当前位置:首页 » 操作系统 » 细分算法应用

细分算法应用

发布时间: 2022-10-04 19:24:37

‘壹’ 数据挖掘算法与生活中的应用案例

数据挖掘算法与生活中的应用案例

如何分辨出垃圾邮件”、“如何判断一笔交易是否属于欺诈”、“如何判断红酒的品质和档次”、“扫描王是如何做到文字识别的”、“如何判断佚名的着作是否出自某位名家之手”、“如何判断一个细胞是否属于肿瘤细胞”等等,这些问题似乎都很专业,都不太好回答。但是,如果了解一点点数据挖掘的知识,你,或许会有柳暗花明的感觉。
本文,主要想简单介绍下数据挖掘中的算法,以及它包含的类型。然后,通过现实中触手可及的、活生生的案例,去诠释它的真实存在。 一般来说,数据挖掘的算法包含四种类型,即分类、预测、聚类、关联。前两种属于有监督学习,后两种属于无监督学习,属于描述性的模式识别和发现。
有监督学习有监督的学习,即存在目标变量,需要探索特征变量和目标变量之间的关系,在目标变量的监督下学习和优化算法。例如,信用评分模型就是典型的有监督学习,目标变量为“是否违约”。算法的目的在于研究特征变量(人口统计、资产属性等)和目标变量之间的关系。
分类算法分类算法和预测算法的最大区别在于,前者的目标变量是分类离散型(例如,是否逾期、是否肿瘤细胞、是否垃圾邮件等),后者的目标变量是连续型。一般而言,具体的分类算法包括,逻辑回归、决策树、KNN、贝叶斯判别、SVM、随机森林、神经网络等。
预测算法预测类算法,其目标变量一般是连续型变量。常见的算法,包括线性回归、回归树、神经网络、SVM等。
无监督学习无监督学习,即不存在目标变量,基于数据本身,去识别变量之间内在的模式和特征。例如关联分析,通过数据发现项目A和项目B之间的关联性。例如聚类分析,通过距离,将所有样本划分为几个稳定可区分的群体。这些都是在没有目标变量监督下的模式识别和分析。
聚类分析聚类的目的就是实现对样本的细分,使得同组内的样本特征较为相似,不同组的样本特征差异较大。常见的聚类算法包括kmeans、系谱聚类、密度聚类等。
关联分析关联分析的目的在于,找出项目(item)之间内在的联系。常常是指购物篮分析,即消费者常常会同时购买哪些产品(例如游泳裤、防晒霜),从而有助于商家的捆绑销售。
基于数据挖掘的案例和应用上文所提到的四种算法类型(分类、预测、聚类、关联),是比较传统和常见的。还有其他一些比较有趣的算法分类和应用场景,例如协同过滤、异常值分析、社会网络、文本分析等。下面,想针对不同的算法类型,具体的介绍下数据挖掘在日常生活中真实的存在。下面是能想到的、几个比较有趣的、和生活紧密关联的例子。
基于分类模型的案例这里面主要想介绍两个案例,一个是垃圾邮件的分类和判断,另外一个是在生物医药领域的应用,即肿瘤细胞的判断和分辨。
垃圾邮件的判别邮箱系统如何分辨一封Email是否属于垃圾邮件?这应该属于文本挖掘的范畴,通常会采用朴素贝叶斯的方法进行判别。它的主要原理是,根据邮件正文中的单词,是否经常出现在垃圾邮件中,进行判断。例如,如果一份邮件的正文中包含“报销”、“发票”、“促销”等词汇时,该邮件被判定为垃圾邮件的概率将会比较大。
一般来说,判断邮件是否属于垃圾邮件,应该包含以下几个步骤。
第一,把邮件正文拆解成单词组合,假设某篇邮件包含100个单词。
第二,根据贝叶斯条件概率,计算一封已经出现了这100个单词的邮件,属于垃圾邮件的概率和正常邮件的概率。如果结果表明,属于垃圾邮件的概率大于正常邮件的概率。那么该邮件就会被划为垃圾邮件。
医学上的肿瘤判断如何判断细胞是否属于肿瘤细胞呢?肿瘤细胞和普通细胞,有差别。但是,需要非常有经验的医生,通过病理切片才能判断。如果通过机器学习的方式,使得系统自动识别出肿瘤细胞。此时的效率,将会得到飞速的提升。并且,通过主观(医生)+客观(模型)的方式识别肿瘤细胞,结果交叉验证,结论可能更加靠谱。
如何操作?通过分类模型识别。简言之,包含两个步骤。首先,通过一系列指标刻画细胞特征,例如细胞的半径、质地、周长、面积、光滑度、对称性、凹凸性等等,构成细胞特征的数据。其次,在细胞特征宽表的基础上,通过搭建分类模型进行肿瘤细胞的判断。
基于预测模型的案例这里面主要想介绍两个案例。即通过化学特性判断和预测红酒的品质。另外一个是,通过搜索引擎来预测和判断股价的波动和趋势。
红酒品质的判断如何评鉴红酒?有经验的人会说,红酒最重要的是口感。而口感的好坏,受很多因素的影响,例如年份、产地、气候、酿造的工艺等等。但是,统计学家并没有时间去品尝各种各样的红酒,他们觉得通过一些化学属性特征就能够很好地判断红酒的品质了。并且,现在很多酿酒企业其实也都这么干了,通过监测红酒中化学成分的含量,从而控制红酒的品质和口感。
那么,如何判断鉴红酒的品质呢?
第一步,收集很多红酒样本,整理检测他们的化学特性,例如酸性、含糖量、氯化物含量、硫含量、酒精度、PH值、密度等等。
第二步,通过分类回归树模型进行预测和判断红酒的品质和等级。
搜索引擎的搜索量和股价波动一只南美洲热带雨林中的蝴蝶,偶尔扇动了几下翅膀,可以在两周以后,引起美国德克萨斯州的一场龙卷风。你在互联网上的搜索是否会影响公司股价的波动?
很早之前,就已经有文献证明,互联网关键词的搜索量(例如流感)会比疾控中心提前1到2周预测出某地区流感的爆发。
同样,现在也有些学者发现了这样一种现象,即公司在互联网中搜索量的变化,会显着影响公司股价的波动和趋势,即所谓的投资者注意力理论。该理论认为,公司在搜索引擎中的搜索量,代表了该股票被投资者关注的程度。因此,当一只股票的搜索频数增加时,说明投资者对该股票的关注度提升,从而使得该股票更容易被个人投资者购买,进一步地导致股票价格上升,带来正向的股票收益。这是已经得到无数论文验证了的。
