算法破译密码
㈠ 密码学的破译密码
被动攻击
选择明文攻击
选择密文攻击
自适应选择密文攻击
暴力攻击
密钥长度
唯一解距离
密码分析学
中间相会攻击
差分密码分析
线性密码分析
Slide attack cryptanalysis
Algebraic cryptanalysis
XSL attack
Mod n cryptanalysis
弱密钥和基于口令的密码
暴力攻击
字典攻击
相关密钥攻击
Key derivation function
弱密钥
口令
Password-authenticated key agreement
Passphrase
Salt
密钥传输/交换
BAN Logic
Needham-Schroeder
Otway-Rees
Wide Mouth Frog
Diffie-Hellman
中间人攻击
伪的和真的随机数发生器
PRNG
CSPRNG
硬件随机数发生器
Blum Blum Shub
Yarrow (by Schneier,et al)
Fortuna (by Schneier,et al)
ISAAC
基于SHA-1的伪随机数发生器, in ANSI X9.42-2001 Annex C.1 (CRYPTREC example)
PRNG based on SHA-1 for general purposes in FIPS Pub 186-2 (inc change notice 1) Appendix 3.1 (CRYPTREC example)
PRNG based on SHA-1 for general purposes in FIPS Pub 186-2 (inc change notice 1) revised Appendix 3.1 (CRYPTREC example)
匿名通讯Dining cryptographers protocol (by David Chaum)
匿名投递
pseudonymity
匿名网络银行业务
Onion Routing
密码分析又称破密术。密码分析的目的是发现密码机制的弱点,从事者可能是意图颠覆系统恶意的攻击者或评估系统弱点的设计人。在现代,密码算法与协定必须被仔细检查和测试,确定其保证的安全性。
大众普遍误解认为所有加密法都可以被破解。Bell Labs的Claude Shannon在二次世界大战时期便证明只要钥匙是完全随机,不重复使用,对外绝对保密,与信息等长或比信息更长的一次一密是不可能破解的。除了一次一密以外的多数加密法都可以以暴力攻击法破解,但是破解所需的努力可能是钥匙长度的指数成长。
密码分析的方式有很多,因此有数个分类。一个常见的分别法则是攻击者知晓多少信息。在唯密文攻击中,密码分析者只能存取密文,好的现代密码系统对这种情况通常是免疫的。在已知明文攻击中,密码分析者可以存取多个明文、密文对。在选择明文攻击中,密码分析者可以自选任意明文,并被赋予相对应的密文,例如二战时布列颠所使用的园艺法。最后,选择密文攻击中,密码分析者可以自选任意密文,并被赋予相对应的明文
对称钥匙加密的密码分析通常旨在寻找比已知最佳破解法更有效率的方式。例如,以最简单的暴力法破解DES需要一个已知明文与解密运算,尝试近半数可能的钥匙。线性分析攻击法对DES需要已知明文与DES运算,显然比暴力法有效。
公开钥匙算法则基于多种数学难题,其中最有名的是整数分解和离散对数问题。许多公开钥匙密码分析在研究如何有效率地解出这些计算问题的数值算法。例如,已知解出基于椭圆曲线的离散对数问题比相同钥匙大小的整数因子分解问题更困难。因此,为了达到相等的安全强度,基于因子分解的技术必须使用更长的钥匙。由于这个因素,基于椭圆曲线的公开钥匙密码系统从1990年代中期后逐渐流行。
当纯粹的密码分析着眼于算法本身时,某些攻击则专注于密码装置执行的弱点,称为副通道攻击。如果密码分析者可以存取到装置执行加密或回报通行码错误的时间,它就可能使用时序攻击法破解密码。攻击者也可能研究信息的模式与长度,得出有用的信息,称为流量分析,对机敏的敌人这相当有效。当然,社会工程与其它针对人事、社交的攻击与破密术一并使用时可能是最有力的攻击法。
㈡ 密码的暴力破解使用的是( )算法。 A.解析法 B.穷举法 C.分治法D
B
穷举法,或称为暴力破解法,是一种针对于密码的破译方法,即将密码进行逐个推算直到找出真正的密码为止。例如一个已知是四位并且全部由数字组成的密码,其可能共有10000种组合,因此最多尝试10000次就能找到正确的密码。理论上利用这种方法可以破解任何一种密码,问题只在于如何缩短试误时间。因此有些人运用计算机来增加效率,有些人辅以字典来缩小密码组合的范围。
