当前位置:首页 » 操作系统 » 算法类技能

算法类技能

发布时间: 2022-10-03 22:11:00

1. 算法工程师工作期间需要掌握什么知识学到哪些核心技术

算法工程师的主要核心技术基于数学,并辅以语言。要全面掌握的知识包括高级数学,复变函数,线性代数的离散数学,数据结构以及数据挖掘所需的概率论和数学统计知识。不要太受约束去平时阅读教科书并多练习,并培养良好的思维能力。只有那些有想法的人才能拥有技术的未来。尝试实现您遇到的任何算法,无论算法的优劣总是有其自身的特征。此外,您必须具有一定的英语水平(至少6级),因为该领域的大多数官方材料都是外语。

计算机及相关专业本科以上学历,在互联网搜索,推荐,流量或相关领域有2年以上工作经验。熟悉机器学习/自然语言处理/数据挖掘/深度学习中至少一项的原理和算法,并且能够熟练地建模和解决业务问题。精通linux平台下的C / C ++ / java语言开发,精通使用gcc / gdb等开发工具,并精通python / Linux Shell / SQL等脚本开发。熟悉hadoop / hbase / storm等分布式计算技术,并熟悉其运行机制和体系结构。具有出色的分析和解决问题的能力,思路清晰,并对工作挑战充满热情。具有强烈的工作责任感和团队合作精神,并能够交流和更好地学习。

2. 算法工程师要学什么

算法工程师要求很高的数学水平和逻辑思维。需要学习高数,线性代数,离散数学,数据结构和计算机等课程。

1、专业要求:计算机、电子、通信、数学等相关专业;

2、学历要求:本科及其以上的学历,大多数是硕士学历及其以上;

3、语言要求:英语要求是熟练,基本上能阅读国外专业书刊;

必须掌握计算机相关知识,熟练使用仿真工具MATLAB等,必须会一门编程语言。

算法工程师根据研究领域来分主要有音频/视频算法处理、图像技术方面的二维信息算法处理和通信物理层、雷达信号处理、生物医学信号处理等领域的一维信息算法处理。

在计算机音视频和图形图形图像技术等二维信息算法处理方面目前比较先进的视频处理算法:机器视觉成为此类算法研究的核心;

另外还有2D转3D算法(2D-to-3D conversion),去隔行算法(de-interlacing),运动估计运动补偿算法(Motion estimation/Motion Compensation),去噪算法(Noise Rection),缩放算法(scaling),锐化处理算法(Sharpness),超分辨率算法(Super Resolution),手势识别(gesture recognition),人脸识别(face recognition)。

关于算法工程师可以到CDA认证机构了解一下,CDA行业标准由国际范围数据领域的行业专家、学者及知名企业共同制定并每年修订更新,确保了标准的公立性、权威性、前沿性。通过CDA认证考试者可获得CDA中英文认证证书。

3. 阿里巴巴算法工程师需要掌握什么技能

1、熟悉Java,有大访问量系统开发经验;
2、熟练使用Spring、Mybatis等开源框架,热爱开源技术;
3、熟悉Linux,熟悉MySQL或其他数据库并了解SQL优化,对NoSQL、消息队列等有深入的理解;
4、熟悉TCP/IP、HTTP等网络协议;
5、对Elasticsearch、Drools、Dubbo、JVM、服务治理等技术
6、熟练mvc的设计和开发工作,熟悉2种以上的php开发框架,如zend,yii,laravel,熟悉laravel 优先;
7、熟悉PHP+MySQL开发和维护,熟悉LAMP/LNMP环境下的开发工作
8、熟悉laravel框架,了解php composer优先考虑;
9、熟悉前端开发技术,如html5、css3、javascript等;
10、熟悉rest 。

4. 机器学习算法工程师必备技能

【导读】成为合格的机器学习算法工程师并非易事。您需要掌握从开发到调试再到优化的一系列功能。这些功能中的每一个都需要足够的精力和经验来掌握。成为合格的机器学习算法工程师(以下简称算法工程师)更加困难,因为除了掌握工程师的一般技能外,您还需要掌握机器学习算法的知识网络。下面我们就将成为一名合格的算法工程师所需的技能进行拆分,一起来看一下究竟需要掌握哪些技能才能算是一名合格的算法工程师。

