遗传算法的matlab程序
⑴ 求遗传算法的matlab程序
function
my_ga()
options=gaoptimset;
%设置变量范围
options=gaoptimset(options,'PopInitRange',[0;9]);
%设置种群大小
options=gaoptimset(options,'PopulationSize',100);
%设置迭代次数
options=gaoptimset(options,'Generations',100);
%选择选择函数
options=gaoptimset(options,'SelectionFcn',@selectionroulette);
%选择交叉函数
options=gaoptimset(options,'CrossoverFcn',@crossoverarithmetic);
%选择变异函数
options=gaoptimset(options,'MutationFcn',@mutationuniform);
%设置绘图:解的变化、种群平均值的变化
options=gaoptimset(options,'PlotFcns',{@gaplotbestf});
%执行遗传算法,fitness.m是函数文件
[x,fval]=ga(@fitness,1,options)
⑵ 关于遗传算法的MATLAB实现
function [x fx string]=fun_SuiJiSuanFa2(N,genLenth,Pc,Pm,downbound,upbound,generation)
%[x fx string]=fun_SuiJiSuanFa2(6,16,0.7,0.01,-3,3,100)
%f 表示函数
%N表示染色体种群大小
%genLenth表示染色体长度
%Pc表示交叉概率
%Pm表示突变概率
%downbound
%upbound
%generation循环代数
%进制编码,此处编写为二进制
num=2;
initdata=randi([0 num-1],N,genLenth);
%二进制编码的权值
weight=(num).^(genLenth/2-1:-1:0);
weights=repmat(weight,N,1);
%保存每代的最好值和平均值,
meanally=zeros(1,generation);
maxally=zeros(1,generation);
Nowx=zeros(generation,genLenth);
for k=1:generation
%解码后的整数
allx1=sum(initdata(:,1:genLenth/2).*weights,2);
allx2=sum(initdata(:,genLenth/2+1:end).*weights,2);
%映射到取值范围
delt=(upbound-downbound)/(num^(genLenth/2)-1);
allx1=allx1.*delt+downbound;
allx2=allx2.*delt+downbound;
%染色体的适应性
ally=f(allx1,allx2);
%平均值,最大值
meanally(k)=mean(ally);
maxally(k)=max(ally);
%找下标,确定是哪条染色体
index=find(ally==maxally(k));
Nowx(k,:)=initdata(index(1),:);
%最大值没有提高就取上次的
if(k>=2&&maxally(k)<maxally(k-1))
maxally(k)=maxally(k-1);
Nowx(k,:)=Nowx(k-1,:);
end
%染色体的适应性比率
ratio=ally./sum(ally);
%交叉,变异
%??交叉几个,从第几个开始。
%此处只交叉1个(总共才6个),随机给一个。
sumRatio=cumsum(ratio);
data=zeros(N,genLenth);
for i=1:N/2
Select1=find(sumRatio>=rand);
Select2=find(sumRatio>=rand);
data(2*i-1,:)=initdata(Select1(1),:);
data(2*i,:)=initdata(Select2(1),:);
if(rand<Pc)
%交叉
location=randi([1,genLenth]);
temp=data(2*i-1,location:end);
data(2*i-1,location:end)=data(2*i,location:end);
data(2*i,location:end)=temp;
else
%变异
if(rand<Pm)
location=randi([1,genLenth]);
data(2*i-1,location)=1-data(2*i-1,location);
end
if(rand<Pm)
location=randi([1,genLenth]);
data(2*i,location)=1-data(2*i,location);
end
end
end
initdata=data;
end
fx=max(maxally);
lastIndex=find(maxally==fx);
string=Nowx(lastIndex(1),:);
x(1)=sum(string(1:genLenth/2).*weight).*(upbound-downbound)/(num^(genLenth/2)-1)+downbound;
x(2)=sum(string(1+genLenth/2:end).*weight).*(upbound-downbound)/(num^(genLenth/2)-1)+downbound;
%绘制性能图
%figure,hold on;
clf;figure(1),hold on;
plot((1:k)',meanally,'b.-');
plot((1:k)',maxally,'r.:');
end
function fun=f(x,y)
fun=(1-x).^2.*exp(-x.^2-(1+y).^2)-(x-x.^3-y.^3).*exp(-x.^2-y.^2);
%fun=-(x-1).^2-3.*(y-2).^2+100;
end
⑶ 怎么用遗传算法求一函数的极小值,编写matlab程序。
需要很多的子函数
%子程序:新物种交叉操作,函数名称存储为crossover.m
function scro=crossover(population,seln,pc);
