当前位置:首页 » 操作系统 » 历史测算法

历史测算法

发布时间: 2022-10-21 00:53:23

‘壹’ 历史上第一个机器学习算法是什么

‍‍

Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。使用adaboost分类器可以排除一些不必要的训练数据特征,并将关键放在关键的训练数据上面。

‍‍

‘贰’ 类似BP神经网络,用历史数据训练然后预测的算法有哪些

万径人踪灭。

‘叁’ 中国古代算术发展史

中国数学发展史

中国古代是一个在世界上数学领先的国家,用近代科目来分类的话,可以看出无论在算术、代数、几何和三角各方而都十分发达。现在就让我们来简单回顾一下初等数学在中国发展的历史。

(一)属于算术方面的材料
大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。乘除的运算规则在后来的“孙子算经”(公元三世纪)内有了详细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。“孙子算经”用十六字来表明它,“一从十横,百立千僵,千十相望,万百相当。”
和其他古代国家一样,乘法表的产生在中国也很早。乘法表中国古代叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九九来代表数学。现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。
现有的史料指出,中国古代数学书“九章算术”(约公元一世纪前后)的分数运算法则是世界上最早的文献,“九章算术”的分数四则运算和现在我们所用的几乎完全一样。
古代学习算术也从量的衡量开始认识分数,“孙子算经”(公元三世纪)和“夏候阳算经”(公元六、七世纪)在论分数之前都开始讲度量衡,“夏侯阳算经”卷上在叙述度量衡后又记着:“十乘加一等,百乘加二等,千乘加三等,万乘加四等;十除退一等,百除退二等,千除退三等,万除退四等。”这种以十的方幂来表示位率无疑地也是中国最早发现的。
小数的记法,元朝(公元十三世纪)是用低一格来表示,如13.56作1356 。在算术中还应该提出由公元三世纪“孙子算经”的物不知数题发展到宋朝秦九韶(公元1247年)的大衍求一术,这就是中国剩余定理,相同的方法欧洲在十九世纪才进行研究。
宋朝杨辉所着的书中(公元1274年)有一个1—300以内的因数表,例如297用“三因加一损一”来代表,就是说297=3×11×9,(11=10十1叫加一,9=10—1叫损一)。杨辉还用“连身加”这名词来说明201—300以内的质数。
(二)属于代数方面的材料
从“九章算术”卷八说明方程以后,在数值代数的领域内中国一直保持了光辉的成就。
“九章算术”方程章首先解释正负术是确切不移的,正象我们现在学习初等代数时从正负数的四则运算学起一样,负数的出现便丰富了数的内容。
我们古代的方程在公元前一世纪的时候已有多元方程组、一元二次方程及不定方程几种。一元二次方程是借用几何图形而得到证明。 不定方程的出现在二千多年前的中国是一个值得重视的课题,这比我们现在所熟知的希腊丢番图方程要早三百多年。具有x3+px2+qx=A和x3+px2=A形式的三次方程,中国在公元七世纪的唐代王孝通“缉古算经”已有记载,用“从开立方除之”而求出数字解答(可惜原解法失传了),不难想象王孝通得到这种解法时的愉快程度,他说谁能改动他着作内的一个字可酬以千金。
十一世纪的贾宪已发明了和霍纳(1786—1837)方法相同的数字方程解法,我们也不能忘记十三世纪中国数学家秦九韶在这方面的伟大贡献。
在世界数学史上对方程的原始记载有着不同的形式,但比较起来不得不推中国天元术的简洁明了。四元术是天元术发展的必然产物。
级数是古老的东西,二千多年前的“周髀算经”和“九章算术”都谈到算术级数和几何级数。十四世纪初中国元代朱世杰的级数计算应给予很高的评价,他的有些工作欧洲在十八、九世纪的着作内才有记录。十一世纪时代,中国已有完备的二项式系数表,并且还有这表的编制方法。
历史文献揭示出在计算中有名的盈不足术是由中国传往欧洲的。
内插法的计算,中国可上溯到六世纪的刘焯,并且七世纪末的僧一行有不等间距的内插法计算。
十四世纪以前,属于代数方面许多问题的研究,中国是先进国家之一。
就是到十八,九世纪由李锐(1773—1817),汪莱(1768—1813)到李善兰(1811—1882),他们在这一方面的研究上也都发表了很多的名着。
(三)属于几何方面的材料
自明朝后期(十六世纪)欧几里得“几何原本”中文译本一部分出版之前,中国的几何早已在独立发展着。应该重视古代的许多工艺品以及建筑工程、水利工程上的成就,其中蕴藏了丰富的几何知识。
中国的几何有悠久的历史,可靠的记录从公元前十五世纪谈起,甲骨文内己有规和矩二个字,规是用来画圆的,矩是用来画方的。
汉代石刻中矩的形状类似现在的直角三角形,大约在公元前二世纪左右,中国已记载了有名的勾股定理(勾股二个字的起源比较迟)。
圆和方的研究在古代中国几何发展中占了重要位置。墨子对圆的定义是:“圆,一中同长也。”—个中心到圆周相等的叫圆,这解释要比欧几里得还早一百多年。
在圆周率的计算上有刘歆(?一23)、张衡(78—139)、刘徽(263)、王蕃(219—257)、祖冲之(429—500)、赵友钦(公元十三世纪)等人,其中刘徽、祖冲之、赵友钦的方法和所得的结果举世闻名。
祖冲之所得的结果π=355/133要比欧洲早一千多年。
在刘徽的“九章算术”注中曾多次显露出他对极限概念的天才。 在平面几何中用直角三角形或正方形和在立体几何中用锥体和长方柱体进行移补,这构成中国古代几何的特点。
中国数学家善于把代数上的成就运用到几何上,而又用几何图形来证明代数,数值代数和直观几何有机的配合起来,在实践中获得良好的效果.
正好说明十八、九世纪中国数学家对割圆连比例的研究和项名达(1789—1850)用割圆连比例求出椭圆周长。这都是继承古代方法加以发挥而得到的(当然吸收外来数学的精华也是必要的)。