5. 成为一名合格的算法工程师需要掌握哪些技能

算法工程师目前是一个高端也是相对紧缺的职位;近两年的就业前景是非常好的,薪资也比较高。但是算法工程师同时也需要不断学习。那么成为一名合格的算法工程师需要掌握哪些岗位技能呢,我们接着往下看。

业务学习能力
算法工程师是不可能脱离业务背景的,人工智能算法工程师、交通算法工程师、图像处理算法工程师等等。
针对一个业务场景设计一个合理的算法,业务知识是非常重要的,需要结合业务的实际情况、限定条件、各种专业词汇和知识都要有一定的了解,如果脱离场景而一味地琢磨算法,效果不会太好。
比如,做交通算法,需要对交通组织、交通管理、通行损失、周期延误等有所认知。比如,做图像处理,需要对各种图像去噪、图像增广、图像分割、物理成像有所了解,知道像素底层是怎么回事。
持续学习能力
算法工程师的主要工作就是拿着现有成熟的算法,结合面临业务场景去做一个合理的方案,如果我们知识面太窄,那显然当用到的时候会有点拮据,眼界也被限制住,不知道还有没有更好效果的算法、目前算法有哪些不足之处、在这个业务中能不能发挥作用。
只有持续学习,了解足够多的知识,当我们面临问题的时候能够快速对比、选择,找出最合适的一种算法。
灵活的思维
当我们选择一种算法去解决一个问题时,效果肯定无法达到我们预期的那样。比如我们拿mask rcnn做医学图像语义分割,我们看着它在自然图像方面表现效果很好,就拿来用于医学图像。但是医学图像有它的难点和特殊性,当跑出效果时会发现结果不如人意,这时候就需要灵活的思维去发现问题,去调优、改进,或者从数据入手,或者从网络模型入手,或者从超参数入手。
编程能力
不同公司对于算法工程师的定位有所差别,比如有些朋友在某公司做算法工程师只负责方案的设计,开发由专门的开发人员实施。有的公司算法工程师要完成算法设计到开发全部工作。
无论是哪一种形式,编程能力都是必要的,就算是前者这样的形式,有专门的开发人员,那在算法的设计过程中需要验证、对比,对每一个小模块算法进行指标评价,你不可能事事都找别人来帮你做,这样效率低,而且开展工作困难。综上所述,就是小编今天整理的关于算法工程师的相关内容,希望可以帮助到大家。

6. 想要成为算法工程师都要学哪些技能

需要以下技能:

1、熟练掌握C/C++和python语言编程,熟悉linux开发环境,有扎实的数据结构和算法设计功底;

2、熟悉推荐业务常用理论和算法,在多个领域(如排序模型,召回模型,用户画像,深度学习等)有三年以上实际工作经验;

3、有优秀的逻辑思维能力和数据分析能力,善于分析和解决问题;良好的沟通能力与团队协作能力;

4、有推荐系统,广告系统,搜索引擎等开发经验;熟练掌握机器学习、深度学习的基础理论和方法,并在自然语言处理任务中有实际应用经验者优先;

5、熟练使用一种或几种深度学习框架(如tensorflow、caffe、mxnet、pytorch等),或者熟悉spark、hadoop分布式计算编程者优先。

硬技能:

1. 数学:包括概率论与数理统计、矩阵论、随机过程。

2. 计算机基础:包括操作系统、组成原理、数据结构。

3. 算法能力:包括对领域内主流模型进行优缺点对比、在设定的场景中选择合适的方案等。

想要了解更多关于算法工程师的问题可以咨询一下CDA认证机构,CDA是大数据和人工智能时代面向国际范围全行业的数据分析专业人才职业简称。全球CDA持证者秉承着先进商业数据分析的新理念,遵循着《CDA职业道德和行为准则》新规范,发挥着自身数据专业能力,推动科技创新进步,助力经济持续发展。

7. 成为算法工程师需要学习哪些课程

算法工程师要求很高的数学水平和逻辑思维。需要学习高数,线性代数,离散数学,数据结构和计算机等课程。

专业要求:计算机、电子、通信、数学等相关专业;

学历要求:本科及其以上的学历,大多数是硕士学历及其以上;

语言要求:英语要求是熟练,基本上能阅读国外专业书刊;

