当前位置:首页 » 操作系统 » 分背包算法

分背包算法

发布时间: 2022-10-20 10:51:52

‘壹’ 急,分全拿出来了,算法中的背包问题的贪心算法

#include <stdio.h>
#include <iostream.h>

#define MAXWEIGHT 20
#define n 3

float pw[n]={0},x[n]={0};
int w[n]={0},p[n]={0};

void sort(int p[],int w[])
{
int temp1,temp2;
float temp;
int i,j;
for(i=0;i<n;i++)
{
pw[i]=float(p[i])/w[i];
}

for(i=0;i<n-1;i++)
{
for(j=i+1;j<n;j++)
{
if(pw[i]<pw[j])
{
temp=pw[i],pw[i]=pw[j],pw[j]=temp;
temp1=p[i],temp2=w[i];
p[i]=p[j],w[i]=w[j];
p[j]=temp1,w[j]=temp2;
}
}

}

}

void GreedyKnapsack(int p[],int w[])
{
int m=MAXWEIGHT,i;
for(i=0;i<n;i++) x[i]=0.0;
for(i=0;i<n;i++)
{
if(w[i]>m) break;
x[i]=1.0;
m=m-w[i];
}
if(i<n) x[i]=float(m)/w[i];

}

void main()
{
int i;
printf("请输入每个物体的效益和重量:\n");
for(i=0;i<n;i++)
{
cin>>p[i]>>w[i];
}
for(i=0;i<n;i++)
{
printf("原物体%d的效益和重量分别为%d,%d:\n",i+1,p[i],w[i]);
}
sort(p,w);
printf("\n\n\n按效益值非递增顺序排列物体:\n");
for(i=0;i<n;i++)
{
printf("物体%d的效益和重量分别为%d,%d 效益值为:%f\n",(i+1),p[i],w[i],pw[i]);

}
GreedyKnapsack(p,w);
printf("\n\n\n最优解为:\n");
for(i=0;i<n;i++)
{
printf("第%d个物体要放%f:\n",i+1,x[i]);
}

}

这是正确的算法

‘贰’ 用贪心算法求解背包问题的最优解。

你这个是部分背包么?也就是说物品可以随意分割?
那么可以先算出单位重量物品的价值,然后只要从高价值到低价值放入就行了,按p[i]/w[i]降序排序,然后一件一件加,加满为止!
贪心的思路是:加最少的重量得到更大的价值!
算出单位价值为{6,4,3,2,7,5,2}
加的顺序即为5,1,6,2,3,4/7
如果重量不超过就全部都加,超过就加满为止
不懂可问望采纳!
推荐看dd_engi的背包九讲,神级背包教程!在此膜拜dd_engi神牛~

‘叁’ 用分治法处理0-1背包的算法

设有一个背包,可以放入的重量为s。现在n件物品,重量分别为w1,w2,…,wn,并假设wi(1≤i≤n)均为正整数
program kic;
const M=10;{物品的件数}
var
w:array [1..M] of integer;{W[i]—第i件物品的重量}
x,y,i:integer;{x,y—选中的物品的重量和及其件数}
f:boolean; }
function knap(s,n:integer):boolean;
begin
if s=0 then knap:=true
else if (s<0) or ((s>0) and (n<1))
{产生的不合理结果说明方案不可能存在}
then knap:=false
else begin
if knap(s-w[n],n-1)=true {选中物品n}
then begin
writeln('number:',n:4,' weight:',w[n]:4);
knap:=true;
end
else knap:=knap(s,n-1);
{在除物品n外的n-1件物品中递归选择}
end;

end;
begin
fillchar(w,sizeof(w),0);{初始化}
write('object number=');{输入选中的物品的件数}
repeat readln(y); until y<=M;
write('total weight=');{输入选中物品的重量和}
readln(x);
for i:=1 to y do read(w[i]);{输入每物品的重量}
f:=knap(x,y);{递归求解背包问题}
if not(f) then writeln('not find');
{若背包中放不下重量和为X的Y件物品,则输出无解信息}
end.