(四)属于三角方面的材料
三角学的发生由于测量,首先是天文学的发展而产生了球面三角,中国古代天文学很发达,因为要决定恒星的位置很早就有了球面测量的知识;平面测量术在“周牌算经”内已记载若用矩来测量高深远近。

刘徽的割圆术以半径为单位长求圆内正六边形,十二二边形等的每一边长,这答数是和2sinA的值相符(A是圆心角的一半),以后公元十二世纪赵友钦用圆内正四边形起算也同此理,我们可以从刘徽、赵友钦的计算中得出7.5o、15o、22.5o、30o、45o等的正弦函数值。

在古代历法中有计算二十四个节气的日晷影长,地面上直立一个八尺长的“表”,太阳光对这“表”在地面上的射影由于地球公转而每一个节气的影长都不同,这些影长和“八尺之表”的比,构成一个余切函数表(不过当时还没有这个名称)。

十三世纪的中国天文学家郭守敬(1231—1316)曾发现了球面三角上的三个公式。 现在我们所用三角函数名词:正弦,余弦,正切,余切,正割,余割,这都是我国十六世纪已有的名称,那时再加正矢和余矢二个函数叫做八线。

在十七世纪后期中国数学家梅文鼎(1633—1721)已编了一本平面三角和一本球面三角的书,平面三角的书名叫“平三角举要”,包含下列内容:(1)三角函数的定义;(2)解直角三角形和斜三角形;(3)三角形求积,三角形内容圆和容方;(4)测量。这已经和现代平面三角的内容相差不远,梅文鼎还着书讲到三角上有名的积化和差公式。十八世纪以后,中国还出版了不少三角学方面的书籍。

‘肆’ 质量成本管理中质量成本的预测方法中的比例测算法的概念

比例测算法是计算分析法的一种。
比例测算法经过对历史数据作数理统计方法的处理后,有关因素之间呈现出较强的规律比例关系,则可以找到某些反映内在规律的百分比例关系,用来作预测。

‘伍’ 经典目标检测算法介绍

姓名:牛晓银;学号:20181213993;学院:计算机科学与技术

转自:https://zhuanlan.hu.com/p/34142321

【嵌牛导读】:目标检测,也叫目标提取,是一种基于目标几何和统计特征的图像分割。随着计算机技术的发展和计算机视觉原理的广泛应用,利用计算机图像处理技术对目标进行实时跟踪研究越来越热门,对目标进行动态实时跟踪定位在智能化交通系统、军事目标检测及医学导航手术中手术器械定位等方面具有广泛的应用价值。

【嵌牛鼻子】:目标检测、检测模型、计算机视觉

【嵌牛提问】:你知道或者用过哪些目标检测算法?

