它们规划到统一的坐标系中,然后对它们进行裁剪,去掉重叠的部分,再将裁剪后的多幅影像装配起来形成一幅大幅面的影像。
镶嵌匀色
将若干幅互为邻接的遥感影像通过拼接匀色技术合并成一幅统一的新影像。
信息提取
遥感图像中目标地物的特征是地物电磁波的辐射差异在遥感影像上的反映。依据遥感图像上的地物特征,识别地物类型、性质、空间位置、形状、大小等属性的过程即为遥感信息提取。
目视判读
也叫人工解译,即用人工肉眼与经验判读遥感影像,对遥感影像上目标地物的范围进行手工勾绘,达到信息提取的目的。人工解译为传统常用的信息提取办法,但在海量影像下判读分析效率相对低。
图像分类
是依据是地物的光谱特征,确定判别函数和相应的判别准则,将图像所有的像元按性质分为若干类别的过程,主要方式分为监督分类与非监督分类。
- 监督分类
监督分类是在分类前人们已对遥感影像样本区中的类别属性有了先验知识,进而可利用这些样本类别的特征作为依据建立和训练分类器(亦即建立判别函数),进而完成整幅影像的类型划分,将每个像元归并到相对应的一个类别中去。
监督分类也是目前遥感AI最为常见的应用方式,即通过样本库,用机器学习对特定地物进行分类、标注或识别。
- 非监督分类
非监督分类也称聚类分析,是指人们事先对分类过程不施加任何的先验知识,而仅凭数据(遥感影像地物的光谱特征的分布规律)、即自然聚类的特性进行“盲目”的分类;是以集群为理论基础,通过计算机对图像进行集聚统计分析的方法,是模式识别的一种方法。一般算法有:回归分析、趋势分析、等混合距离法、集群分析、主成分分析和图形识别等。
监督分类和非监督分类的区别 :有监督必须有训练集与测试样本。在训练集中找规律,而对测试样本使用这种规律;非监督没有训练集,只有一组数据,在该组数据集内寻找规律。
04、 遥感数据处理正在发生怎样的改变?
遥感数据处理更像是生产制造中的“原材料粗加工”环节,也是遥感影像数据智能应用和业务融合的前序手段,从前文的介绍来看,其过程也是较为复杂和专业的。
作为对地观测和遥感产业化的重要组成部分,位于产业中下游的遥感数据处理,也受到了大数据时代的冲击,正在响应这一趋势并发生变革,走向 实时化、标准化、规模化、自动化 。
在企业数字化转型中,人们常说的一句话是,所有传统产业都值得用数字化再做一遍,在传统的数据生产、信息服务产业也是如此,其模式和流程都值得用算法和AI再做一遍。
当算法与人工智能逐步渗透遥感数据处理这个环节,能够解决遥感产业数据生产服务中的很多难题,例如数据分发周期与链路长,处理环节多,海量数据处理的精准、一致性等问题,这我们可以将其视为“自动化批量处理”。
当中游算法引擎解决了数据服务和数据计算效率和自动化流程的问题后,下游也将出现更多适用于各种垂直细分场景的精细化应用数据产品,而在以上介绍的遥感影像信息提取环节,有了AI和算法的参与,也出现很多高效的自动化功能,如目标识别、地物提取、地物分类、变化检测等,逐步帮助人类提高解译的效率,形成遥感产业下游的“智能化信息挖掘”机制。
我们可以看到,从遥感数据获取源头,到数据处理,到终端应用,其效率与底层数据模式密不可分,在卫星互联网和对地观测 星座 逐步构建成型的趋势下,只有将数据的获取、处理和共享流程标准化,大规模、自动化、流水化的遥感产业才能更好地地为政企数字化转型发挥动能,也真正地迎来时空大数据时代。
参考资料
《遥感数字影像处理教程》韦玉春 汤国安 杨昕 编着