BitLength=size(population,2);
pcc=IfCroIfMut(pc);%根据交叉概率决定是否进行交叉操作,1则是,0则否
if pcc==1
chb=round(rand*(BitLength-2))+1;%在[1,BitLength-1]范围内随机产生一个交叉位
scro(1,:)=[population(seln(1),1:chb) population(seln(2),chb+1:BitLength)]
scro(2,:)=[population(seln(2),1:chb) population(seln(1),chb+1:BitLength)]
else
scro(1,:)=population(seln(1),:);
scro(2,:)=population(seln(2),:);
end
%子程序:计算适应度函数,函数名称存储为fitnessfun.m
function [Fitvalue,cumsump]=fitnessfun(population);
global BitLength
global boundsbegin
global boundsend
popsize=size(population,1);%有popsize个个体
for i=1:popsize
x=transform2to10(population(i,:));%将二进制转换为十进制
%转化为[-2,2]区间的实数
xx=boundsbegin+x*(boundsend-boundsbegin)/(power(2,BitLength)-1);
Fitvalue(i)=targetfun(xx);%计算函数值,即适应度
end
%给适应度函数加上一个大小合理的数以便保证种群适应度值为正数
Fitvalue=Fitvalue'+203;
%计算选择概率
fsum=sum(Fitvalue);
Pperpopulation=Fitvalue/fsum;
%计算累计概率
cumsump(1)=Pperpopulation(1);
for i=2:popsize
cumsump(i)=cumsump(i-1)+Pperpopulation(i);
end
cumsump=cumsump';
%子程序:判断遗传运算是否需要进行交叉或变异,函数名称存储为IfCroIfMut.m
function pcc=IfCroIfMut(mutORcro);
test(1:100)=0;
l=round(100*mutORcro);
test(1:l)=1;
n=round(rand*99)+1;
pcc=test(n);
%子程序:新种群变异操作,函数名称存储为mutation.m
function snnew=mutation(snew,pmutation);
BitLength=size(snew,2);
snnew=snew;
pmm=IfCroIfMut(pmutation);%根据变异概率决定是否进行变异操作,1则是,0则否
if pmm==1
chb=round(rand*(BitLength-1))+1;%在[1,BitLength]范围内随机产生一个变异位
snnew(chb)=abs(snew(chb)-1);
end
%子程序:新种群选择操作,函数名称存储为selection.m
function seln=selection(population,cumsump);
%从种群中选择两个个体
for i=1:2
r=rand;%产生一个随机数
prand=cumsump-r;
j=1;
while prand(j)<0
j=j+1;
end
seln(i)=j;%选中个体的序号
end
%子程序:对于优化最大值或极大值函数问题,目标函数可以作为适应度函数
%函数名称存储为targetfun.m
function y=targetfun(x);%目标函数
%子程序:将二进制数转换为十进制数,函数名称存储为transform2to10.m
function x=transform2to10(Population);
BitLength=size(Population,2);
x=Population(BitLength);
for i=1:BitLength-1
x=x+Population(BitLength-i)*power(2,i);
end
k=[0 0.1 0.2 0.3 0.5 1];
for i=1:1:5
%主程序:用遗传算法求解targetfun.m中目标函数在区间[-2,2]的最大值
clc;
clear all;
close all;
global BitLength
global boundsbegin
global boundsend
bounds=[-2 2];%一维自变量的取值范围
precision=0.0001;%运算精度
boundsbegin=bounds(:,1);
boundsend=bounds(:,2);
%计算如果满足求解精度至少需要多长的染色体
BitLength=ceil(log2((boundsend-boundsbegin)'./precision));
popsize=50;%初始种群大小
Generationmax=12;%最大代数
pcrossover=0.90;%交配概率
pmutation=0.09;%变异概率
%产生初始种群
population=round(rand(popsize,BitLength));
%计算适应度值,返回Fitvalue和累计概率cumsump
[Fitvalue,cumsump]=fitnessfun(population);
Generation=1;
while Generation<Generationmax+1
for j=1:2:popsize
%选择操作
seln=selection(population,cumsump);
%交叉操作
scro=crossover(population,seln,pcrossover);
scnew(j,:)=scro(1,:);
scnew(j+1,:)=scro(2,:);
%变异操作
smnew(j,:)=mutation(scnew(j,:),pmutation);
smnew(j+1,:)=mutation(scnew(j+1,:),pmutation);
end%产生了新种群
population=smnew;
%计算新种群的适应度
[Fitvalue,cumsump]=fitnessfun(population);
%记录当前代最好的适应度和平均适应度
[fmax,nmax]=max(Fitvalue);
fmean=mean(Fitvalue);