必须掌握计算机相关知识,熟练使用仿真工具MATLAB等,必须会一门编程语言。

国内外状况

国内从事算法研究的工程师不少,但是高级算法工程师却很少,是一个非常紧缺的专业工程师。

算法工程师根据研究领域来分主要有音频/视频算法处理、图像技术方面的二维信息算法处理和通信物理层、雷达信号处理、生物医学信号处理等领域的一维信息算法处理。

8. 大数据挖掘的算法有哪些

大数据挖掘的算法:
1.朴素贝叶斯,超级简单,就像做一些数数的工作。如果条件独立假设成立的话,NB将比鉴别模型收敛的更快,所以你只需要少量的训练数据。即使条件独立假设不成立,NB在实际中仍然表现出惊人的好。
2. Logistic回归,LR有很多方法来对模型正则化。比起NB的条件独立性假设,LR不需要考虑样本是否是相关的。与决策树与支持向量机不同,NB有很好的概率解释,且很容易利用新的训练数据来更新模型。如果你想要一些概率信息或者希望将来有更多数据时能方便的更新改进模型,LR是值得使用的。
3.决策树,DT容易理解与解释。DT是非参数的,所以你不需要担心野点(或离群点)和数据是否线性可分的问题,DT的主要缺点是容易过拟合,这也正是随机森林等集成学习算法被提出来的原因。
4.支持向量机,很高的分类正确率,对过拟合有很好的理论保证,选取合适的核函数,面对特征线性不可分的问题也可以表现得很好。SVM在维数通常很高的文本分类中非常的流行。

如果想要或许更多更详细的讯息,建议您去参加CDA数据分析课程。大数据分析师现在有专业的国际认证证书了,CDA,即“CDA 数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证, 旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。 “CDA 数据分析师”具体指在互联网、金融、零售、咨询、电信、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、 提供决策的新型数据分析人才。点击预约免费试听课。

9. 算法工程师应该学哪些

一、算法工程师简介
(通常是月薪15k以上,年薪18万以上,只是一个概数,具体薪资可以到招聘网站如拉钩,猎聘网上看看)
算法工程师目前是一个高端也是相对紧缺的职位;
算法工程师包括
音/视频算法工程师(通常统称为语音/视频/图形开发工程师)、图像处理算法工程师、计算机视觉算法工程师、通信基带算法工程师、信号算法工程师、射频/通信算法工程师、自然语言算法工程师、数据挖掘算法工程师、搜索算法工程师、控制算法工程师(云台算法工程师,飞控算法工程师,机器人控制算法)、导航算法工程师(
@之介
感谢补充)、其他【其他一切需要复杂算法的行业】
专业要求:计算机、电子、通信、数学等相关专业;
学历要求:本科及其以上的学历,大多数是硕士学历及其以上;
语言要求:英语要求是熟练,基本上能阅读国外专业书刊,做这一行经常要读论文;
必须掌握计算机相关知识,熟练使用仿真工具MATLAB等,必须会一门编程语言。
算法工程师的技能树(不同方向差异较大,此处仅供参考)
1 机器学习
2 大数据处理:熟悉至少一个分布式计算框架Hadoop/Spark/Storm/ map-rece/MPI
3 数据挖掘
4 扎实的数学功底
5 至少熟悉C/C++或者Java,熟悉至少一门编程语言例如java/python/R
加分项:具有较为丰富的项目实践经验(不是水论文的哪种)
二、算法工程师大致分类与技术要求
(一)图像算法/计算机视觉工程师类
包括
图像算法工程师,图像处理工程师,音/视频处理算法工程师,计算机视觉工程师
要求
l
专业:计算机、数学、统计学相关专业;
l
技术领域:机器学习,模式识别
l
技术要求:
(1) 精通DirectX HLSL和OpenGL GLSL等shader语言,熟悉常见图像处理算法GPU实现及优化;
(2) 语言:精通C/C++;
(3) 工具:Matlab数学软件,CUDA运算平台,VTK图像图形开源软件【医学领域:ITK,医学图像处理软件包】
(4) 熟悉OpenCV/OpenGL/Caffe等常用开源库;
(5) 有人脸识别,行人检测,视频分析,三维建模,动态跟踪,车识别,目标检测跟踪识别经历的人优先考虑;
(6) 熟悉基于GPU的算法设计与优化和并行优化经验者优先;
(7) 【音/视频领域】熟悉H.264等视频编解码标准和FFMPEG,熟悉rtmp等流媒体传输协议,熟悉视频和音频解码算法,研究各种多媒体文件格式,GPU加速;
应用领域:
(1) 互联网:如美颜app
(2) 医学领域:如临床医学图像
(3) 汽车领域
(4) 人工智能
相关术语:
(1) OCR:OCR (Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程
(2) Matlab:商业数学软件;
(3) CUDA: (Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台(由ISA和GPU构成)。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题
(4) OpenCL: OpenCL是一个为异构平台编写程序的框架,此异构平台可由CPU,GPU或其他类型的处理器组成。
(5) OpenCV:开源计算机视觉库;OpenGL:开源图形库;Caffe:是一个清晰,可读性高,快速的深度学习框架。
(6) CNN:(深度学习)卷积神经网络(Convolutional Neural Network)CNN主要用来识别位移、缩放及其他形式扭曲不变性的二维图形。
(7) 开源库:指的是计算机行业中对所有人开发的代码库,所有人均可以使用并改进代码算法。
(二)机器学习工程师
包括
机器学习工程师
要求
l
专业:计算机、数学、统计学相关专业;
l
技术领域:人工智能,机器学习
l
技术要求:
(1) 熟悉Hadoop/Hive以及Map-Rece计算模式,熟悉Spark、Shark等尤佳;
(2) 大数据挖掘;
(3) 高性能、高并发的机器学习、数据挖掘方法及架构的研发;
应用领域:
(1)人工智能,比如各类仿真、拟人应用,如机器人
(2)医疗用于各类拟合预测
(3)金融高频交易
(4)互联网数据挖掘、关联推荐
(5)无人汽车,无人机