‘肆’ 求动态规划0-1背包算法解释

01背包问题
题目
有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。

基本思路
这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:

f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}

这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物 品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。

优化空间复杂度
以上方法的时间和空间复杂度均为O(VN),其中时间复杂度应该已经不能再优化了,但空间复杂度却可以优化到O。

先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。那么,如果只用一个数组 f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1] [v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1] [v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态 f[i-1][v-c[i]]的值。伪代码如下:

for i=1..N
for v=V..0
f[v]=max{f[v],f[v-c[i]]+w[i]};
其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相当于我们的转移方程f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]},因为现在的f[v-c[i]]就相当于原来的f[i-1][v-c[i]]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[i][v]由f[i][v-c[i]]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。

事实上,使用一维数组解01背包的程序在后面会被多次用到,所以这里抽象出一个处理一件01背包中的物品过程,以后的代码中直接调用不加说明。

过程ZeroOnePack,表示处理一件01背包中的物品,两个参数cost、weight分别表明这件物品的费用和价值。

procere ZeroOnePack(cost,weight)
for v=V..cost
f[v]=max{f[v],f[v-cost]+weight}
注意这个过程里的处理与前面给出的伪代码有所不同。前面的示例程序写成v=V..0是为了在程序中体现每个状态都按照方程求解了,避免不必要的思维复杂度。而这里既然已经抽象成看作黑箱的过程了,就可以加入优化。费用为cost的物品不会影响状态f[0..cost-1],这是显然的。

有了这个过程以后,01背包问题的伪代码就可以这样写:

for i=1..N
ZeroOnePack(c[i],w[i]);
初始化的细节问题
我们看到的求最优解的背包问题题目中,事实上有两种不太相同的问法。有的题目要求“恰好装满背包”时的最优解,有的题目则并没有要求必须把背包装满。一种区别这两种问法的实现方法是在初始化的时候有所不同。

如果是第一种问法,要求恰好装满背包,那么在初始化时除了f[0]为0其它f[1..V]均设为-∞,这样就可以保证最终得到的f[N]是一种恰好装满背包的最优解。

如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将f[0..V]全部设为0。

为什么呢?可以这样理解:初始化的f数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0的nothing“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是-∞了。如果背包并非必须被装满,那么 任何容量的背包都有一个合法解“什么都不装”,这个解的价值为0,所以初始时状态的值也就全部为0了。

这个小技巧完全可以推广到其它类型的背包问题,后面也就不再对进行状态转移之前的初始化进行讲解。

一个常数优化
前面的伪代码中有 for v=V..1,可以将这个循环的下限进行改进。

由于只需要最后f[v]的值,倒推前一个物品,其实只要知道f[v-w[n]]即可。以此类推,对以第j个背包,其实只需要知道到f[v-sum{w[j..n]}]即可,即代码中的

for i=1..N
for v=V..0
可以改成

for i=1..n
bound=max{V-sum{w[i..n]},c[i]}
for v=V..bound
这对于V比较大时是有用的。

小结
01背包问题是最基本的背包问题,它包含了背包问题中设计状态、方程的最基本思想,另外,别的类型的背包问题往往也可以转换成01背包问题求解。故一定要仔细体会上面基本思路的得出方法,状态转移方程的意义,以及最后怎样优化的空间复杂度。

‘伍’ 背包问题的算法

3.2 背包问题
背包问题有三种

1.部分背包问题

一个旅行者有一个最多能用m公斤的背包,现在有n种物品,它们的总重量分别是W1,W2,...,Wn,它们的总价值分别为C1,C2,...,Cn.求旅行者能获得最大总价值。

解决问题的方法是贪心算法:将C1/W1,C2/W2,...Cn/Wn,从大到小排序,不停地选择价值与重量比最大的放人背包直到放满为止.

2.0/1背包

一个旅行者有一个最多能用m公斤的背包,现在有n件物品,它们的重量分别是W1,W2,...,Wn,它们的价值分别为C1,C2,...,Cn.若每种物品只有一件求旅行者能获得最大总价值。

<1>分析说明:

显然这个题可用深度优先方法对每件物品进行枚举(选或不选用0,1控制).