ymax(Generation)=fmax;
ymean(Generation)=fmean;
%记录当前代的最佳染色体个体
x=transform2to10(population(nmax,:));
%自变量取值范围是[-2 2],需要把经过遗传运算的最佳染色体整合到[-2 2]区间
xx=boundsbegin+x*(boundsend-boundsbegin)/(power(2,BitLength)-1);
xmax(Generation)=xx;
Generation=Generation+1;
end
Generation=Generation-1;
Bestpopuation=xx;
Besttargetfunvalue=targetfun(xx);
%绘制经过遗传运算后的适应度曲线。一般地,如果进化过程中种群的平均适应度与最大适
%应度在曲线上有相互趋同的形态,表示算法收敛进行得很顺利,没有出现震荡;在这种前
%提下,最大适应度个体连续若干代都没有发生进化表明种群已经成熟
figure(1);
hand1=plot(1:Generation,ymax);
set(hand1,'linestyle','-','linewidth',1.8,'marker','*','markersize',6)
hold on;
hand2=plot(1:Generation,ymean);
set(hand2,'color','r','linestyle','-','linewidth',1.8,'marker','h','markersize',6)
xlabel('进化代数');ylabel('(最大/平均适应度)');xlim([1 Generationmax]);
legend('最大适应度','平均适应度');
box off;hold off;
y=(x(i)-k(i))^2-10*sin(2*pi*(x(i)-k(i)))+10;
end
⑷ 遗传算法实现数字水印用MATLAB,程序怎么写啊可以把我的积分都给了你
一、嵌入水印信息的MATLAB程序
首先读入原始图象并设置参数,然后嵌入水印信息,程序代码如下:
clear
%
%读入原图象
trueImage=imread('C:\Documents and Settings\ks001\My Documents\My Pictures\lean.tif');
alfa=.1;
LENGTH=2500;
subplot(2,2,1);
imshow(trueImage);
title('原始图象');
%
%对原图象进行DCT变换
dctF1=dct2('C:\Documents and Settings\ks001\My Documents\My Pictures\lean.tif');
subplot(2,2,2);
imshow(log(abs(dctF1)),[ ]);
title('DCT cofficient matrix');
[m,n]=size(dctF1);
%
%产生水印序列并对其排序
radon('right',10);
watermark1=radon(LENGTH,1);
subplot(2,2,3);
title('watermark seqence')
[Y0,I0]=sort(watermark1);
%
%找出水印嵌入位置(幅值较大的n个频域成分)
A=dctF1(:);
[Y1,I1]=sort(A);
x=m*n;
k=LENGTH;
M=zeros(x,1);
%
%修改幅值较大的n个频域成分的幅值,嵌入水印(因为两个问题不同,所以有两个注释符)
for i=1:x
if k>=1
M(x)=Y1(x)*(1+alfa*Y0(k));
k=k-1;
else
M(x)=Y1(x);
end
x=x-1;
end
N=zeros(x,1);
x=m*n;
for i=1:x
N(I1(i))=M(i);
end
a=1;
for j=1:n
for i=1:m
dctF2(i,j)=N(a);
a=a+1;
end
end
%
%DCT反变换,得到嵌入水印的图象
idctF1=idct2(dctF2);
subplot(2,2,4);
imshow(idctF1,[ ]);
title('嵌入水印后的图象');
end
二、提取恢复水印信息的MATLAB程序
水印提取过程是水印嵌入过程的逆过程,相对嵌入过程来说比较复杂,难度较大,下面是水印提取检测的MATLAB程序代码:
function watermark_detect(image,Y1,I0,waterMark1)
%image:嵌入水印的图象
%Y1:原始图象的序列排序
%I0:原始水印的序列排序
%waterMark1:原始水印序列
%
%对嵌入水印图象进行DCT变化
dctW1=dct2(image);
%
%找出幅值较大的系数
B=dtW1(:);
[Y1,I2]=sort(B);
[m1,n1]=size(dctW1);
y=m1*n1;
k=length(waterMark1);
N0=zeros(k,1);
%
%提取水印序列
while k>=1
N0(k)=(Y2(y)-Y1(y))/alfa/Y1(y);
k=k-1;
y=y-1;
end
k=length(waterMark1);
waterMark2=zeros(k,1);
for i=1:k
waterMark2(I0(i))=N0(i);
end
%
%选取50个测试序列,其中第10个为提取出的水印
figure;
for i=1;50
if i==10;
waterMark=waterMark2;
else
waterMark=rand(k,1);
end
%计算各个序列与原来水印序列的相关值
c=waterMark'*waterMark1/sqrt(waterMark'*waterMark);
stem(i,c);
hold on;
end
%
三、接下来对嵌入水印的图象进行不同的攻击,用以测试水印的鲁棒性。
程序的目的和程序代码如下:
%
%攻击实验
disp('input you choice according to the following
image processing operation:');
disp('0--exit');
disp('1--smoothing patterns');
%添加噪音
disp('2--adding uniorm noise 添加噪音');
%滤波
disp('3--adding filter [10 10] 滤波');
%剪切
disp('4--cutting part of the image 剪切');