【嵌牛正文】:

(一)目标检测经典工作回顾

本文结构

两阶段模型因其对图片的两阶段处理得名,也称为基于区域(Region-based)的方法,我们选取R-CNN系列工作作为这一类型的代表。

R-CNN: R-CNN系列的开山之作

论文链接:  Rich feature hierarchies for accurate object detection and semantic segmentation

本文的两大贡献:1)CNN可用于基于区域的定位和分割物体;2)监督训练样本数紧缺时,在额外的数据上预训练的模型经过fine-tuning可以取得很好的效果。第一个贡献影响了之后几乎所有2-stage方法,而第二个贡献中用分类任务(Imagenet)中训练好的模型作为基网络,在检测问题上fine-tuning的做法也在之后的工作中一直沿用。

传统的计算机视觉方法常用精心设计的手工特征(如SIFT, HOG)描述图像,而深度学习的方法则倡导习得特征,从图像分类任务的经验来看,CNN网络自动习得的特征取得的效果已经超出了手工设计的特征。本篇在局部区域应用卷积网络,以发挥卷积网络学习高质量特征的能力。

R-CNN将检测抽象为两个过程,一是基于图片提出若干可能包含物体的区域(即图片的局部裁剪,被称为Region Proposal),文中使用的是Selective Search算法;二是在提出的这些区域上运行当时表现最好的分类网络(AlexNet),得到每个区域内物体的类别。

另外,文章中的两个做法值得注意。

一是数据的准备。输入CNN前,我们需要根据Ground Truth对提出的Region Proposal进行标记,这里使用的指标是IoU(Intersection over Union,交并比)。IoU计算了两个区域之交的面积跟它们之并的比,描述了两个区域的重合程度。

文章中特别提到,IoU阈值的选择对结果影响显着,这里要谈两个threshold,一个用来识别正样本(如跟ground truth的IoU大于0.5),另一个用来标记负样本(即背景类,如IoU小于0.1),而介于两者之间的则为难例(Hard Negatives),若标为正类,则包含了过多的背景信息,反之又包含了要检测物体的特征,因而这些Proposal便被忽略掉。

另一点是位置坐标的回归(Bounding-Box Regression),这一过程是Region Proposal向Ground Truth调整,实现时加入了log/exp变换来使损失保持在合理的量级上,可以看做一种标准化(Normalization)操作。

小结

R-CNN的想法直接明了,即将检测任务转化为区域上的分类任务,是深度学习方法在检测任务上的试水。模型本身存在的问题也很多,如需要训练三个不同的模型(proposal, classification, regression)、重复计算过多导致的性能问题等。尽管如此,这篇论文的很多做法仍然广泛地影响着检测任务上的深度模型革命,后续的很多工作也都是针对改进这一工作而展开,此篇可以称得上"The First Paper"。

Fast R-CNN: 共享卷积运算

论文链接: Fast R-CNN

文章指出R-CNN耗时的原因是CNN是在每一个Proposal上单独进行的,没有共享计算,便提出将基础网络在图片整体上运行完毕后,再传入R-CNN子网络,共享了大部分计算,故有Fast之名。

上图是Fast R-CNN的架构。图片经过feature extractor得到feature map, 同时在原图上运行Selective Search算法并将RoI(Region of Interset,实为坐标组,可与Region Proposal混用)映射到到feature map上,再对每个RoI进行RoI Pooling操作便得到等长的feature vector,将这些得到的feature vector进行正负样本的整理(保持一定的正负样本比例),分batch传入并行的R-CNN子网络,同时进行分类和回归,并将两者的损失统一起来。

RoI Pooling 是对输入R-CNN子网络的数据进行准备的关键操作。我们得到的区域常常有不同的大小,在映射到feature map上之后,会得到不同大小的特征张量。RoI Pooling先将RoI等分成目标个数的网格,再在每个网格上进行max pooling,就得到等长的RoI feature vector。

文章最后的讨论也有一定的借鉴意义:

multi-loss traing相比单独训练classification确有提升

multi-scale相比single-scale精度略有提升,但带来的时间开销更大。一定程度上说明CNN结构可以内在地学习尺度不变性

在更多的数据(VOC)上训练后,精度是有进一步提升的

Softmax分类器比"one vs rest"型的SVM表现略好,引入了类间的竞争

更多的Proposal并不一定带来精度的提升

小结

Fast R-CNN的这一结构正是检测任务主流2-stage方法所采用的元结构的雏形。文章将Proposal, Feature Extractor, Object Classification&Localization统一在一个整体的结构中,并通过共享卷积计算提高特征利用效率,是最有贡献的地方。