程序简单,但是当n的值很大的时候不能满足时间要求,时间复杂度为O(2n)。按递归的思想我们可以把问题分解为子问题,使用递归函数

设 f(i,x)表示前i件物品,总重量不超过x的最优价值

则 f(i,x)=max(f(i-1,x-W[i])+C[i],f(i-1,x))

f(n,m)即为最优解,边界条件为f(0,x)=0 ,f(i,0)=0;

动态规划方法(顺推法)程序如下:

程序如下:

program knapsack02;
const maxm=200;maxn=30;
type ar=array[1..maxn] of integer;
var m,n,j,i:integer;
c,w:ar;
f:array[0..maxn,0..maxm] of integer;
function max(x,y:integer):integer;
begin
if x>y then max:=x else max:=y;
end;
begin
readln(m,n);
for i:= 1 to n do
readln(w[i],c[i]);
for i:=1 to m do f(0,i):=0;
for i:=1 to n do f(i,0):=0;

for i:=1 to n do
for j:=1 to m do
begin
if j>=w[i] then f[i,j]:=max(f[i-1,j-w[i]]+c[i],f[i-1,j])
else f[i,j]:=f[i-1,j];
end;
writeln(f[n,m]);
end.

使用二维数组存储各子问题时方便,但当maxm较大时如maxn=2000时不能定义二维数组f,怎么办,其实可以用一维数组,但是上述中j:=1 to m 要改为j:=m downto 1,为什么?请大家自己解决。

3.完全背包问题

一个旅行者有一个最多能用m公斤的背包,现在有n种物品,每件的重量分别是W1,W2,...,Wn,

每件的价值分别为C1,C2,...,Cn.若的每种物品的件数足够多.

求旅行者能获得的最大总价值。

本问题的数学模型如下:

设 f(x)表示重量不超过x公斤的最大价值,

则 f(x)=max{f(x-w[i])+c[i]} 当x>=w[i] 1<=i<=n

程序如下:(顺推法)

program knapsack04;
const maxm=2000;maxn=30;
type ar=array[0..maxn] of integer;
var m,n,j,i,t:integer;
c,w:ar;
f:array[0..maxm] of integer;
begin
readln(m,n);
for i:= 1 to n do
readln(w[i],c[i]);
f(0):=0;
for i:=1 to m do
for j:=1 to n do
begin
if i>=w[j] then t:=f[i-w[j]]+c[j];
if t>f[i] then f[i]:=t
end;
writeln(f[m]);
end.

‘陆’ 多个背包的问题,求算法

先不管m;全装进盒子里;需x个;再将每个盒子的武器数从小到大排好;就j:=1;用repeat至x-j+1=m;输出j至m的武器总数。高加错在哪知道了,xiexie!

‘柒’ 求算法:假定我有M个背包,有N件重量不同的物品,如何分配到这M个包中且保证不超过每

假设你的N个物品的重量分别设为:X1、X2、X3...Xi(i=1、2、3...N)
所以总共你有Nx(X1+X2+X3+...Xi) 的重量
而且你又有M个背包,每个包承重量为0~W,
所以最大承重总共为MxW
则:MxW≥Nx(X1+X2+X3+...Xi)
MW/N≥X1+X2+X3+...Xi

‘捌’ 动态规划背包问题与贪心算法哪个更优

首先这两个算法是用来分别解决不同类型的背包问题的,不存在哪个更优的问题。
当一件背包物品可以分割的时候,使用贪心算法,按物品的单位体积的价值排序,从大到小取即可。
当一件背包物品不可分割的时候,(因为不可分割,所以就算按物品的单位体积的价值大的先取也不一定是最优解)此时使用贪心是不对的,应使用动态规划。

‘玖’ 背包问题的算法

1)登上算法
用登山算法求解背包问题 function []=DengShan(n,G,P,W) %n是背包的个数,G是背包的总容量,P是价值向量,W是物体的重量向量 %n=3;G=20;P=[25,24,15];W2=[18,15,10];%输入量 W2=W; [Y,I]=sort(-P./W2);W1=[];X=[];X1=[]; for i=1:length(I) W1(i)=W2(I(i)); end W=W1; for i=1:n X(i)=0; RES=G;%背包的剩余容量 j=1; while W(j)<=RES X(j)=1; RES=RES-W(j); j=j+1; end X(j)=RES/W(j); end for i=1:length(I) X1(I(i))=X(i); end X=X1; disp('装包的方法是');disp(X);disp(X.*W2);disp('总的价值是:');disp(P*X');