%压缩
disp('5--10 quality JPEG compressing 压缩');
%旋转45度
disp('6--rotate 45 旋转');
%
d=input('please input you choice(请输入您的选择):');
while d~=0
switch d
case 1
watermark_detect(idctF1,Y1,I0,waterMark1);
case 2
WImage2=idctF1;
noise0=10*rand(size(WImage2));
WImage2=WImage2+noise0;
figure;
imshow(WImage2,[ ]);
title('adding uniform noise 添加噪音');
watemark_detect(WImage2,Y1,I0,waterMark1);
case 3
WImage3=idctF1;
H=fspcial('gaussian高斯',[10,10],5);
WImage3=imfilter(WImage3,H);
figure;
imshow(WImage3,[ ]);
title(through filter [10,10] 滤波');
watemark_detect(WImage3,Y1,I0,waterMark1);
case 4
WImage4=idctF1; WImage4(1:128,1;128)=256;
figure;
imshow(WImage4);
title('cutting part of the image 剪切');
watemark_detect(WImage4,Y1,I0,waterMark1);
case 5
WImage5=idctF1;
WImage5=im2double(WImage5);
cnum=10;
dctm=dctmtx(8);
p1=dctm;
p2=dctm.';
imageDCT=blkproc(WImage5,[8,8],'p1*p2*x',dctm,dctm.');
DCTvar=im2col(imageDCT,[8,8],'distinct').';
n=size(DCTvar,1);
DCTvar=(sum(DCTvar.*DCTvar)-(sum(DCTvar)/n).^2)/n;
[m,order]=sort(DCTvar);
cnum=64-cnum;
mask=ones(8,8);
mask(order(1:cnum))=zeros(1,cnum);
im88=zeros(9,9);
im88(1:8,1:8)=mask;
im128128=kron(im88(1:8,1:8),ones(16));
dctm=dctmtx(8);
p1=dctm.';
p2=mask(1;8,1:8);
p3=dctm;
Wimage5=bikproc(imageDCT,[8,8],'p1*(x.8p2)*p3',dctm.',mask(1:8,1:8),dctm);
figure;
imshow(Wimage5);
title('JPEG Image 压缩');
watemark_detect(WImage5,Y1,I0,waterMark1);
case 6 WImage6=idctF1;
WImage6=imrotate(WImage6,45,'bilinear','corp');
figure;
imshow(Wimage6);
title('rotate 45 旋转');
watemark_detect(WImage6,Y1,I0,waterMark1);
case 0
break;
otherwise
error('you have a valid value(您的输入错误)');
end
d=input('please input you choice(请输入您的选择):');
end
%结束
⑸ 用matlab遗传算法分析运动方式
(1)首先计算出所有个体的适应度总和Σfi。
(2)其次计算出每个个体的相对适应度大小fi/Σfi,类似于softmax。
(3)再产生一个0到1之间的随机数,依据随机数出现在上述哪个概率区域内来确定各个个体被选中的次数。
(4)交叉(交配)运算。该步骤是遗传算法中产生新的个体的主要操作过程,它用一定的交配概率阈值(pc,一般是0.4到0.99)来控制是否采取单点交叉,多点交叉等方式生成新的交叉个体。
具体步骤如下: (1)先对群体随机配对。(2)再随机设定交叉点的位置。 (3)再互换配对染色体间的部分基因。
(5)变异运算。该步骤是产生新的个体的另一种操作。一般先随机产生变异点,再根据变异概率阈值(pm,一般是0.0001到0.1)将变异点的原有基因取反。
⑹ MATLAB遗传算法
function ret=Code(lenchrom,bound)
%本函数将变量编码成染色体,用于随机初始化一个种群
% lenchrom input : 染色体长度
% bound input : 变量的取值范围
% ret output: 染色体的编码值
flag=0;
while flag==0
pick=rand(1,length(lenchrom));
ret=bound(:,1)'+(bound(:,2)-bound(:,1))'.*pick; %线性插值
flag=test(lenchrom,bound,ret); %检验染色体的可行性
end
function ret=Cross(pcross,lenchrom,chrom,sizepop,bound)
%本函数完成交叉操作
% pcorss input : 交叉概率
% lenchrom input : 染色体的长度
% chrom input : 染色体群
% sizepop input : 种群规模
% ret output : 交叉后的染色体
for i=1:sizepop
% 随机选择两个染色体进行交叉
pick=rand(1,2);
while prod(pick)==0
pick=rand(1,2);
end
index=ceil(pick.*sizepop);
% 交叉概率决定是否进行交叉
pick=rand;
while pick==0
pick=rand;
end
if pick>pcross
continue;
end
flag=0;
while flag==0
% 随机选择交叉位置
pick=rand;
while pick==0
pick=rand;
end
pos=ceil(pick.*sum(lenchrom)); %随机选择进行交叉的位置,即选择第几个变量进行交叉,注意:两个染色体交叉的位置相同