基于关联分析的案例:沃尔玛的啤酒尿布啤酒尿布是一个非常非常古老陈旧的故事。故事是这样的,沃尔玛发现一个非常有趣的现象,即把尿布与啤酒这两种风马牛不相及的商品摆在一起,能够大幅增加两者的销量。原因在于,美国的妇女通常在家照顾孩子,所以,她们常常会嘱咐丈夫在下班回家的路上为孩子买尿布,而丈夫在买尿布的同时又会顺手购买自己爱喝的啤酒。沃尔玛从数据中发现了这种关联性,因此,将这两种商品并置,从而大大提高了关联销售。
啤酒尿布主要讲的是产品之间的关联性,如果大量的数据表明,消费者购买A商品的同时,也会顺带着购买B产品。那么A和B之间存在关联性。在超市中,常常会看到两个商品的捆绑销售,很有可能就是关联分析的结果。
基于聚类分析的案例:零售客户细分对客户的细分,还是比较常见的。细分的功能,在于能够有效的划分出客户群体,使得群体内部成员具有相似性,但是群体之间存在差异性。其目的在于识别不同的客户群体,然后针对不同的客户群体,精准地进行产品设计和推送,从而节约营销成本,提高营销效率。
例如,针对商业银行中的零售客户进行细分,基于零售客户的特征变量(人口特征、资产特征、负债特征、结算特征),计算客户之间的距离。然后,按照距离的远近,把相似的客户聚集为一类,从而有效的细分客户。将全体客户划分为诸如,理财偏好者、基金偏好者、活期偏好者、国债偏好者、风险均衡者、渠道偏好者等。
基于异常值分析的案例:支付中的交易欺诈侦测采用支付宝支付时,或者刷信用卡支付时,系统会实时判断这笔刷卡行为是否属于盗刷。通过判断刷卡的时间、地点、商户名称、金额、频率等要素进行判断。这里面基本的原理就是寻找异常值。如果您的刷卡被判定为异常,这笔交易可能会被终止。
异常值的判断,应该是基于一个欺诈规则库的。可能包含两类规则,即事件类规则和模型类规则。第一,事件类规则,例如刷卡的时间是否异常(凌晨刷卡)、刷卡的地点是否异常(非经常所在地刷卡)、刷卡的商户是否异常(被列入黑名单的套现商户)、刷卡金额是否异常(是否偏离正常均值的三倍标准差)、刷卡频次是否异常(高频密集刷卡)。第二,模型类规则,则是通过算法判定交易是否属于欺诈。一般通过支付数据、卖家数据、结算数据,构建模型进行分类问题的判断。
基于协同过滤的案例:电商猜你喜欢和推荐引擎电商中的猜你喜欢,应该是大家最为熟悉的。在京东商城或者亚马逊购物,总会有“猜你喜欢”、“根据您的浏览历史记录精心为您推荐”、“购买此商品的顾客同时也购买了商品”、“浏览了该商品的顾客最终购买了商品”,这些都是推荐引擎运算的结果。
这里面,确实很喜欢亚马逊的推荐,通过“购买该商品的人同时购买了**商品”,常常会发现一些质量比较高、较为受认可的书。一般来说,电商的“猜你喜欢”(即推荐引擎)都是在协同过滤算法(Collaborative Filter)的基础上,搭建一套符合自身特点的规则库。即该算法会同时考虑其他顾客的选择和行为,在此基础上搭建产品相似性矩阵和用户相似性矩阵。基于此,找出最相似的顾客或最关联的产品,从而完成产品的推荐。
基于社会网络分析的案例:电信中的种子客户种子客户和社会网络,最早出现在电信领域的研究。即,通过人们的通话记录,就可以勾勒出人们的关系网络。电信领域的网络,一般会分析客户的影响力和客户流失、产品扩散的关系。
基于通话记录,可以构建客户影响力指标体系。采用的指标,大概包括如下,一度人脉、二度人脉、三度人脉、平均通话频次、平均通话量等。基于社会影响力,分析的结果表明,高影响力客户的流失会导致关联客户的流失。其次,在产品的扩散上,选择高影响力客户作为传播的起点,很容易推动新套餐的扩散和渗透。
此外,社会网络在银行(担保网络)、保险(团伙欺诈)、互联网(社交互动)中也都有很多的应用和案例。
基于文本分析的案例这里面主要想介绍两个案例。一个是类似“扫描王”的APP,直接把纸质文档扫描成电子文档。相信很多人都用过,这里准备简单介绍下原理。另外一个是,江湖上总是传言红楼梦的前八十回和后四十回,好像并非都是出自曹雪芹之手,这里面准备从统计的角度聊聊。
字符识别:扫描王APP手机拍照时会自动识别人脸,还有一些APP,例如扫描王,可以扫描书本,然后把扫描的内容自动转化为word。这些属于图像识别和字符识别(Optical Character Recognition)。图像识别比较复杂,字符识别理解起来比较容易些。
查找了一些资料,字符识别的大概原理如下,以字符S为例。
第一,把字符图像缩小到标准像素尺寸,例如12*16。注意,图像是由像素构成,字符图像主要包括黑、白两种像素。
第二,提取字符的特征向量。如何提取字符的特征,采用二维直方图投影。就是把字符(12*16的像素图)往水平方向和垂直方向上投影。水平方向有12个维度,垂直方向有16个维度。这样分别计算水平方向上各个像素行中黑色像素的累计数量、垂直方向各个像素列上的黑色像素的累计数量。从而得到水平方向12个维度的特征向量取值,垂直方向上16个维度的特征向量取值。这样就构成了包含28个维度的字符特征向量。
第三,基于前面的字符特征向量,通过神经网络学习,从而识别字符和有效分类。
文学着作与统计:红楼梦归属这是非常着名的一个争论,悬而未决。对于红楼梦的作者,通常认为前80回合是曹雪芹所着,后四十回合为高鹗所写。其实主要问题,就是想确定,前80回合和后40回合是否在遣词造句方面存在显着差异。
这事让一群统计学家比较兴奋了。有些学者通过统计名词、动词、形容词、副词、虚词出现的频次,以及不同词性之间的相关系做判断。有些学者通过虚词(例如之、其、或、亦、了、的、不、把、别、好),判断前后文风的差异。有些学者通过场景(花卉、树木、饮食、医药与诗词)频次的差异,来做统计判断。总而言之,主要通过一些指标量化,然后比较指标之间是否存在显着差异,借此进行写作风格的判断。