时间复杂度是非指数的

2)递归法
先看完全背包问题
一个旅行者有一个最多能用m公斤的背包,现在有n种物品,每件的重量分别是W1,W2,...,Wn,
每件的价值分别为C1,C2,...,Cn.若的每种物品的件数足够多.
求旅行者能获得的最大总价值。
本问题的数学模型如下:
设 f(x)表示重量不超过x公斤的最大价值,
则 f(x)=max{f(x-i)+c[i]} 当x>=w[i] 1<=i<=n
可使用递归法解决问题程序如下:
program knapsack04;
const maxm=200;maxn=30;
type ar=array[0..maxn] of integer;
var m,n,j,i,t:integer;
c,w:ar;
function f(x:integer):integer;
var i,t,m:integer;
begin
if x=0 then f:=0 else
begin
t:=-1;
for i:=1 to n do
begin
if x>=w[i] then m:=f(x-i)+c[i];
if m>t then t:=m;
end;
f:=t;
end;
end;
begin
readln(m,n);
for i:= 1 to n do
readln(w[i],c[i]);
writeln(f(m));
end.
说明:当m不大时,编程很简单,但当m较大时,容易超时.
4.2 改进的递归法
改进的的递归法的思想还是以空间换时间,这只要将递归函数计算过程中的各个子函数的值保存起来,开辟一个
一维数组即可
程序如下:
program knapsack04;
const maxm=2000;maxn=30;
type ar=array[0..maxn] of integer;
var m,n,j,i,t:integer;
c,w:ar;
p:array[0..maxm] of integer;
function f(x:integer):integer;
var i,t,m:integer;
begin
if p[x]<>-1 then f:=p[x]
else
begin
if x=0 then p[x]:=0 else
begin
t:=-1;
for i:=1 to n do
begin
if x>=w[i] then m:=f(i-w[i])+c[i];
if m>t then t:=m;
end;
p[x]:=t;
end;
f:=p[x];
end;
end;
begin
readln(m,n);
for i:= 1 to n do
readln(w[i],c[i]);
fillchar(p,sizeof(p),-1);
writeln(f(m));
end.
3)贪婪算法
改进的背包问题:给定一个超递增序列和一个背包的容量,然后在超递增序列中选(只能选一次)或不选每一个数值,使得选中的数值的和正好等于背包的容量。

代码思路:从最大的元素开始遍历超递增序列中的每个元素,若背包还有大于或等于当前元素值的空间,则放入,然后继续判断下一个元素;若背包剩余空间小于当前元素值,则判断下一个元素
简单模拟如下:

#define K 10
#define N 10

#i nclude <stdlib.h>
#i nclude <conio.h>

void create(long array[],int n,int k)
{/*产生超递增序列*/
int i,j;
array[0]=1;
for(i=1;i<n;i++)
{
long t=0;
for(j=0;j<i;j++)
t=t+array[j];
array[i]=t+random(k)+1;
}
}
void output(long array[],int n)
{/*输出当前的超递增序列*/
int i;
for(i=0;i<n;i++)
{
if(i%5==0)
printf("\n");
printf("%14ld",array[i]);
}
}

void beibao(long array[],int cankao[],long value,int count)
{/*背包问题求解*/
int i;
long r=value;
for(i=count-1;i>=0;i--)/*遍历超递增序列中的每个元素*/
{
if(r>=array[i])/*如果当前元素还可以放入背包,即背包剩余空间还大于当前元素*/
{
r=r-array[i];
cankao[i]=1;
}
else/*背包剩余空间小于当前元素值*/
cankao[i]=0;
}
}

void main()
{
long array[N];
int cankao[N]={0};
int i;
long value,value1=0;
clrscr();
create(array,N,K);
output(array,N);
printf("\nInput the value of beibao:\n");
scanf("%ld",&value);
beibao(array,cankao,value,N);
for(i=0;i<N;i++)/*所有已经选中的元素之和*/
if(cankao[i]==1)
value1+=array[i];
if(value==value1)
{
printf("\nWe have got a solution,that is:\n");
for(i=0;i<N;i++)
if(cankao[i]==1)
{
if(i%5==0)
printf("\n");
printf("%13ld",array[i]);
}
}
else
printf("\nSorry.We have not got a solution.\n");
}
贪婪算法的另一种写法,beibao函数是以前的代码,用来比较两种算法:

#define K 10
#define N 10

#i nclude <stdlib.h>
#i nclude <conio.h>

void create(long array[],int n,int k)
{
int i,j;
array[0]=1;
for(i=1;i<n;i++)
{
long t=0;
for(j=0;j<i;j++)
t=t+array[j];
array[i]=t+random(k)+1;
}
}
void output(long array[],int n)
{
int i;
for(i=0;i<n;i++)
{
if(i%5==0)
printf("\n");
printf("%14ld",array[i]);
}
}

void beibao(long array[],int cankao[],long value,int count)
{
int i;
long r=value;
for(i=count-1;i>=0;i--)
{
if(r>=array[i])
{
r=r-array[i];
cankao[i]=1;
}
else
cankao[i]=0;
}
}

int beibao1(long array[],int cankao[],long value,int n)
{/*贪婪算法*/
int i;
long value1=0;
for(i=n-1;i>=0;i--)/*先放大的物体,再考虑小的物体*/
if((value1+array[i])<=value)/*如果当前物体可以放入*/
{
cankao[i]=1;/*1表示放入*/
value1+=array[i];/*背包剩余容量减少*/
}
else
cankao[i]=0;
if(value1==value)
return 1;
return 0;
}

void main()
{
long array[N];
int cankao[N]={0};
int cankao1[N]={0};
int i;
long value,value1=0;
clrscr();
create(array,N,K);
output(array,N);
printf("\nInput the value of beibao:\n");
scanf("%ld",&value);
beibao(array,cankao,value,N);
for(i=0;i<N;i++)
if(cankao[i]==1)
value1+=array[i];
if(value==value1)
{
printf("\nWe have got a solution,that is:\n");
for(i=0;i<N;i++)
if(cankao[i]==1)
{
if(i%5==0)
printf("\n");
printf("%13ld",array[i]);
}
}
else
printf("\nSorry.We have not got a solution.\n");
printf("\nSecond method:\n");
if(beibao1(array,cankao1,value,N)==1)
{
for(i=0;i<N;i++)
if(cankao1[i]==1)
{
if(i%5==0)
printf("\n");
printf("%13ld",array[i]);
}
}
else
printf("\nSorry.We have not got a solution.\n");
}

4)动态规划算法

解决0/1背包问题的方法有多种,最常用的有贪婪法和动态规划法。其中贪婪法无法得到问题的最优解,而动态规划法都可以得到最优解,下面是用动态规划法来解决0/1背包问题。

动态规划算法与分治法类似,其基本思想是将待求解问题分解成若干个子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划法求解的问题,经分解得到的子问题往往不是互相独立的,若用分治法解这类问题,则分解得到的子问题数目太多,以至于最后解决原问题需要耗费过多的时间。动态规划法又和贪婪算法有些一样,在动态规划中,可将一个问题的解决方案视为一系列决策的结果。不同的是,在贪婪算法中,每采用一次贪婪准则便做出一个不可撤回的决策,而在动态规划中,还要考察每个最优决策序列中是否包含一个最优子序列。