pick=rand; %交叉开始
v1=chrom(index(1),pos);
v2=chrom(index(2),pos);
chrom(index(1),pos)=pick*v2+(1-pick)*v1;
chrom(index(2),pos)=pick*v1+(1-pick)*v2; %交叉结束
flag1=test(lenchrom,bound,chrom(index(1),:)); %检验染色体1的可行性
flag2=test(lenchrom,bound,chrom(index(2),:)); %检验染色体2的可行性
if flag1*flag2==0
flag=0;
else flag=1;
end %如果两个染色体不是都可行,则重新交叉
end
end
ret=chrom;
clc
clear all
% warning off
%% 遗传算法参数
maxgen=50; %进化代数
sizepop=100; %种群规模
pcross=[0.6]; %交叉概率
pmutation=[0.1]; %变异概率
lenchrom=[1 1]; %变量字串长度
bound=[-5 5;-5 5]; %变量范围
%% 个体初始化
indivials=struct('fitness',zeros(1,sizepop), 'chrom',[]); %种群结构体
avgfitness=[]; %种群平均适应度
bestfitness=[]; %种群最佳适应度
bestchrom=[]; %适应度最好染色体
% 初始化种群
for i=1:sizepop
indivials.chrom(i,:)=Code(lenchrom,bound); %随机产生个体
x=indivials.chrom(i,:);
indivials.fitness(i)= (x(1)*exp(-(x(1)^2 + x(2)^2)));
%-20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289
% 这个是我的测试函数
% 如果有这个函数的话,可以得到最优值
end
%找最好的染色体
[bestfitness bestindex]=min(indivials.fitness);
bestchrom=indivials.chrom(bestindex,:); %最好的染色体
avgfitness=sum(indivials.fitness)/sizepop; %染色体的平均适应度
% 记录每一代进化中最好的适应度和平均适应度
trace=[];
%% 进化开始
for i=1:maxgen
% 选择操作
indivials=Select(indivials,sizepop);
avgfitness=sum(indivials.fitness)/sizepop;
% 交叉操作
indivials.chrom=Cross(pcross,lenchrom,indivials.chrom,sizepop,bound);
% 变异操作
indivials.chrom=Mutation(pmutation,lenchrom,indivials.chrom,sizepop,[i maxgen],bound);
% 计算适应度
for j=1:sizepop
x=indivials.chrom(j,:);
indivials.fitness(j)=(x(1)*exp(-(x(1)^2 + x(2)^2)));
%-20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289
% -20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289;
end
%找到最小和最大适应度的染色体及它们在种群中的位置
[newbestfitness,newbestindex]=min(indivials.fitness);
[worestfitness,worestindex]=max(indivials.fitness);
% 代替上一次进化中最好的染色体
if bestfitness>newbestfitness
bestfitness=newbestfitness;
bestchrom=indivials.chrom(newbestindex,:);
end
indivials.chrom(worestindex,:)=bestchrom;
indivials.fitness(worestindex)=bestfitness;
avgfitness=sum(indivials.fitness)/sizepop;
trace=[trace;avgfitness bestfitness]; %记录每一代进化中最好的适应度和平均适应度
end
%进化结束
%% 结果显示
[r c]=size(trace);
figure
plot([1:r]',trace(:,1),'r-',[1:r]',trace(:,2),'b--');
title(['函数值曲线 ' '终止代数=' num2str(maxgen)],'fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('函数值','fontsize',12);
legend('各代平均值','各代最佳值','fontsize',12);
ylim([-0.5 5])
disp('函数值 变量');
% 窗口显示
disp([bestfitness x]);
⑺ 基于Matlab的函数优化遗传算法程序
新建一个函数
_f.m
function
f=_f(x)
f=0.5-((sin(sqrt(x(1)^2+x(2)^2)))^2-0.5)/(1+0.001*(x(1)^2+x(2)^2)^2)
然后用fmins函数寻找极值。
x
=
fmins('_f',
[0
0],
[2
2]);
另外你的语句中有错,少写了一个括号,你再自己检查一下。
⑻ MATLAB编遗传算法源程序
遗传算法实例:
也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。
对于初学者,尤其是还没有编程经验的非常有用的一个文件
遗传算法实例
% 下面举例说明遗传算法 %
% 求下列函数的最大值 %
% f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] %
% 将 x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为 (10-0)/(2^10-1)≈0.01 。 %