以上是小编为大家分享的关于数据挖掘算法与生活中的应用案例的相关内容,更多信息可以关注环球青藤分享更多干货

‘贰’ Delaunay三角构网的发展

三角网格自动剖分技术的研究起源于20世纪70年代,主要为了满足航空、数学、地学等领域解决实际问题的需要。1972年,Lawson第一次提出了构造平面Delaunay三角化的着名算法——局部变换法(Local Transformation Algorithm),又称为换边算法(Flipping Algorithm)。1981年,英国Bath大学数学分校的Bowyer(1981)和澳大利亚悉尼大学的 Waston(1981)分别给出了一种构造D维空间点集的Delaunay三角化的增量算法,此算法的思路与局部变换法不同,后来被称为Bowyer Waston算法。随着应用深入,单纯的平面三角网格已经不能满足现有的需求,比如在地质领域里处理断层时,对断层出露线的处理是必须作为限定条件出现在Delaunay三角化中(陈学习等,2005),就需要进行约束Delaunay剖分。然而,在不做任何处理的情况下进行Delaunay剖分不是一定能完成的(Chew,1989;杨钦,2001),需要在现有限定条件中新插入点进行细分处理。于是,1989年Chew首次提出Delaunay细分算法,其基本算法思想是先将限定线段分成更小的线段,然后将细分单元顶点进行Delaunay三角剖分。该算法在二维问题中被形象地称为边界细分(Boundary Subdivide,BS)算法。Ruppert(1995)对BS算法进行了扩展,通过单元细分的方式,生成比较均匀的二维网格。2002年Shewchuk对Chew和Ruppert的网格生成算法进行了统一,用于生成非均匀网格,适合于数值计算使用,并对非流形域(nonmanifold domains)网格生成进行了研究。

至此,平面二维Delaunay网格生成的理论技术已基本成熟(杨钦,2005)。然而,在实际的三角网格剖分过程中,计算时间与存储空间将是制约实际需求的瓶颈(Øyvind,2000)。当离散点集达到海量级时,进行三角网格生成就不得不考虑效率问题。在进行底层数据结构设计时,合理的数据结构可以提高算法的执行效率。具有拓扑关系描述的数据结构,不仅在构建Delaunay三角网时能提高效率,而且能为后续的使用分析带来便利。和构建三维Delaunay三角网格相比,平面Delaunay相对简单得多,在建立拓扑关系时,通常只考虑点、边和三角形之间的拓扑,即使这样,至今仍没有统一的拓扑数据结构来进行Delaunay网格剖分。广义图拓扑数据结构在欧洲国家引起愈来愈多的关注(Øyvind,2000;Lienhardt,1989,1994;Yvon et al.,2000),并得到了许多实际的应用(Mallet,2002;Michael et al.,1998;Yvon et al.,1996),如GoCAD软件就已经采用GMaps作为拓扑数据模型,能够非常灵活的管理三角网格。GMaps可以扩展到任意维数,它不仅仅局限于二维三角形或三维四面体,可以表达任意形状的形体,甚至是非流形单元(Yvon et al.,2000)。本章采用GMaps拓扑数据结构进行Delaunay平面三角网格剖分研究,并对其进行扩展,使其能够方便地进行点的插入和删除,从而可以通过引入虚拟钻孔实现地质模型的细化。

‘叁’ 美兰北大青鸟分享程序员为什么要学习算法以及应用领域

对于许多编程开发程序员来说,组织开发架构等技术应该都掌握了不少了,那么大家是否懂得算法相关的技术呢?今天,美兰电脑培训http://www.kmbdqn.cn/就一起来了解一下,程序员为什么要学习算法以及应用领域的问题。
学习算法的重要性在介绍具体算法之前,我先谈一下个人对学习算法的初心。
我的初心无非有两点:一,BAT等互联网公司招聘面试时要问算法知识,如果想要进入互联网公司,我就必须学好算法;二,通过学习算法提升个人开发的基本功,这样一来,对于不同场景我就可以正确选择对应的数据结构和算法,使得程序更健壮,提高程序的运行效率。
应用领域目前计算机各个细分领域涉及到不同的算法。
比如说搜索引擎,平时我们使用google、网络等浏览器,只要我们输入一个关键字,浏览器就会快速地返回相关的集合,这个集合的背后就隐藏着许多算法。
如果没有这些算法,我们是不可能这么快速地得到想要的结果。
再比如说人工智能,通过计算模型算法实现人体识别、语音识别等各应用场景。
算法分析上文我们已经介绍到算法就是解决问题的方法,而对于同一个问题,可能存在不同的解决方法。
因此,为了衡量一个算法的优劣,提出了时间复杂度与空间复杂度这两个概念。
时间复杂度一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数f(n),算法的时间度量记为T(n)=O(f(n)),它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称时间复杂度。
空间复杂度空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度,记做S(n)=O(f(n))。
一个算法的优劣主要从算法的执行时间和所需要占用的存储空间两个方面衡量。