㈢ 密码学的密码破译
密码破译是随着密码的使用而逐步产生和发展的。1412年,波斯人卡勒卡尚迪所编的网络全书中载有破译简单代替密码的方法。到16世纪末期,欧洲一些国家设有专职的破译人员,以破译截获的密信。密码破译技术有了相当的发展。1863年普鲁士人卡西斯基所着《密码和破译技术》,以及1883年法国人克尔克霍夫所着《军事密码学》等着作,都对密码学的理论和方法做过一些论述和探讨。1949年美国人香农发表了《秘密体制的通信理论》一文,应用信息论的原理分析了密码学中的一些基本问题。
自19世纪以来,由于电报特别是无线电报的广泛使用,为密码通信和第三者的截收都提供了极为有利的条件。通信保密和侦收破译形成了一条斗争十分激烈的隐蔽战线。
1917年,英国破译了德国外长齐默尔曼的电报,促成了美国对德宣战。1942年,美国从破译日本海军密报中,获悉日军对中途岛地区的作战意图和兵力部署,从而能以劣势兵力击破日本海军的主力,扭转了太平洋地区的战局。在保卫英伦三岛和其他许多着名的历史事件中,密码破译的成功都起到了极其重要的作用,这些事例也从反面说明了密码保密的重要地位和意义。
当今世界各主要国家的政府都十分重视密码工作,有的设立庞大机构,拨出巨额经费,集中数以万计的专家和科技人员,投入大量高速的电子计算机和其他先进设备进行工作。与此同时,各民间企业和学术界也对密码日益重视,不少数学家、计算机学家和其他有关学科的专家也投身于密码学的研究行列,更加速了密码学的发展。
在密码已经成为单独的学科,从传统意义上来说,密码学是研究如何把信息转换成一种隐蔽的方式并阻止其他人得到它。
密码学是一门跨学科科目,从很多领域衍生而来:它可以被看做是信息理论,却使用了大量的数学领域的工具,众所周知的如数论和有限数学。
原始的信息,也就是需要被密码保护的信息,被称为明文。加密是把原始信息转换成不可读形式,也就是密码的过程。解密是加密的逆过程,从加密过的信息中得到原始信息。cipher是加密和解密时使用的算法。
最早的隐写术只需纸笔,加密法,将字母的顺序重新排列;替换加密法,将一组字母换成其他字母或符号。经典加密法的资讯易受统计的攻破,资料越多,破解就更容易,使用分析频率就是好办法。经典密码学仍未消失,经常出现在智力游戏之中。在二十世纪早期,包括转轮机在内的一些机械设备被发明出来用于加密,其中最着名的是用于第二次世界大战的密码机Enigma。这些机器产生的密码相当大地增加了密码分析的难度。比如针对Enigma各种各样的攻击,在付出了相当大的努力后才得以成功。
㈣ 通常攻击密码都有什么方法
攻击密码系统的方法大概可以分为三种对密码进行分析的尝试称为攻击。Kerckhoffs最早在19世纪阐明密码分析的一个基本假设,这个假设就是秘密必须完全寓于密钥中。Kerckhoffs假设密码分析者已有密码算法及其实现的全部详细资料。
密码分析者攻击密码系统的方法主要有以下三种。
穷举攻击
所谓穷举攻击是指密码分析者采用依次试遍所有可能的密钥,对所获密文进行解密,直至得到正确的明文;或者用一个确定的密钥对所有可能的明文进行加密,直至得到所获得的密文。显然,理论上对于任何实用密码,只要有足够的资源都可以用穷举攻击将其攻破。
穷举攻击所花费的时间等于尝试次数乘以一次解密(加密)所需的时间。显然可以通过增大密钥量或者加大解密(加密)算法的复杂性来对抗穷举攻击。当密钥量增大时,尝试的次数必然增大。当解密(加密)算法的复杂性增大时,完成一次解密(加密)所需的时间增大,从而使穷举攻击在实际上不能实现。穷举攻击是对密码的一种最基本的攻击方法。
统计分析攻击
所谓统计分析攻击就是指密码分析者通过分析密文和明文的统计规律来破译密码。统计分析攻击在历史上为破译密码做出过极大的贡献。许多古典密码都可以通过分析密文字母和字母组的频率和其他统计参数而破译。对抗统计分析攻击的方法是设法使明文的统计特性不带入密文。这样密文不带有明文的痕迹,从而使统计分析攻击成为不可能。能够抵抗统计分析攻击已成为近代密码的基本要求。
数学分析攻击
所谓数学分析攻击是指密码分析者针对加解密算法的数学基础和某些密码学特性,通过数学求解的方法来破译密码。数学分析攻击是对基于数学难题的各种密码的主要威胁。为了对抗这种数学分析攻击,应当选用具有坚实数学基础和足够复杂的加解密算法。
㈤ DES加密算法原理