% 将变量域 [0,10] 离散化为二值域 [0,1023], x=0+10*b/1023, 其中 b 是 [0,1023] 中的一个二值数。 %
% %
%--------------------------------------------------------------------------------------------------------------%
%--------------------------------------------------------------------------------------------------------------%
% 编程
%-----------------------------------------------
% 2.1初始化(编码)
% initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),
% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。
%遗传算法子程序
%Name: initpop.m
%初始化
function pop=initpop(popsize,chromlength)
pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为 {0,1} 行数为popsize,列数为chromlength的矩阵,
% roud对矩阵的每个单元进行圆整。这样产生的初始种群。
% 2.2 计算目标函数值
% 2.2.1 将二进制数转化为十进制数(1)
%遗传算法子程序
%Name: decodebinary.m
%产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制
function pop2=decodebinary(pop)
[px,py]=size(pop); %求pop行和列数
for i=1:py
pop1(:,i)=2.^(py-i).*pop(:,i);
end
pop2=sum(pop1,2); %求pop1的每行之和
% 2.2.2 将二进制编码转化为十进制数(2)
% decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置
% (对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1),
% 参数1ength表示所截取的长度(本例为10)。
%遗传算法子程序
%Name: decodechrom.m
%将二进制编码转换成十进制
function pop2=decodechrom(pop,spoint,length)
pop1=pop(:,spoint:spoint+length-1);
pop2=decodebinary(pop1);
% 2.2.3 计算目标函数值
% calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。
%遗传算法子程序
%Name: calobjvalue.m
%实现目标函数的计算
function [objvalue]=calobjvalue(pop)
temp1=decodechrom(pop,1,10); %将pop每行转化成十进制数
x=temp1*10/1023; %将二值域 中的数转化为变量域 的数
objvalue=10*sin(5*x)+7*cos(4*x); %计算目标函数值
% 2.3 计算个体的适应值
%遗传算法子程序
%Name:calfitvalue.m
%计算个体的适应值
function fitvalue=calfitvalue(objvalue)
global Cmin;
Cmin=0;
[px,py]=size(objvalue);
for i=1:px
if objvalue(i)+Cmin>0
temp=Cmin+objvalue(i);
else
temp=0.0;
end
fitvalue(i)=temp;
end
fitvalue=fitvalue';
% 2.4 选择复制
% 选择或复制操作是决定哪些个体可以进入下一代。程序中采用赌轮盘选择法选择,这种方法较易实现。
% 根据方程 pi=fi/∑fi=fi/fsum ,选择步骤:
% 1) 在第 t 代,由(1)式计算 fsum 和 pi
% 2) 产生 {0,1} 的随机数 rand( .),求 s=rand( .)*fsum
% 3) 求 ∑fi≥s 中最小的 k ,则第 k 个个体被选中
% 4) 进行 N 次2)、3)操作,得到 N 个个体,成为第 t=t+1 代种群
%遗传算法子程序
%Name: selection.m
%选择复制
function [newpop]=selection(pop,fitvalue)
totalfit=sum(fitvalue); %求适应值之和
fitvalue=fitvalue/totalfit; %单个个体被选择的概率
fitvalue=cumsum(fitvalue); %如 fitvalue=[1 2 3 4],则 cumsum(fitvalue)=[1 3 6 10]
[px,py]=size(pop);
ms=sort(rand(px,1)); %从小到大排列
fitin=1;
newin=1;
while newin<=px
if(ms(newin))<fitvalue(fitin)
newpop(newin)=pop(fitin);
newin=newin+1;
else
fitin=fitin+1;
end
end
% 2.5 交叉
% 交叉(crossover),群体中的每个个体之间都以一定的概率 pc 交叉,即两个个体从各自字符串的某一位置
% (一般是随机确定)开始互相交换,这类似生物进化过程中的基因分裂与重组。例如,假设2个父代个体x1,x2为:
% x1=0100110
% x2=1010001
% 从每个个体的第3位开始交叉,交又后得到2个新的子代个体y1,y2分别为:
% y1=0100001
% y2=1010110
% 这样2个子代个体就分别具有了2个父代个体的某些特征。利用交又我们有可能由父代个体在子代组合成具有更高适合度的个体。
% 事实上交又是遗传算法区别于其它传统优化方法的主要特点之一。
%遗传算法子程序
%Name: crossover.m
%交叉