‘肆’ 在3dmax中 细分 具体是什么意思

细分越大,质量越好,但系统资源越大,细分方法是计算机辅助几何设计和图形学的重要研究内容,特别是近年来,细分方法已成为几何建模领域最活跃的研究热点之一。

细分法是曲线曲面建模中的一项重要技术,细分是指根据一定的规则对初始网格进行不断的细化,从而产生平滑的极限曲线或曲面,与传统的连续曲线曲面造型方法相比。

细分模式更容易在计算机上表示为一种方法,生成离散曲线和曲面从一个给定的规则网格细分,从飞机、轮船、汽车到家电、服装、日用品,甚至山、云、河。

(4)细分算法应用扩展阅读:

材料分割,就是要提高材料的定义、反映和起高光的精细程度。如果细分过低,你会发现反射,特别是高光会有一个清晰的粒度感,甚至奇怪的黑色圆圈的程度。改进细分可以减少粒子的感觉,使高光更真实。

然而,如果细分太高,渲染时间会更长。以我个人的经验,提高材料质量是最耗时的。从静态仿真到动态仿真,细分算法以其简洁的表示形式和处理任意拓扑的能力而着称。

细分的主要过程是:从初始控制网格出发,按照一定的规则,递归生成新的点,逐步加密控制网格。随着连续细分,控制网格逐渐抛光,导致光滑曲线或表面的离散插值或近似。

‘伍’ zbrush动态细分与细分的区别

①细分是VIZ4及MAX5的一项革命性的新功能,以前只有LS的光能传递有此项功能。光能传递就是让程序计算场景里环境的漫反射,光能传递的实现是程序对场景模型进行网络细分,分成细小的三角面,然后逐面计算面与面之前的反射。 ②动态细分基本上是用于基本模型的起稿到中模的制作,他是ZB4R2新增的功能,他可以有效的减少模型在雕刻过程中出现拉伸与变形问题,动态网格优秀的算法在使用命令后会为模型进行自动细分,成为适合模型雕刻比较好的网格布局。

‘陆’ 曲面细分的原理简述

曲面细分,或者更准确的说“镶嵌化处理技术”,就是在顶点与顶点之间自动嵌入新的顶点。在自动插入大量新的顶点之后,模型的曲面会被分得非常细腻,看上去更加平滑致密。它是一种能够在图形芯片内部自动创造顶点,使模型细化,从而获得更好画面效果的技术。 曲面细分能自动创造出数百倍与原始模型的顶点,这些不是虚拟的顶点,而是实实在在的顶点,效果是等同于建模的时候直接设计出来的。
曲面细分技术是完全可编程的,它提供了多种插值顶点位置的方法来创造各种曲面:
1. N-Patch曲面,就是和当年TruForm技术一样,根据基础三角形顶点的法线决定曲面;
2. 贝塞尔曲面,根据贝塞尔曲线的公式计算顶点的位置;
3. B-Spline、NURBs、NUBs曲线(这三种曲线均为CAD领域常用曲线,在Maya中均有相应工具可以生成)
4. 通过递归算法接近Catmull-Clark极限曲面。Tessellation技术最初主要被用以“细分曲面”,随着该技术被纳入DirectX11范畴,得到大范围推广之后,插值顶点的算法也越来越多,因此用途也越来越广,产生了很多非常有创意的应用。 例如nVIDIA的一个Demo演示了利用Tessellation技术生产的“头发”,这些头发都是真实存在的,当然并不是为每一根头发建立一个模型,而是利用Tessellation技术在有限的头发模型中,镶嵌入更多的头发模型。
除了大幅提升模型细节和画质外,Tessellation最吸引程序员的地方就是:他们无需手动设计上百万个三角形的复杂模型,只需简单勾绘一个轮廓,剩下的就可以交给Tessellation技术自动镶嵌,大大提高开发效率;而且简单的模型在GPU处理时也能大幅节约显存开销,同时大幅提升渲染速度。

‘柒’ 大数据处理的五大关键技术及其应用

作者 | 网络大数据

来源 | 产业智能官

数据处理是对纷繁复杂的海量数据价值的提炼,而其中最有价值的地方在于预测性分析,即可以通过数据可视化、统计模式识别、数据描述等数据挖掘形式帮助数据科学家更好的理解数据,根据数据挖掘的结果得出预测性决策。其中主要工作环节包括:

大数据采集 大数据预处理 大数据存储及管理 大数据分析及挖掘 大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。

一、大数据采集技术

数据是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。重点要突破分布式高速高可靠数据爬取或采集、高速数据全映像等大数据收集技术;突破高速数据解析、转换与装载等大数据整合技术;设计质量评估模型,开发数据质量技术。

大数据采集一般分为:

大数据智能感知层:主要包括数据传感体系、网络通信体系、传感适配体系、智能识别体系及软硬件资源接入系统,实现对结构化、半结构化、非结构化的海量数据的智能化识别、定位、跟踪、接入、传输、信号转换、监控、初步处理和管理等。必须着重攻克针对大数据源的智能识别、感知、适配、传输、接入等技术。

基础支撑层:提供大数据服务平台所需的虚拟服务器,结构化、半结构化及非结构化数据的数据库及物联网络资源等基础支撑环境。重点攻克分布式虚拟存储技术,大数据获取、存储、组织、分析和决策操作的可视化接口技术,大数据的网络传输与压缩技术,大数据隐私保护技术等。