Faster R-CNN: 两阶段模型的深度化

论文链接: Faster R-CNN: Towards Real Time Object Detection with Region Proposal Networks

Faster R-CNN是2-stage方法的奠基性工作,提出的RPN网络取代Selective Search算法使得检测任务可以由神经网络端到端地完成。粗略的讲,Faster R-CNN = RPN + Fast R-CNN,跟RCNN共享卷积计算的特性使得RPN引入的计算量很小,使得Faster R-CNN可以在单个GPU上以5fps的速度运行,而在精度方面达到SOTA(State of the Art,当前最佳)。

本文的主要贡献是提出Regional Proposal Networks,替代之前的SS算法。RPN网络将Proposal这一任务建模为二分类(是否为物体)的问题。

第一步是在一个滑动窗口上生成不同大小和长宽比例的anchor box(如上图右边部分),取定IoU的阈值,按Ground Truth标定这些anchor box的正负。于是,传入RPN网络的样本数据被整理为anchor box(坐标)和每个anchor box是否有物体(二分类标签)。RPN网络将每个样本映射为一个概率值和四个坐标值,概率值反应这个anchor box有物体的概率,四个坐标值用于回归定义物体的位置。最后将二分类和坐标回归的损失统一起来,作为RPN网络的目标训练。

由RPN得到Region Proposal在根据概率值筛选后经过类似的标记过程,被传入R-CNN子网络,进行多分类和坐标回归,同样用多任务损失将二者的损失联合。

小结

Faster R-CNN的成功之处在于用RPN网络完成了检测任务的"深度化"。使用滑动窗口生成anchor box的思想也在后来的工作中越来越多地被采用(YOLO v2等)。这项工作奠定了"RPN+RCNN"的两阶段方法元结构,影响了大部分后续工作。

单阶段(1-stage)检测模型

单阶段模型没有中间的区域检出过程,直接从图片获得预测结果,也被成为Region-free方法。

YOLO

论文链接: You Only Look Once: Unified, Real-Time Object Detection

YOLO是单阶段方法的开山之作。它将检测任务表述成一个统一的、端到端的回归问题,并且以只处理一次图片同时得到位置和分类而得名。

YOLO的主要优点:

快。

全局处理使得背景错误相对少,相比基于局部(区域)的方法, 如Fast RCNN。

泛化性能好,在艺术作品上做检测时,YOLO表现比Fast R-CNN好。

YOLO的工作流程如下:

1.准备数据:将图片缩放,划分为等分的网格,每个网格按跟Ground Truth的IoU分配到所要预测的样本。

2.卷积网络:由GoogLeNet更改而来,每个网格对每个类别预测一个条件概率值,并在网格基础上生成B个box,每个box预测五个回归值,四个表征位置,第五个表征这个box含有物体(注意不是某一类物体)的概率和位置的准确程度(由IoU表示)。测试时,分数如下计算:

等式左边第一项由网格预测,后两项由每个box预测,以条件概率的方式得到每个box含有不同类别物体的分数。 因而,卷积网络共输出的预测值个数为S×S×(B×5+C),其中S为网格数,B为每个网格生成box个数,C为类别数。

3.后处理:使用NMS(Non-Maximum Suppression,非极大抑制)过滤得到最后的预测框

损失函数的设计

损失函数被分为三部分:坐标误差、物体误差、类别误差。为了平衡类别不均衡和大小物体等带来的影响,损失函数中添加了权重并将长宽取根号。

小结

YOLO提出了单阶段的新思路,相比两阶段方法,其速度优势明显,实时的特性令人印象深刻。但YOLO本身也存在一些问题,如划分网格较为粗糙,每个网格生成的box个数等限制了对小尺度物体和相近物体的检测。

SSD: Single Shot Multibox Detector

论文链接: SSD: Single Shot Multibox Detector

SSD相比YOLO有以下突出的特点:

多尺度的feature map:基于VGG的不同卷积段,输出feature map到回归器中。这一点试图提升小物体的检测精度。

更多的anchor box,每个网格点生成不同大小和长宽比例的box,并将类别预测概率基于box预测(YOLO是在网格上),得到的输出值个数为(C+4)×k×m×n,其中C为类别数,k为box个数,m×n为feature map的大小。

小结

SSD是单阶段模型早期的集大成者,达到跟接近两阶段模型精度的同时,拥有比两阶段模型快一个数量级的速度。后续的单阶段模型工作大多基于SSD改进展开。

检测模型基本特点

最后,我们对检测模型的基本特征做一个简单的归纳。

检测模型整体上由基础网络(Backbone Network)和检测头部(Detection Head)构成。前者作为特征提取器,给出图像不同大小、不同抽象层次的表示;后者则依据这些表示和监督信息学习类别和位置关联。检测头部负责的类别预测和位置回归两个任务常常是并行进行的,构成多任务的损失进行联合训练。

相比单阶段,两阶段检测模型通常含有一个串行的头部结构,即完成前背景分类和回归后,把中间结果作为RCNN头部的输入再进行一次多分类和位置回归。这种设计带来了一些优点:

对检测任务的解构,先进行前背景的分类,再进行物体的分类,这种解构使得监督信息在不同阶段对网络参数的学习进行指导

RPN网络为RCNN网络提供良好的先验,并有机会整理样本的比例,减轻RCNN网络的学习负担

这种设计的缺点也很明显:中间结果常常带来空间开销,而串行的方式也使得推断速度无法跟单阶段相比;级联的位置回归则会导致RCNN部分的重复计算(如两个RoI有重叠)。

另一方面,单阶段模型只有一次类别预测和位置回归,卷积运算的共享程度更高,拥有更快的速度和更小的内存占用。读者将会在接下来的文章中看到,两种类型的模型也在互相吸收彼此的优点,这也使得两者的界限更为模糊。

‘陆’ 在世界历史上第一次测量子午线

张遂(僧一行)-中国古代天文学家

张遂(僧一行,公元673――727年),唐朝魏州昌乐(今河南濮阳市南乐县)人。张遂自幼天资聪颖、刻苦好学,博览群书。青年时代到长安拜师求学,研究天文和数学,很有成就,成为着名的学者。

武则天当皇帝后,其侄子武三思身居显位。为沽名钓誉,到处拉拢文人名士以抬高自己,几次欲与结交,但张遂不愿与之为伍,愤然离京,东去嵩山当了和尚,取名为一行,故称一行和尚。

公元712年,唐玄宗即位,得知一行和尚精通天文和数学,就把他召到京都长安,做了朝庭的天文学顾问。张遂在长安生活了10年,使他有机会从事天文学的观测和历法改革。

开元年间,唐玄宗下令让张遂主持修订历法。在修订历法的实践中,为了测量日、月、星辰在其轨道上的位置和掌握其运动规律,与梁令瓒共同制造了观测天象的“浑天铜仪”和”黄道游仪”,浑天铜仪是在汉代张衡的”浑天仪”的基础上制造的,上面画着星宿,仪器用水力运转,每昼夜运转一周,与天象相符。还装了两个木人,一个每刻敲鼓,一个每辰敲钟,其精密程度超过了张衡的“浑天仪”。“黄道游仪”的用处,是观测天象时可以直接测量出日、月、星辰在轨道的座标位置。张遂使用这两个仪器,有效的进行了对天文学的研究。

在张遂以前,天文学家包括象张衡这样的伟大天文学家都认为恒星是不运动的。但是,张遂却用“浑天铜仪”、“黄道游仪”等仪器,重新测定了150多颗恒星的位置,多次测定了二十八宿距天体北极的度数。从而发现恒星在运动。根据这个事实,张遂推断出天体上的恒星肯定也是移动的。于是推翻了前人的恒星不运动的结论,张遂成了发现恒星运动的第一个中国人。英国天文学家哈雷(公元1656――1742)年也提出了恒星自己移动的观点,但比张遂的发现晚一千多年。

张遂是重视实践的科学家,他使用的科学方法,对他取得的成就 有决定作用。张遂和南宫说等人一起,用标竿测量日影,推算出太阳位置与节气的关系。张遂设计制造了“复矩图”的天文学仪器,用于测量全国各地北极的高度。他用实地测量计算得出的数据,推翻了“王畿千里,影差一寸”的不准确结论。