function [newpop]=crossover(pop,pc)
[px,py]=size(pop);
newpop=ones(size(pop));
for i=1:2:px-1
if(rand<pc)
cpoint=round(rand*py);
newpop(i,:)=[pop(i,1:cpoint),pop(i+1,cpoint+1:py)];
newpop(i+1,:)=[pop(i+1,1:cpoint),pop(i,cpoint+1:py)];
else
newpop(i,:)=pop(i);
newpop(i+1,:)=pop(i+1);
end
end
% 2.6 变异
% 变异(mutation),基因的突变普遍存在于生物的进化过程中。变异是指父代中的每个个体的每一位都以概率 pm 翻转,即由“1”变为“0”,
% 或由“0”变为“1”。遗传算法的变异特性可以使求解过程随机地搜索到解可能存在的整个空间,因此可以在一定程度上求得全局最优解。
%遗传算法子程序
%Name: mutation.m
%变异
function [newpop]=mutation(pop,pm)
[px,py]=size(pop);
newpop=ones(size(pop));
for i=1:px
if(rand<pm)
mpoint=round(rand*py);
if mpoint<=0
mpoint=1;
end
newpop(i)=pop(i);
if any(newpop(i,mpoint))==0
newpop(i,mpoint)=1;
else
newpop(i,mpoint)=0;
end
else
newpop(i)=pop(i);
end
end
% 2.7 求出群体中最大得适应值及其个体
%遗传算法子程序
%Name: best.m
%求出群体中适应值最大的值
function [bestindivial,bestfit]=best(pop,fitvalue)
[px,py]=size(pop);
bestindivial=pop(1,:);
bestfit=fitvalue(1);
for i=2:px
if fitvalue(i)>bestfit
bestindivial=pop(i,:);
bestfit=fitvalue(i);
end
end
% 2.8 主程序
%遗传算法主程序
%Name:genmain05.m
clear
clf
popsize=20; %群体大小
chromlength=10; %字符串长度(个体长度)
pc=0.6; %交叉概率
pm=0.001; %变异概率
pop=initpop(popsize,chromlength); %随机产生初始群体
for i=1:20 %20为迭代次数
[objvalue]=calobjvalue(pop); %计算目标函数
fitvalue=calfitvalue(objvalue); %计算群体中每个个体的适应度
[newpop]=selection(pop,fitvalue); %复制
[newpop]=crossover(pop,pc); %交叉
[newpop]=mutation(pop,pc); %变异
[bestindivial,bestfit]=best(pop,fitvalue); %求出群体中适应值最大的个体及其适应值
y(i)=max(bestfit);
n(i)=i;
pop5=bestindivial;
x(i)=decodechrom(pop5,1,chromlength)*10/1023;
pop=newpop;
end
fplot('10*sin(5*x)+7*cos(4*x)',[0 10])
hold on
plot(x,y,'r*')
hold off
[z index]=max(y); %计算最大值及其位置
x5=x(index)%计算最大值对应的x值
y=z
【问题】求f(x)=x 10*sin(5x) 7*cos(4x)的最大值,其中0<=x<=9
【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08
【程序清单】
%编写目标函数
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x 10*sin(5*x) 7*cos(4*x);
%把上述函数存储为fitness.m文件并放在工作目录下
initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代
运算借过为:x =
7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)
注:遗传算法一般用来取得近似最优解,而不是最优解。
遗传算法实例2
【问题】在-5<=Xi<=5,i=1,2区间内,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2 x2.^2)))-exp(0.5*(cos(2*pi*x1) cos(2*pi*x2))) 22.71282的最小值。
【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3
【程序清单】
%源函数的matlab代码
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv) 22.71282;
%适应度函数的matlab代码
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遗传算法的matlab代码
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')
注:前两个文件存储为m文件并放在工作目录下,运行结果为
p =
0.0000 -0.0000 0.0055
大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:
fplot('x 10*sin(5*x) 7*cos(4*x)',[0,9])
evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。xoverops是传递给交叉函数的参数。mutops是传递给变异函数的参数。
【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9
【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08
【程序清单】
%编写目标函数