二、大数据预处理技术

完成对已接收数据的辨析、抽取、清洗等操作。

抽取:因获取的数据可能具有多种结构和类型,数据抽取过程可以帮助我们将这些复杂的数据转化为单一的或者便于处理的构型,以达到快速分析处理的目的。

清洗:对于大数据,并不全是有价值的,有些数据并不是我们所关心的内容,而另一些数据则是完全错误的干扰项,因此要对数据通过过滤“去噪”从而提取出有效数据。

三、大数据存储及管理技术

大数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。重点解决复杂结构化、半结构化和非结构化大数据管理与处理技术。主要解决大数据的可存储、可表示、可处理、可靠性及有效传输等几个关键问题。开发可靠的分布式文件系统(DFS)、能效优化的存储、计算融入存储、大数据的去冗余及高效低成本的大数据存储技术;突破分布式非关系型大数据管理与处理技术,异构数据的数据融合技术,数据组织技术,研究大数据建模技术;突破大数据索引技术;突破大数据移动、备份、复制等技术;开发大数据可视化技术。

开发新型数据库技术,数据库分为关系型数据库、非关系型数据库以及数据库缓存系统。其中,非关系型数据库主要指的是NoSQL数据库,分为:键值数据库、列存数据库、图存数据库以及文档数据库等类型。关系型数据库包含了传统关系数据库系统以及NewSQL数据库。

开发大数据安全技术:改进数据销毁、透明加解密、分布式访问控制、数据审计等技术;突破隐私保护和推理控制、数据真伪识别和取证、数据持有完整性验证等技术。

四、大数据分析及挖掘技术

大数据分析技术:改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。

数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。

数据挖掘涉及的技术方法很多,有多种分类法。根据挖掘任务可分为分类或预测模型发现、数据总结、聚类、关联规则发现、序列模式发现、依赖关系或依赖模型发现、异常和趋势发现等等;根据挖掘对象可分为关系数据库、面向对象数据库、空间数据库、时态数据库、文本数据源、多媒体数据库、异质数据库、遗产数据库以及环球网Web;根据挖掘方法分,可粗分为:机器学习方法、统计方法、神经网络方法和数据库方法。

机器学习中,可细分为归纳学习方法(决策树、规则归纳等)、基于范例学习、遗传算法等。统计方法中,可细分为:回归分析(多元回归、自回归等)、判别分析(贝叶斯判别、费歇尔判别、非参数判别等)、聚类分析(系统聚类、动态聚类等)、探索性分析(主元分析法、相关分析法等)等。神经网络方法中,可细分为:前向神经网络(BP算法等)、自组织神经网络(自组织特征映射、竞争学习等)等。数据库方法主要是多维数据分析或OLAP方法,另外还有面向属性的归纳方法。

数据挖掘主要过程是:根据分析挖掘目标,从数据库中把数据提取出来,然后经过ETL组织成适合分析挖掘算法使用宽表,然后利用数据挖掘软件进行挖掘。传统的数据挖掘软件,一般只能支持在单机上进行小规模数据处理,受此限制传统数据分析挖掘一般会采用抽样方式来减少数据分析规模。

数据挖掘的计算复杂度和灵活度远远超过前两类需求。一是由于数据挖掘问题开放性,导致数据挖掘会涉及大量衍生变量计算,衍生变量多变导致数据预处理计算复杂性;二是很多数据挖掘算法本身就比较复杂,计算量就很大,特别是大量机器学习算法,都是迭代计算,需要通过多次迭代来求最优解,例如K-means聚类算法、PageRank算法等。

从挖掘任务和挖掘方法的角度,着重突破:

可视化分析。数据可视化无论对于普通用户或是数据分析专家,都是最基本的功能。数据图像化可以让数据自己说话,让用户直观的感受到结果。 数据挖掘算法。图像化是将机器语言翻译给人看,而数据挖掘就是机器的母语。分割、集群、孤立点分析还有各种各样五花八门的算法让我们精炼数据,挖掘价值。这些算法一定要能够应付大数据的量,同时还具有很高的处理速度。 预测性分析。预测性分析可以让分析师根据图像化分析和数据挖掘的结果做出一些前瞻性判断。 语义引擎。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。语言处理技术包括机器翻译、情感分析、舆情分析、智能输入、问答系统等。 数据质量和数据管理。数据质量与管理是管理的最佳实践,透过标准化流程和机器对数据进行处理可以确保获得一个预设质量的分析结果。

预测分析成功的7个秘诀

预测未来一直是一个冒险的命题。幸运的是,预测分析技术的出现使得用户能够基于历史数据和分析技术(如统计建模和机器学习)预测未来的结果,这使得预测结果和趋势变得比过去几年更加可靠。

尽管如此,与任何新兴技术一样,想要充分发挥预测分析的潜力也是很难的。而可能使挑战变得更加复杂的是,由不完善的策略或预测分析工具的误用导致的不准确或误导性的结果可能在几周、几个月甚至几年内才会显现出来。

预测分析有可能彻底改变许多的行业和业务,包括零售、制造、供应链、网络管理、金融服务和医疗保健。AI网络技术公司Mist Systems的联合创始人、首席技术官Bob fridy预测:“深度学习和预测性AI分析技术将会改变我们社会的所有部分,就像十年来互联网和蜂窝技术所带来的转变一样。”。

这里有七个建议,旨在帮助您的组织充分利用其预测分析计划。

1.能够访问高质量、易于理解的数据

预测分析应用程序需要大量数据,并依赖于通过反馈循环提供的信息来不断改进。全球IT解决方案和服务提供商Infotech的首席数据和分析官Soumendra Mohanty评论道:“数据和预测分析之间是相互促进的关系。”