网络安全通信中要用到两类密码算法,一类是对称密码算法,另一类是非对称密码算法。对称密码算法有时又叫传统密码算法、秘密密钥算法或单密钥算法,非对称密码算法也叫公开密钥密码算法或双密钥算法。对称密码算法的加密密钥能够从解密密钥中推算出来,反过来也成立。在大多数对称算法中,加密解密密钥是相同的。它要求发送者和接收者在安全通信之前,商定一个密钥。对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都能对消息进行加密解密。只要通信需要保密,密钥就必须保密。
对称算法又可分为两类。一次只对明文中的单个位(有时对字节)运算的算法称为序列算法或序列密码。另一类算法是对明文的一组位进行运算,这些位组称为分组,相应的算法称为分组算法或分组密码。现代计算机密码算法的典型分组长度为64位――这个长度既考虑到分析破译密码的难度,又考虑到使用的方便性。后来,随着破译能力的发展,分组长度又提高到128位或更长。
常用的采用对称密码术的加密方案有5个组成部分(如图所示)
1)明文:原始信息。
2)加密算法:以密钥为参数,对明文进行多种置换和转换的规则和步骤,变换结果为密文。
3)密钥:加密与解密算法的参数,直接影响对明文进行变换的结果。
4)密文:对明文进行变换的结果。
5)解密算法:加密算法的逆变换,以密文为输入、密钥为参数,变换结果为明文。
对称密码当中有几种常用到的数学运算。这些运算的共同目的就是把被加密的明文数码尽可能深地打乱,从而加大破译的难度。
◆移位和循环移位
移位就是将一段数码按照规定的位数整体性地左移或右移。循环右移就是当右移时,把数码的最后的位移到数码的最前头,循环左移正相反。例如,对十进制数码12345678循环右移1位(十进制位)的结果为81234567,而循环左移1位的结果则为23456781。
◆置换
就是将数码中的某一位的值根据置换表的规定,用另一位代替。它不像移位操作那样整齐有序,看上去杂乱无章。这正是加密所需,被经常应用。
◆扩展
就是将一段数码扩展成比原来位数更长的数码。扩展方法有多种,例如,可以用置换的方法,以扩展置换表来规定扩展后的数码每一位的替代值。
◆压缩
就是将一段数码压缩成比原来位数更短的数码。压缩方法有多种,例如,也可以用置换的方法,以表来规定压缩后的数码每一位的替代值。
◆异或
这是一种二进制布尔代数运算。异或的数学符号为⊕ ,它的运算法则如下:
1⊕1 = 0
0⊕0 = 0
1⊕0 = 1
0⊕1 = 1
也可以简单地理解为,参与异或运算的两数位如相等,则结果为0,不等则为1。
◆迭代
迭代就是多次重复相同的运算,这在密码算法中经常使用,以使得形成的密文更加难以破解。
下面我们将介绍一种流行的对称密码算法DES。
DES是Data Encryption Standard(数据加密标准)的缩写。它是由IBM公司研制的一种对称密码算法,美国国家标准局于1977年公布把它作为非机要部门使用的数据加密标准,三十年来,它一直活跃在国际保密通信的舞台上,扮演了十分重要的角色。
DES是一个分组加密算法,典型的DES以64位为分组对数据加密,加密和解密用的是同一个算法。它的密钥长度是56位(因为每个第8 位都用作奇偶校验),密钥可以是任意的56位的数,而且可以任意时候改变。其中有极少数被认为是易破解的弱密钥,但是很容易避开它们不用。所以保密性依赖于密钥。
DES加密的算法框架如下:
首先要生成一套加密密钥,从用户处取得一个64位长的密码口令,然后通过等分、移位、选取和迭代形成一套16个加密密钥,分别供每一轮运算中使用。
DES对64位(bit)的明文分组M进行操作,M经过一个初始置换IP,置换成m0。将m0明文分成左半部分和右半部分m0 = (L0,R0),各32位长。然后进行16轮完全相同的运算(迭代),这些运算被称为函数f,在每一轮运算过程中数据与相应的密钥结合。
在每一轮中,密钥位移位,然后再从密钥的56位中选出48位。通过一个扩展置换将数据的右半部分扩展成48位,并通过一个异或操作替代成新的48位数据,再将其压缩置换成32位。这四步运算构成了函数f。然后,通过另一个异或运算,函数f的输出与左半部分结合,其结果成为新的右半部分,原来的右半部分成为新的左半部分。将该操作重复16次。
经过16轮迭代后,左,右半部分合在一起经过一个末置换(数据整理),这样就完成了加密过程。
加密流程如图所示。
DES解密过程:
在了解了加密过程中所有的代替、置换、异或和循环迭代之后,读者也许会认为,解密算法应该是加密的逆运算,与加密算法完全不同。恰恰相反,经过密码学家精心设计选择的各种操作,DES获得了一个非常有用的性质:加密和解密使用相同的算法!