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x+10*sin(5*x)+7*cos(4*x);
%把上述函数存储为fitness.m文件并放在工作目录下
initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代
运算借过为:x =
7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)
注:遗传算法一般用来取得近似最优解,而不是最优解。
遗传算法实例2
【问题】在-5<=Xi<=5,i=1,2区间内,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。
【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3
【程序清单】
%源函数的matlab代码
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;
%适应度函数的matlab代码
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遗传算法的matlab代码
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')
注:前两个文件存储为m文件并放在工作目录下,运行结果为
p =
0.0000 -0.0000 0.0055
大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:
fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])
evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。xoverops是传递给交叉函数的参数。mutops是传递给变异函数的参数。
⑼ 遗传算法的matlab代码实现是什么
遗传算法我懂,我的论文就是用着这个算法,具体到你要遗传算法是做什么?优化什么的。。。我给你一个标准遗传算法程序供你参考:
该程序是遗传算法优化BP神经网络函数极值寻优:
%% 该代码为基于神经网络遗传算法的系统极值寻优
%% 清空环境变量
clc
clear
%% 初始化遗传算法参数
%初始化参数
maxgen=100; %进化代数,即迭代次数
sizepop=20; %种群规模
pcross=[0.4]; %交叉概率选择,0和1之间
pmutation=[0.2]; %变异概率选择,0和1之间
lenchrom=[1 1]; %每个变量的字串长度,如果是浮点变量,则长度都为1
bound=[-5 5;-5 5]; %数据范围
indivials=struct('fitness',zeros(1,sizepop), 'chrom',[]); %将种群信息定义为一个结构体
avgfitness=[]; %每一代种群的平均适应度
bestfitness=[]; %每一代种群的最佳适应度
bestchrom=[]; %适应度最好的染色体
%% 初始化种群计算适应度值
% 初始化种群
for i=1:sizepop
%随机产生一个种群
indivials.chrom(i,:)=Code(lenchrom,bound);
x=indivials.chrom(i,:);
%计算适应度
indivials.fitness(i)=fun(x); %染色体的适应度
end
%找最好的染色体
[bestfitness bestindex]=min(indivials.fitness);
bestchrom=indivials.chrom(bestindex,:); %最好的染色体
avgfitness=sum(indivials.fitness)/sizepop; %染色体的平均适应度
% 记录每一代进化中最好的适应度和平均适应度
trace=[avgfitness bestfitness];
%% 迭代寻优
% 进化开始
for i=1:maxgen
i
% 选择
indivials=Select(indivials,sizepop);
avgfitness=sum(indivials.fitness)/sizepop;
%交叉
indivials.chrom=Cross(pcross,lenchrom,indivials.chrom,sizepop,bound);
% 变异
indivials.chrom=Mutation(pmutation,lenchrom,indivials.chrom,sizepop,[i maxgen],bound);
% 计算适应度
for j=1:sizepop
x=indivials.chrom(j,:); %解码
indivials.fitness(j)=fun(x);
end
%找到最小和最大适应度的染色体及它们在种群中的位置
[newbestfitness,newbestindex]=min(indivials.fitness);
[worestfitness,worestindex]=max(indivials.fitness);
% 代替上一次进化中最好的染色体
if bestfitness>newbestfitness
bestfitness=newbestfitness;
bestchrom=indivials.chrom(newbestindex,:);
end
indivials.chrom(worestindex,:)=bestchrom;
indivials.fitness(worestindex)=bestfitness;
avgfitness=sum(indivials.fitness)/sizepop;
trace=[trace;avgfitness bestfitness]; %记录每一代进化中最好的适应度和平均适应度
end
%进化结束
%% 结果分析
[r c]=size(trace);
plot([1:r]',trace(:,2),'r-');
title('适应度曲线','fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('适应度','fontsize',12);
axis([0,100,0,1])
disp('适应度 变量');
x=bestchrom;
% 窗口显示
disp([bestfitness x]);
⑽ MATLAB遗传算法编程(多目标优化)
多目标是通过分布性 和非劣解来进行评价的