了解流入预测分析模型的数据类型非常重要。“一个人身上会有什么样的数据?” Eric Feigl - Ding问道,他是流行病学家、营养学家和健康经济学家,目前是哈佛陈氏公共卫生学院的访问科学家。“是每天都在Facebook和谷歌上收集的实时数据,还是难以访问的医疗记录所需的医疗数据?”为了做出准确的预测,模型需要被设计成能够处理它所吸收的特定类型的数据。

简单地将大量数据扔向计算资源的预测建模工作注定会失败。“由于存在大量数据,而其中大部分数据可能与特定问题无关,只是在给定样本中可能存在相关关系,”FactSet投资组合管理和交易解决方案副总裁兼研究主管Henri Waelbroeck解释道,FactSet是一家金融数据和软件公司。“如果不了解产生数据的过程,一个在有偏见的数据上训练的模型可能是完全错误的。”

2.找到合适的模式

SAP高级分析产品经理Richard Mooney指出,每个人都痴迷于算法,但是算法必须和输入到算法中的数据一样好。“如果找不到适合的模式,那么他们就毫无用处,”他写道。“大多数数据集都有其隐藏的模式。”

模式通常以两种方式隐藏:

模式位于两列之间的关系中。例如,可以通过即将进行的交易的截止日期信息与相关的电子邮件开盘价数据进行比较来发现一种模式。Mooney说:“如果交易即将结束,电子邮件的公开率应该会大幅提高,因为买方会有很多人需要阅读并审查合同。”

模式显示了变量随时间变化的关系。“以上面的例子为例,了解客户打开了200次电子邮件并不像知道他们在上周打开了175次那样有用,”Mooney说。

3 .专注于可管理的任务,这些任务可能会带来积极的投资回报

纽约理工学院的分析和商业智能主任Michael Urmeneta称:“如今,人们很想把机器学习算法应用到海量数据上,以期获得更深刻的见解。”他说,这种方法的问题在于,它就像试图一次治愈所有形式的癌症一样。Urmeneta解释说:“这会导致问题太大,数据太乱——没有足够的资金和足够的支持。这样是不可能获得成功的。”

而当任务相对集中时,成功的可能性就会大得多。Urmeneta指出:“如果有问题的话,我们很可能会接触到那些能够理解复杂关系的专家” 。“这样,我们就很可能会有更清晰或更好理解的数据来进行处理。”

4.使用正确的方法来完成工作

好消息是,几乎有无数的方法可以用来生成精确的预测分析。然而,这也是个坏消息。芝加哥大学NORC (前国家意见研究中心)的行为、经济分析和决策实践主任Angela Fontes说:“每天都有新的、热门的分析方法出现,使用新方法很容易让人兴奋”。“然而,根据我的经验,最成功的项目是那些真正深入思考分析结果并让其指导他们选择方法的项目——即使最合适的方法并不是最性感、最新的方法。”

罗切斯特理工学院计算机工程系主任、副教授shanchie Jay Yang建议说:“用户必须谨慎选择适合他们需求的方法”。“必须拥有一种高效且可解释的技术,一种可以利用序列数据、时间数据的统计特性,然后将其外推到最有可能的未来,”Yang说。

5.用精确定义的目标构建模型

这似乎是显而易见的,但许多预测分析项目开始时的目标是构建一个宏伟的模型,却没有一个明确的最终使用计划。“有很多很棒的模型从来没有被人使用过,因为没有人知道如何使用这些模型来实现或提供价值,”汽车、保险和碰撞修复行业的SaaS提供商CCC信息服务公司的产品管理高级副总裁Jason Verlen评论道。

对此,Fontes也表示同意。“使用正确的工具肯定会确保我们从分析中得到想要的结果……”因为这迫使我们必须对自己的目标非常清楚,”她解释道。“如果我们不清楚分析的目标,就永远也不可能真正得到我们想要的东西。”

6.在IT和相关业务部门之间建立密切的合作关系

在业务和技术组织之间建立牢固的合作伙伴关系是至关重要的。客户体验技术提供商Genesys的人工智能产品管理副总裁Paul lasserr说:“你应该能够理解新技术如何应对业务挑战或改善现有的业务环境。”然后,一旦设置了目标,就可以在一个限定范围的应用程序中测试模型,以确定解决方案是否真正提供了所需的价值。

7.不要被设计不良的模型误导

模型是由人设计的,所以它们经常包含着潜在的缺陷。错误的模型或使用不正确或不当的数据构建的模型很容易产生误导,在极端情况下,甚至会产生完全错误的预测。

没有实现适当随机化的选择偏差会混淆预测。例如,在一项假设的减肥研究中,可能有50%的参与者选择退出后续的体重测量。然而,那些中途退出的人与留下来的人有着不同的体重轨迹。这使得分析变得复杂,因为在这样的研究中,那些坚持参加这个项目的人通常是那些真正减肥的人。另一方面,戒烟者通常是那些很少或根本没有减肥经历的人。因此,虽然减肥在整个世界都是具有因果性和可预测性的,但在一个有50%退出率的有限数据库中,实际的减肥结果可能会被隐藏起来。

六、大数据展现与应用技术

大数据技术能够将隐藏于海量数据中的信息和知识挖掘出来,为人类的社会经济活动提供依据,从而提高各个领域的运行效率,大大提高整个社会经济的集约化程度。

在我国,大数据将重点应用于以下三大领域:商业智能 、政府决策、公共服务。例如:商业智能技术,政府决策技术,电信数据信息处理与挖掘技术,电网数据信息处理与挖掘技术,气象信息分析技术,环境监测技术,警务云应用系统(道路监控、视频监控、网络监控、智能交通、反电信诈骗、指挥调度等公安信息系统),大规模基因序列分析比对技术,Web信息挖掘技术,多媒体数据并行化处理技术,影视制作渲染技术,其他各种行业的云计算和海量数据处理应用技术等。