DES加密和解密唯一的不同是密钥的次序相反。如果各轮加密密钥分别是K1,K2,K3…K16,那么解密密钥就是K16,K15,K14…K1。这也就是DES被称为对称算法的理由吧。
至于对称密码为什么能对称? DES具体是如何操作的?本文附录中将做进一步介绍,有兴趣的读者不妨去读一读探个究竟
4.DES算法的安全性和发展
DES的安全性首先取决于密钥的长度。密钥越长,破译者利用穷举法搜索密钥的难度就越大。目前,根据当今计算机的处理速度和能力,56位长度的密钥已经能够被破解,而128位的密钥则被认为是安全的,但随着时间的推移,这个数字也迟早会被突破。
另外,对DES算法进行某种变型和改进也是提高DES算法安全性的途径。
例如后来演变出的3-DES算法使用了3个独立密钥进行三重DES加密,这就比DES大大提高了安全性。如果56位DES用穷举搜索来破译需要2∧56次运算,而3-DES 则需要2∧112次。
又如,独立子密钥DES由于每轮都使用不同的子密钥,这意味着其密钥长度在56位的基础上扩大到768位。DES还有DESX、CRYPT、GDES、RDES等变型。这些变型和改进的目的都是为了加大破译难度以及提高密码运算的效率
㈥ 简单的加密算法——维吉尼亚密码
学号:16030140019
姓名: 莫益彰
【嵌牛导读】:凯撒密码是一种简单的加密方法,即将文本中的每一个字符都位移相同的位置。如选定位移3位:
原文:a b c
密文:d e f
由于出现了字母频度分析,凯撒密码变得很容易破解,因此人们在单一恺撒密码的基础上扩展出多表密码,称为“维吉尼亚”密码。
【嵌牛鼻子】密码学,计算机安全。
【嵌牛提问】维吉尼亚怎么破解,8位维吉尼亚是否可破?维吉尼亚算法的时间复杂度?