0/1背包问题

在0 / 1背包问题中,需对容量为c 的背包进行装载。从n 个物品中选取装入背包的物品,每件物品i 的重量为wi ,价值为pi 。对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最佳装载是指所装入的物品价值最高,即p1*x1+p2*x1+...+pi*xi(其1<=i<=n,x取0或1,取1表示选取物品i) 取得最大值。
在该问题中需要决定x1 .. xn的值。假设按i = 1,2,...,n 的次序来确定xi 的值。如果置x1 = 0,则问题转变为相对于其余物品(即物品2,3,.,n),背包容量仍为c 的背包问题。若置x1 = 1,问题就变为关于最大背包容量为c-w1 的问题。现设r?{c,c-w1 } 为剩余的背包容量。
在第一次决策之后,剩下的问题便是考虑背包容量为r 时的决策。不管x1 是0或是1,[x2 ,.,xn ] 必须是第一次决策之后的一个最优方案,如果不是,则会有一个更好的方案[y2,.,yn ],因而[x1,y2,.,yn ]是一个更好的方案。
假设n=3, w=[100,14,10], p=[20,18,15], c= 116。若设x1 = 1,则在本次决策之后,可用的背包容量为r= 116-100=16 。[x2,x3 ]=[0,1] 符合容量限制的条件,所得值为1 5,但因为[x2,x3 ]= [1,0] 同样符合容量条件且所得值为1 8,因此[x2,x3 ] = [ 0,1] 并非最优策略。即x= [ 1,0,1] 可改进为x= [ 1,1,0 ]。若设x1 = 0,则对于剩下的两种物品而言,容量限制条件为116。总之,如果子问题的结果[x2,x3 ]不是剩余情况下的一个最优解,则[x1,x2,x3 ]也不会是总体的最优解。在此问题中,最优决策序列由最优决策子序列组成。假设f (i,y) 表示剩余容量为y,剩余物品为i,i + 1,...,n 时的最优解的值,即:利用最优序列由最优子序列构成的结论,可得到f 的递归式为:
当j>=wi时: f(i,j)=max{f(i+1,j),f(i+1,j-wi)+vi} ①式
当0<=j<wi时:f(i,j)=f(i+1,j) ②式
fn( 1 ,c) 是初始时背包问题的最优解。
以本题为例:若0≤y<1 0,则f ( 3 ,y) = 0;若y≥1 0,f ( 3 ,y) = 1 5。利用②式,可得f (2, y) = 0 ( 0≤y<10 );f(2,y)= 1 5(1 0≤y<1 4);f(2,y)= 1 8(1 4≤y<2 4)和f(2,y)= 3 3(y≥2 4)。因此最优解f ( 1 , 11 6 ) = m a x {f(2,11 6),f(2,11 6 - w1)+ p1} = m a x {f(2,11 6),f(2,1 6)+ 2 0 } = m a x { 3 3,3 8 } = 3 8。
现在计算xi 值,步骤如下:若f ( 1 ,c) =f ( 2 ,c),则x1 = 0,否则x1 = 1。接下来需从剩余容量c-w1中寻求最优解,用f (2, c-w1) 表示最优解。依此类推,可得到所有的xi (i= 1.n) 值。
在该例中,可得出f ( 2 , 116 ) = 3 3≠f ( 1 , 11 6 ),所以x1 = 1。接着利用返回值3 8 -p1=18 计算x2 及x3,此时r = 11 6 -w1 = 1 6,又由f ( 2 , 1 6 ) = 1 8,得f ( 3 , 1 6 ) = 1 4≠f ( 2 , 1 6 ),因此x2 = 1,此时r= 1 6 -w2 = 2,所以f (3,2) =0,即得x3 = 0。

‘拾’ 解决0-1背包问题需要排序的有哪些算法

用贪心算法求解0-1背包问题的步骤是,首先计算每种物品单位重量的价值vi/wi;然后,将物品的vi/wi的大小进行降序进行排列,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。若将这种物品全部装入背包后,背包内的物品总量未超过c,则选择单位重量价值次高的物品并尽可能多地装入背包。依此策略一直进行下去,直到背包装满为止。

热点内容
linuxshell密码 发布:2025-05-14 17:21:11 浏览:199
安卓手机听筒在哪里关闭 发布:2025-05-14 17:16:20 浏览:454
我的世界炸毁50万服务器 发布:2025-05-14 17:16:07 浏览:123
存储站源 发布:2025-05-14 17:14:20 浏览:863
win2008的ftp设置 发布:2025-05-14 17:03:31 浏览:663
莱克发的工资卡密码是多少 发布:2025-05-14 16:57:10 浏览:178
方舟怎么用自己的存档进入别人的服务器 发布:2025-05-14 16:46:25 浏览:878
微博视频高清上传设置 发布:2025-05-14 16:38:41 浏览:548
数据库图书管理设计 发布:2025-05-14 16:33:52 浏览:378
php开发的网页 发布:2025-05-14 16:22:03 浏览:478