相关术语:
(1) Map-Rece:MapRece是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Rece(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。
(三)自然语言处理工程师
包括
自然语言处理工程师
要求
l
专业:计算机相关专业;
l
技术领域:文本数据库
l
技术要求:
(1) 熟悉中文分词标注、文本分类、语言模型、实体识别、知识图谱抽取和推理、问答系统设计、深度问答等NLP 相关算法;
(2) 应用NLP、机器学习等技术解决海量UGC的文本相关性;
(3) 分词、词性分析、实体识别、新词发现、语义关联等NLP基础性研究与开发;
(4) 人工智能,分布式处理Hadoop;
(5) 数据结构和算法;
应用领域:
口语输入、书面语输入
、语言分析和理解、语言生成、口语输出技术、话语分析与对话、文献自动处理、多语问题的计算机处理、多模态的计算机处理、信息传输与信息存储 、自然语言处理中的数学方法、语言资源、自然语言处理系统的评测。

相关术语:
(2) NLP:人工智能的自然语言处理,NLP (Natural Language Processing) 是人工智能(AI)的一个子领域。NLP涉及领域很多,最令我感兴趣的是“中文自动分词”(Chinese word segmentation):结婚的和尚未结婚的【计算机中却有可能理解为结婚的“和尚“】

(四)射频/通信/信号算法工程师类
包括
3G/4G无线通信算法工程师, 通信基带算法工程师,DSP开发工程师(数字信号处理),射频通信工程师,信号算法工程师
要求
l
专业:计算机、通信相关专业;
l
技术领域:2G、3G、4G,BlueTooth(蓝牙),WLAN,无线移动通信, 网络通信基带信号处理
l
技术要求:
(1) 了解2G,3G,4G,BlueTooth,WLAN等无线通信相关知识,熟悉现有的通信系统和标准协议,熟悉常用的无线测试设备;
(2) 信号处理技术,通信算法;
(3) 熟悉同步、均衡、信道译码等算法的基本原理;
(4) 【射频部分】熟悉射频前端芯片,扎实的射频微波理论和测试经验,熟练使用射频电路仿真工具(如ADS或MW或Ansoft);熟练使用cadence、altium designer PCB电路设计软件;
(5) 有扎实的数学基础,如复变函数、随机过程、数值计算、矩阵论、离散数学
应用领域:
通信
VR【用于快速传输视频图像,例如乐客灵境VR公司招募的通信工程师(数据编码、流数据)】
物联网,车联网
导航,军事,卫星,雷达
相关术语:
(1) 基带信号:指的是没有经过调制(进行频谱搬移和变换)的原始电信号。
(2) 基带通信(又称基带传输):指传输基带信号。进行基带传输的系统称为基带传输系统。传输介质的整个信道被一个基带信号占用.基带传输不需要调制解调器,设备化费小,具有速率高和误码率低等优点,.适合短距离的数据传输,传输距离在100米内,在音频市话、计算机网络通信中被广泛采用。如从计算机到监视器、打印机等外设的信号就是基带传输的。大多数的局域网使用基带传输,如以太网、令牌环网。
(3) 射频:射频(RF)是Radio Frequency的缩写,表示可以辐射到空间的电磁频率(电磁波),频率范围从300KHz~300GHz之间(因为其较高的频率使其具有远距离传输能力)。射频简称RF射频就是射频电流,它是一种高频交流变化电磁波的简称。每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。高频(大于10K);射频(300K-300G)是高频的较高频段;微波频段(300M-300G)又是射频的较高频段。【有线电视就是用射频传输方式】
(4) DSP:数字信号处理,也指数字信号处理芯片
(五)数据挖掘算法工程师类
包括
推荐算法工程师,数据挖掘算法工程师