张遂修订的《大衍历》是一部具有创新精神的历法,它继承了中国古代天文学的优点和长处,对不足之处和缺点作了修正,因此,取得了巨大成就。最突出的表现在它比较正确地掌握了太阳在黄道上运动的速度与变化规律。自汉代以来,历代天文学家都认为太阳在黄道上运行的速度是均匀不变的。张遂采用了不等间距二次内插法推算出每两个节气之间,黄经差相同,而时间距却不同。这种算法基本符合天文实际,在天文学上是一个巨大的进步。不仅如此,张遂的《大衍历》应用内插法中三次差来计算月行去支黄道的度数,还提出了月行黄道一周并不返回原处,要比原处退回一度多的科学结论。《大衍历》对中国天文学的影响是很大的,直到明末的历法家们都采用这种计算方法,并取得了好的效果。

公元724-725年,一行组织了全国13个点的天文大地测量。这次测量以天文学家南宫说等人在河南的工作最为重要。一行从南宫说等人测量的数据中,得出了北极高度相差一度,南北距离就相差351里80步(合现代131.3公里)的结论。这个数据就是地球子午线一度的弧长。这与现在计算北纬34°5地方子午线一度弧长110.6公里,仅差20.7公里。唐朝测出子午线的长度,在当时的世界上还是第一次。一行从725年开始编订历法,至逝世前完成草稿,即《大衍历》,728年颁行。 《大衍历》结构严谨,演算合乎逻辑,在日食的计算上,首次考虑到全国不同地点的见食情况。《大衍历》比以往的历法更为精密,为后世历法所师。733年,此历传入日本。

张遂在天文学上的成就,不仅在国内闻名,而且在世界上都有很大影响。他修订的《大衍历》是当时世界上比较先进的历法。日本曾派留学生吉备真备来中国学习天文学,回国时带走了《大衍历经》一卷,《大衍历主成》十二卷。于是《大衍历》便在日本广泛流传起来,其影响甚大。此外,张遂的天文学观点,有的比世界着名天文学家早一千多年。称张遂是中国古代伟大的天文学家,是丝毫也不过分的。

‘柒’ 目标跟踪检测算法(一)——传统方法

姓名:刘帆;学号:20021210609;学院:电子工程学院

https://blog.csdn.net/qq_34919792/article/details/89893214

【嵌牛导读】目标跟踪算法研究难点与挑战在于实际复杂的应用环境 、背景相似干扰、光照条件的变化、遮挡等外界因素以及目标姿态变化,外观变形,尺度变化、平面外旋转、平面内旋转、出视野、快速运动和运动模糊等。而且当目标跟踪算法投入实际应用时,不可避免的一个问题——实时性问题也是非常的重要。正是有了这些问题,才使得算法研究充满着难点和挑战。

【嵌牛鼻子】目标跟踪算法,传统算法

【嵌牛提问】利用目标跟踪检测算法要达到何目的?第一阶段的单目标追踪算法包括什么?具体步骤有哪些?它们有何特点?

【嵌牛正文】

第一阶段

目标跟踪分为两个部分,一个是对指定目标寻找可以跟踪的特征,常用的有颜色,轮廓,特征点,轨迹等,另一个是对目标特征进行跟踪。

1、静态背景

1)背景差: 对背景的光照变化、噪声干扰以及周期性运动等进行建模。通过当前帧减去背景图来捕获运动物体的过程。

2)帧差: 由于场景中的目标在运动,目标的影像在不同图像帧中的位置不同。该类算法对时间上连续的两帧或三帧图像进行差分运算,不同帧对应的像素点相减,判断灰度差的绝对值,当绝对值超过一定阈值时,即可判断为运动目标,从而实现目标的检测功能。

与二帧差分法不同的是,三帧差分法(交并运算)去除了重影现象,可以检测出较为完整的物体。帧间差分法的原理简单,计算量小,能够快速检测出场景中的运动目标。但帧间差分法检测的目标不完整,内部含有“空洞”,这是因为运动目标在相邻帧之间的位置变化缓慢,目标内部在不同帧图像中相重叠的部分很难检测出来。帧间差分法通常不单独用在目标检测中,往往与其它的检测算法结合使用。

3)Codebook

算法为图像中每一个像素点建立一个码本,每个码本可以包括多个码元(对应阈值范围),在学习阶段,对当前像素点进行匹配,如果该像素值在某个码元的学习阈值内,也就是说与之前出现过的某种历史情况偏离不大,则认为该像素点符合背景特征,需要更新对应点的学习阈值和检测阈值。