【嵌牛正文】
维吉尼亚密码的加密
维吉尼亚密码由凯撒密码扩展而来,引入了密钥的概念。即根据密钥来决定用哪一行的密表来进行替换,以此来对抗字频统计。假如以上面第一行代表明文字母,左面第一列代表密钥字母,对如下明文加密:
TO BE OR NOT TO BE THAT IS THE QUESTION
当选定RELATIONS作为密钥时,加密过程是:明文一个字母为T,第一个密钥字母为R,因此可以找到在R行中代替T的为K,依此类推,得出对应关系如下:
密钥:RE LA TI ONS RE LA TION SR ELA TIONSREL
明文:TO BE OR NOT TO BE THAT IS THE QUESTION
密文:KS ME HZ BBL KS ME MPOG AJ XSE JCSFLZSY
图解加密过程:
在维吉尼亚(Vigenère)的密码中,发件人和收件人必须使用同一个关键词(或者同一文字章节),这个关键词或文字章节中的字母告诉他们怎么样才能前后改变字母的位置来获得该段信息中的每个字母的正确对应位置。
维吉尼亚密码的破解
维吉尼亚密码分解后实则就是多个凯撒密码,只要知道密钥的长度,我们就可以将其分解。
如密文为:ABCDEFGHIJKLMN
如果我们知道密钥长度为3,就可将其分解为三组:
组1:A D G J N
组2:B E H K
组3:C F I M
分解后每组就是一个凯撒密码,即组内的位移量是一致的,对每一组即可用频度分析法来解密。
所以破解维吉尼亚密码的关键就是确定密钥的长度。
确定密钥长度
确定密钥长度主要有两种方法,Kasiski 测试法相对简单很多,但Friedman 测试法的效果明显优于Kasiski 测试法。
Kasiski 测试法
在英文中,一些常见的单词如the有几率被密钥的相同部分加密,即原文中的the可能在密文中呈现为相同的三个字母。
在这种情况下,相同片段的间距就是密文长度的倍数。
所以我们可以通过在密文中找到相同的片段,计算出这些相同片段之间的间距,而密钥长度理论上就是这些间距的公约数。
然后我们需要知道重合指数(IC, index of coincidence)的概念。
重合指数表示两个随机选出的字母是相同的的概率,即随机选出两个A的概率+随机选出两个B的概率+随机选出两个C的概率+……+随机选出两个Z的概率。
对英语而言,根据上述的频率表,我们可以计算出英语文本的重合指数为
P(A)^2 + P(B)^2+……+P(Z)^2 = 0.65
利用重合指数推测密钥长度的原理在于,对于一个由凯撒密码加密的序列,由于所有字母的位移程度相同,所以密文的重合指数应等于原文语言的重合指数。
据此,我们可以逐一计算不同密钥长度下的重合指数,当重合指数接近期望的0.65时,我们就可以推测这是我们所要找的密钥长度。
举例来说,对密文ABCDEABCDEABCDEABC
首先测试密钥长度=1,对密文ABCDEABCDEABCDEABC统计每个字符出现的次数:
A: 4 B: 4 C: 4 D:3 E:3
那么对于该序列的重合指数就为:(4/18)^2 + (4/18)^2 + (4/18)^2 +(3/18)^2 +(3/18)^2 != 0.65
然后测试密钥长度=2,将密文ABCDEABCDEABCDEABC分解为两组:
组1:A C E B D A C E B
组2:B D A C E B D A C
我们知道如果密钥长度真的是2,那么组1,组2都是一个凯撒密码。对组1组2分别计算重合指数。
如果组1的重合指数接近0.65,组2的重合指数也接近0.65,那么基本可以断定密钥长度为2。
在知道了密钥长度n以后,就可将密文分解为n组,每一组都是一个凯撒密码,然后对每一组用字母频度分析进行解密,和在一起就能成功解密凯撒密码。
上文已经说到,自然语言的字母频度是一定的。字母频度分析就是将密文的字母频度和自然语言的自然频度排序对比,从而找出可能的原文。
㈦ 怎么破密码
方法一:ADB解锁
必要条件:USB调试模式为打开状态
1、手机连接电脑,确定已安装ADB驱动(手机驱动可通过驱动精灵安装),解压ADB工具包至C盘
2、打开cmd输入 cd c:adb(打开adb所在目录)
3、接着输入adb shell
4、继续输入cd datasystem
5、输入ls查看datasystem中的文件,如果设置了密码会有gesture.key或者password.key
6、若设置的是图案密码请继续输入命令:rm gesture.key,若设置的是单纯密码请输入命令:rm password.key
7、输入reboot命令或者手动重启手机生效,或者现在直接滑动解锁,任意密码都可解锁,建议重启。
㈧ 二进制数字密码的破译
可以运用ReverseMe来二进制数字密码的破译,需要了解以下的内容:
1、寄存器:
寄存器就好比是CPU身上的口袋,方便CPU随时从里边拿出需要的东西来使用。常见涉及到的九个寄存器:
EAX:扩展累加寄存器;EBX:扩展基址寄存器;ECX:扩展计数寄存器;
EDX:扩展数据寄存器;ESI:扩展来源寄存器;EDI:扩展目标寄存器;
EBP:扩展基址指针寄存器;ESP:扩展堆栈指针寄存器;EIP:扩展的指令指针寄存器;
这些寄存器的大小是32位(4个字节),他们可以容纳数据从0-FFFFFFFF(无符号数),除了以下三个寄存器,其他我们都可以随意使用:
EBP:主要是用于栈和栈帧。ESP:指向当前进程的栈空间地址。EIP:总是指向下一条要被执行的指令。
2、栈:栈是在内存中的一部分,它有两个特殊的性质:
FILO(FisrtInLastOut,先进后出);地址反向增长(栈底为大地址,栈顶为小地址)。
3、CALL指令,call有以下几种方式:
call404000h;直接跳到函数或过程的地址;calleax;函数或过程地址存放在eax,calldwordptr[eax]。
4、系统API:Windows应用程序运行在Ring3级别,API函数,我们也称之为系统提供给我们的接口。因为系统只信任自己提供的函数,所以我们要通过API才能实现对内核的操作。
5、mov指令mov指令格式:movdest,src。
这是一个很容易理解的指令,mov指令将src的内容拷贝到dest,mov指令总共有以下几种扩展:movs/movsb/movsw/movsdedi,
esi:这些变体按串/字节/字/双字为单位将esi寄存器指向的数据复制到edi寄存器指向的空间。movsx符号位扩展,byte->word,word->dword(扩展后高位全用符号位填充)。
然后实现mov。movzx零扩展,byte->word,word->dword(扩展后高位全用0填充),然后实现mov。
6、cmp指令,cmp指令格式:cmpdest,src
cmp指令比较dest和src两个操作数,并通过比较结果设置C/O/Z标志位。
cmp指令大概有以下几种格式:
cmpeax,ebx;如果相等,Z标志位置1,否则0。cmpeax,[404000];将eax和404000地址处的dword型数据相比较并同上置位cmp[404000],eax;同上。
7、标志位:在破解中起到的作用是至关重要的。
在逆向中,你真正需要关心的标志位只有三个,也就是cmp指令能修改的那三个:Z/O/C。
Z标志位(0标志),这个标志位是最常用的,运算结果为0时候,Z标志位置1,否则置0。
O标志位(溢出标志),在运行过程中,如操作数超出了机器能表示的范围则称为溢出,此时OF位置1,否则置0。
C标志位(进位标志),记录运算时从最高有效位产生的进位值。例如执行加法指令时,最高有效位有进位时置1,否则置0。
掌握这些指令后就可以运用ReverseMe来二进制数字密码的破译。
(8)算法破译密码扩展阅读:
在数学和数字电路中,二进制(binary)数是指用二进制记数系统,即以2为基数的记数系统表示的数字。这一系统中,数通常用两个不同的符号0(代表零)和1(代表一)来表示。
以2为基数代表系统是二进位制的。数字电子电路中,逻辑门的实现直接应用了二进制,因此现代的计算机和依赖计算机的设备里都用到二进制。每个数字称为一个比特(二进制位)。
把二进制化为八进制也很容易,因为八进制以8为基数,8是2的幂(8=2),因此八进制的一位恰好需要三个二进制位来表示。八进制与二进制数之间的对应就是上面表格中十六进制的前八个数。二进制数000就是八进制数0,二进制数111就是八进制数7,以此类推。
㈨ 如何破解密码:识别加密哈希算法
答:假设你想要查看从外部源来的数据包(可能已用几个方法加密),并且想用正确的解密工具来解密数据包。第一种答案是“可以”,第二种答案是“这可能是一个非法的活动。”在许多国家,逆向工程保护机制(如加密)是非法的。
尽管如此,如果你还想继续,你可以在十六进制编辑器里查看二进制文件(DLL, EXE等),它可能会显示一个字符串,表示一个特定的加密哈希算法。你还可能发现一个字符串,指示特定的第三方加密库。
另外还要检查DLL的名称。如果存在ssleay.dll或libeay.dll,那么很容易知道该数据包是用SSL加密的。如果加密使用一个第三方库,那么就可以查找该库导出的功能,看它们采用的是什么参数,以及它们是如何使用的。然后,你可以捕获你感兴趣的调用:例如,用LIBeay或SSLeay,你可以看ssl_read和ssl_write。这样你就可以访问纯文本,然后就可以开始转存整个会话,审查原始协议。
如果加密看起来是内置于可执行文件,或加密作家使用他或她自己的代码,那么你需要用调试器来探测,查明在socket read后,数据去哪了。这应该可以帮助您找到解密例程。记住,这些活动要求你有相当广泛的调试工具和可执行编辑的经验,所以如果你不熟悉这些,那么我最后的答案是“不能”。