要求
l
专业:计算机、通信、应用数学、金融数学、模式识别、人工智能;
l
技术领域:机器学习,数据挖掘
l
技术要求:
(1) 熟悉常用机器学习和数据挖掘算法,包括但不限于决策树、Kmeans、SVM、线性回归、逻辑回归以及神经网络等算法;
(2) 熟练使用SQL、Matlab、Python等工具优先;
(3) 对Hadoop、Spark、Storm等大规模数据存储与运算平台有实践经验【均为分布式计算框架】
(4) 数学基础要好,如高数,统计学,数据结构
l
加分项:数据挖掘建模大赛;
应用领域
(1) 个性化推荐
(2) 广告投放
(3) 大数据分析
相关术语
Map-Rece:MapRece是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Rece(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。
(六)搜索算法工程师
要求
l
技术领域:自然语言
l
技术要求:
(1) 数据结构,海量数据处理、高性能计算、大规模分布式系统开发
(2) hadoop、lucene
(3) 精通Lucene/Solr/Elastic Search等技术,并有二次开发经验
(4) 精通Lucene/Solr/Elastic Search等技术,并有二次开发经验;
(5) 精通倒排索引、全文检索、分词、排序等相关技术;
(6) 熟悉Java,熟悉Spring、MyBatis、Netty等主流框架;
(7) 优秀的数据库设计和优化能力,精通MySQL数据库应用 ;
(8) 了解推荐引擎和数据挖掘和机器学习的理论知识,有大型搜索应用的开发经验者优先。
(七)控制算法工程师类
包括了云台控制算法,飞控控制算法,机器人控制算法
要求
l
专业:计算机,电子信息工程,航天航空,自动化
l
技术要求:
(1) 精通自动控制原理(如PID)、现代控制理论,精通组合导航原理,姿态融合算法,电机驱动,电机驱动
(2) 卡尔曼滤波,熟悉状态空间分析法对控制系统进行数学模型建模、分析调试;
l
加分项:有电子设计大赛,机器人比赛,robocon等比赛经验,有硬件设计的基础;
应用领域
(1)医疗/工业机械设备
(2)工业机器人
(3)机器人
(4)无人机飞控、云台控制等

(八)导航算法工程师
要求
l 专业:计算机,电子信息工程,航天航空,自动化
l 技术要求(以公司职位JD为例)
公司一(1)精通惯性导航、激光导航、雷达导航等工作原理;
(2)精通组合导航算法设计、精通卡尔曼滤波算法、精通路径规划算法;
(3)具备导航方案设计和实现的工程经验;
(4)熟悉C/C++语言、熟悉至少一种嵌入式系统开发、熟悉Matlab工具;
公司二(1)熟悉基于视觉信息的SLAM、定位、导航算法,有1年以上相关的科研或项目经历;
(2)熟悉惯性导航算法,熟悉IMU与视觉信息的融合;
应用领域
无人机、机器人等。

热点内容
android弹出通知 发布:2025-05-16 14:59:20 浏览:509
数据库EST 发布:2025-05-16 14:59:15 浏览:197
android版本号修改 发布:2025-05-16 14:53:48 浏览:173
android相机闪光灯 发布:2025-05-16 14:35:49 浏览:259
服务器无法通过ip访问 发布:2025-05-16 14:26:13 浏览:540
网吧u盘拒绝访问 发布:2025-05-16 14:13:50 浏览:260
无线网检查网络配置是怎么回事 发布:2025-05-16 14:04:03 浏览:220
网络爬虫python代码 发布:2025-05-16 14:03:26 浏览:516
汽车小组件怎么弄到安卓桌面 发布:2025-05-16 13:51:12 浏览:220
linuxg编译器下载 发布:2025-05-16 13:50:58 浏览:776