‘捌’ 分治算法的应用实例

下面通过实例加以说明: 给你一个装有1 6个硬币的袋子。1 6个硬币中有一个是伪造的,并且那个伪造的硬币比真的硬币要轻一些。你的任务是找出这个伪造的硬币。为了帮助你完成这一任务,将提供一台可用来比较两组硬币重量的仪器,利用这台仪器,可以知道两组硬币的重量是否相同。比较硬币1与硬币2的重量。假如硬币1比硬币2轻,则硬币1是伪造的;假如硬币2比硬币1轻,则硬币2是伪造的。这样就完成了任务。假如两硬币重量相等,则比较硬币3和硬币4。同样,假如有一个硬币轻一些,则寻找伪币的任务完成。假如两硬币重量相等,则继续比较硬币5和硬币6。按照这种方式,可以最多通过8次比较来判断伪币的存在并找出这一伪币。
另外一种方法就是利用分而治之方法。假如把1 6硬币的例子看成一个大的问题。第一步,把这一问题分成两个小问题。随机选择8个硬币作为第一组称为A组,剩下的8个硬币作为第二组称为B组。这样,就把1 6个硬币的问题分成两个8硬币的问题来解决。第二步,判断A和B组中是否有伪币。可以利用仪器来比较A组硬币和B组硬币的重量。假如两组硬币重量相等,则可以判断伪币不存在。假如两组硬币重量不相等,则存在伪币,并且可以判断它位于较轻的那一组硬币中。最后,在第三步中,用第二步的结果得出原先1 6个硬币问题的答案。若仅仅判断硬币是否存在,则第三步非常简单。无论A组还是B组中有伪币,都可以推断这1 6个硬币中存在伪币。因此,仅仅通过一次重量的比较,就可以判断伪币是否存在。
假设需要识别出这一伪币。把两个或三个硬币的情况作为不可再分的小问题。注意如果只有一个硬币,那么不能判断出它是否就是伪币。在一个小问题中,通过将一个硬币分别与其他两个硬币比较,最多比较两次就可以找到伪币。这样,1 6硬币的问题就被分为两个8硬币(A组和B组)的问题。通过比较这两组硬币的重量,可以判断伪币是否存在。如果没有伪币,则算法终止。否则,继续划分这两组硬币来寻找伪币。假设B是轻的那一组,因此再把它分成两组,每组有4个硬币。称其中一组为B1,另一组为B2。比较这两组,肯定有一组轻一些。如果B1轻,则伪币在B1中,再将B1又分成两组,每组有两个硬币,称其中一组为B1a,另一组为B1b。比较这两组,可以得到一个较轻的组。由于这个组只有两个硬币,因此不必再细分。比较组中两个硬币的重量,可以立即知道哪一个硬币轻一些。较轻的硬币就是所要找的伪币。 在n个元素中找出最大元素和最小元素。我们可以把这n个元素放在一个数组中,用直接比较法求出。算法如下:
void maxmin1(int A[],int n,int *max,int *min)
{ int i;
*min=*max=A[0];
for(i=0;i <= n;i++)
{ if(A[i]> *max) *max= A[i];
if(A[i] < *min) *min= A[i];
}
}
上面这个算法需比较2(n-1)次。能否找到更好的算法呢?我们用分治策略来讨论。
把n个元素分成两组:
A1={A[1],...,A[int(n/2)]}和A2={A[INT(N/2)+1],...,A[N]}
分别求这两组的最大值和最小值,然后分别将这两组的最大值和最小值相比较,求出全部元素的最大值和最小值。如果A1和A2中的元素多于两个,则再用上述方法各分为两个子集。直至子集中元素至多两个元素为止。
例如有下面一组元素:-13,13,9,-5,7,23,0,15。用分治策略比较的算法如下:
void maxmin2(int A[],int i,int j,int *max,int *min)
/*A存放输入的数据,i,j存放数据的范围,初值为0,n-1,*max,*min 存放最大和最小值*/
{ int mid,max1,max2,min1,min2;
if (j==i) {最大和最小值为同一个数;return;}
if (j-1==i) {将两个数直接比较,求得最大会最小值;return;}
mid=(i+j)/2;
求i~mid之间的最大最小值分别为max1,min1;
求mid+1~j之间的最大最小值分别为max2,min2;
比较max1和max2,大的就是最大值;
比较min1和min2,小的就是最小值;
} 题目:在一个(2^k)*(2^k)个方格组成的棋盘上,有一个特殊方格与其他方格不同,称为特殊方格,称这样的棋盘为一个特殊棋盘。我们要求对棋盘的其余部分用L型方块填满(注:L型方块由3个单元格组成。即围棋中比较忌讳的愚形三角,方向随意),且任何两个L型方块不能重叠覆盖。L型方块的形态如下:
题目的解法使用分治法,即子问题和整体问题具有相同的形式。我们对棋盘做一个分割,切割一次后的棋盘如图1所示,我们可以看到棋盘被切成4个一样大小的子棋盘,特殊方块必定位于四个子棋盘中的一个。假设如图1所示,特殊方格位于右上角,我们把一个L型方块(灰色填充)放到图中位置。这样对于每个子棋盘又各有一个“特殊方块”,我们对每个子棋盘继续这样分割,直到子棋盘的大小为1为止。
用到的L型方块需要(4^k-1)/3 个,算法的时间是O(4^k),是渐进最优解法。
本题目的C语言的完整代码如下(TC2.0下调试),运行时,先输入k的大小,(1<=k<=6),然后分别输入特殊方格所在的位置(x,y), 0<=x,y<=(2^k-1)。 #include<stdio.h>//#include<conio.h>//#include<math.h>inttitle=1;intboard[64][64];voidchessBoard(inttr,inttc,intdr,intdc,intsize){ints,t;if(size==1)return;t=title++;s=size/2;if(dr<tr+s&&dc<tc+s)chessBoard(tr,tc,dr,dc,s);else{board[tr+s-1][tc+s-1]=t;chessBoard(tr,tc,tr+s-1,tc+s-1,s);}if(dr<tr+s&&dc>=tc+s)chessBoard(tr,tc+s,dr,dc,s);else{board[tr+s-1][tc+s]=t;chessBoard(tr,tc+s,tr+s-1,tc+s,s);}if(dr>=tr+s&&dc<tc+s)chessBoard(tr+s,tc,dr,dc,s);else{board[tr+s][tc+s-1]=t;chessBoard(tr+s,tc,tr+s,tc+s-1,s);}if(dr>=tr+s&&dc>=tc+s)chessBoard(tr+s,tc+s,dr,dc,s);else{board[tr+s][tc+s]=t;chessBoard(tr+s,tc+s,tr+s,tc+s,s);}}voidmain(){intdr=0,dc=0,s=1,i=0,j=0;printf(printinthesizeofchess: );scanf(%d,&s);printf(printinspecalpointx,y: );scanf(%d%d,&dr,&dc);if(dr<s&&dc<s){chessBoard(0,0,dr,dc,s);for(i=0;i<s;i++){for(j=0;j<s;j++){printf(%4d,board[i][j]);}printf( );}}elseprintf(thewrongspecalpoint!! );getch();}

‘玖’ 蝴蝶算法运用范围

三角形数学问题的分析。
蝴蝶算法是一种常用的插值细分算法原始算法在度不为6的点不光滑,Topology提出了改进的蝴蝶算法,可以在任意的三角网格上生成G1连续的细分曲面。
在一个端点(V1)的度为6而另一个端点(V2)不为6的情形下,解释了与V2相邻的端点的权重,而且这些权重相加为1/4。

‘拾’ 协同过滤的算法细分

这是最早应用协同过滤系统的设计,主要是解决Xerox公司在Palo Alto的研究中心资讯过载的问题。这个研究中心的员工每天会收到非常多的电子邮件却无从筛选分类,于是研究中心便发展这项实验性的邮件系统来帮助员工解决这项问题。 其运作机制大致如下:
个人决定自己的感兴趣的邮件类型;个人旋即随机发出一项资讯需求,可预测的结果是会收到非常多相关的文件;从这些文件中个人选出至少三笔资料是其认为有用、会想要看的;系统便将之记录起来成为个人邮件系统内的过滤器,从此以后经过过滤的文件会最先送达信箱;以上是协同过滤最早的应用,接下来的里程碑为GroupLens。 这个系统主要是应用在新闻的筛选上,帮助新闻的阅听者过滤其感兴趣的新闻内容,阅听者看过内容后给一个评比的分数,系统会将分数记录起来以备未来参考之用,假设前提是阅听者以前感兴趣的东西在未来也会有兴趣阅听,若阅听者不愿揭露自己的身分也可以匿名进行评分。 和Tapestry不同之处有两点,首先,Tapestry专指一个点(如一个网站内、一个系统内)的过滤机制;GroupLens则是跨点跨系统的新闻过滤机制。再来,Tapestry不会将同一笔资料的评比总和起来;GroupLens会将同一笔资料从不同使用者得到的评比加总。
GroupLens具有以下特点:开放性:所有的新闻阅听者皆可使用,虽然系统委托Better Bit Bureau设计给分的系统,但若有不同的评分机制也适用于GroupLens。方便性:给分并不是一件困难的事情且沟通上非常方便,评分结果容易诠释。规模性:有可能发展成大规模的系统,一旦发展成大规模,储存空间与计算成本问题显得相当棘手。隐密性:如果使用者不想让别人知道他是谁,别人就不会知道。由此可以看出,现今网络各个推荐系统的雏形已然形成,在GroupLens之后还有性质相近的MovieLens,电影推荐系统;Ringo,音乐推荐系统;Video Recommender,影音推荐系统;以及Jster,笑话推荐系统等等。乃至于今日的YouTube、aNobii皆是相似性值得网络推荐平台,较不同的是经过时间推移,网络越来越发达,使用者越来越多,系统也发展得越来越严密。 最着名的电子商务推荐系统应属亚马逊网络书店,顾客选择一本自己感兴趣的书籍,马上会在底下看到一行“Customer Who Bought This Item Also Bought”,亚马逊是在“对同样一本书有兴趣的读者们兴趣在某种程度上相近”的假设前提下提供这样的推荐,此举也成为亚马逊网络书店为人所津津乐道的一项服务,各网络书店也跟进做这样的推荐服务如台湾的博客来网络书店。 另外一个着名的例子是Facebook的广告,系统根据个人资料、周遭朋友感兴趣的广告等等对个人提供广告推销,也是一项协同过滤重要的里程碑,和前二者Tapestry、GroupLens不同的是在这里虽然商业气息浓厚同时还是带给使用者很大的方便。 以上为三项协同过滤发展上重要的里程碑,从早期单一系统内的邮件、文件过滤,到跨系统的新闻、电影、音乐过滤,乃至于今日横行互联网的电子商务,虽然目的不太相同,但带给使用者的方便是大家都不能否定的。

热点内容
冒险房密码是什么 发布:2025-05-16 12:12:30 浏览:406
怎么查数据库服务器ip地址 发布:2025-05-16 12:11:54 浏览:368
python中文web 发布:2025-05-16 12:10:13 浏览:766
windowsandroid编译 发布:2025-05-16 12:02:23 浏览:333
为什么华为的系统是安卓 发布:2025-05-16 12:02:11 浏览:127
app怎么提供服务器地址 发布:2025-05-16 11:48:27 浏览:397
双面警长第一季ftp 发布:2025-05-16 11:41:20 浏览:664
php取数组第一个 发布:2025-05-16 11:30:58 浏览:423
解调算法 发布:2025-05-16 11:21:09 浏览:136
python密码暴力破解 发布:2025-05-16 11:13:28 浏览:592