如果新来的像素值与每个码元都不匹配,则可能是由于动态背景导致,这种情况下,我们需要为其建立一个新的码元。每个像素点通过对应多个码元,来适应复杂的动态背景。

在应用时,每隔一段时间选择K帧通过更新算法建立CodeBook背景模型,并且删除超过一段时间未使用的码元。

4)GMM

混合高斯模型(Gaussian of Micture Models,GMM)是较常用的背景去除方法之一(其他的还有均值法、中值法、滑动平均滤波等)。

首先我们需要了解单核高斯滤波的算法步骤:

混合高斯建模GMM(Gaussian Mixture Model)作为单核高斯背景建模的扩展,是目前使用最广泛的一种方法,GMM将背景模型描述为多个分布,每个像素的R、G、B三个通道像素值的变化分别由一个混合高斯模型分布来刻画,符合其中一个分布模型的像素即为背景像素。作为最常用的一种背景建模方法,GMM有很多改进版本,比如利用纹理复杂度来更新差分阈值,通过像素变化的剧烈程度来动态调整学习率等。

5)ViBe(2011)

ViBe算法主要特点是随机背景更新策略,这和GMM有很大不同。其步骤和GMM类似。具体的思想就是为每个像素点存储了一个样本集,样本集中采样值就是该像素点过去的像素值和其邻居点的像素值,然后将每一个新的像素值和样本集进行比较来判断是否属于背景点。

其中pt(x)为新帧的像素值,R为设定值,p1、p2、p3….为样本集中的像素值,以pt(x)为圆心R为半径的圆被认为成一个集,当样本集与此集的交集大于设定的阈值#min时,可认为此为背景像素点(交集越大,表示新像素点与样本集越相关)。我们可以通过改变#min的值与R的值来改变模型的灵敏度。

Step1:初始化单帧图像中每个像素点的背景模型。假设每一个像素和其邻域像素的像素值在空域上有相似的分布。基于这种假设,每一个像素模型都可以用其邻域中的像素来表示。为了保证背景模型符合统计学规律,邻域的范围要足够大。当输入第一帧图像时,即t=0时,像素的背景模型。其中,NG(x,y)表示空域上相邻的像素值,f(xi,yi)表示当前点的像素值。在N次的初始化的过程中,NG(x,y)中的像素点(xi,yi)被选中的可能次数为L=1,2,3,…,N。

Step2:对后续的图像序列进行前景目标分割操作。当t=k时,像素点(x,y)的背景模型为BKm(x,y),像素值为fk(x,y)。按照下面判断该像素值是否为前景。这里上标r是随机选的;T是预先设置好的阈值。当fk(x,y)满足符合背景#N次时,我们认为像素点fk(x,y)为背景,否则为前景。

Step3:ViBe算法的更新在时间和空间上都具有随机性。每一个背景点有1/ φ的概率去更新自己的模型样本值,同时也有1/ φ的概率去更新它的邻居点的模型样本值。更新邻居的样本值利用了像素值的空间传播特性,背景模型逐渐向外扩散,这也有利于Ghost区域的更快的识别。同时当前景点计数达到临界值时将其变为背景,并有1/ φ的概率去更新自己的模型样本值(为了减少缓慢移动物体的影响和摄像机的抖动)。

可以有如下总结,ViBe中的每一个像素点在更新的时候都有一个时间和空间上随机影响的范围,这个范围很小,大概3x3的样子,这个是考虑到摄像头抖动时会有坐标的轻微来回变化,这样虽然由于ViBe的判别方式仍认为是背景点,但是也会对后面的判别产生影响,为了保证空间的连续性,随机更新减少了这个影响。而在样本值保留在样本集中的概率随着时间的增大而变小,这就保证了像素模型在时间上面的延续特性。

6)光流

光流是由物体或相机的运动引起的图像对象在两个连续帧之间的视在运动模式。它是2D矢量场,其中每个矢量是一个位移矢量,显示点从第一帧到第二帧的移动。

光流实际上是一种特征点跟踪方法,其计算的为向量,基于三点假设:

1、场景中目标的像素在帧间运动时亮度(像素值或其衍生值)不发生变化;2、帧间位移不能太大;3、同一表面上的邻近点都在做相同的运动;

光流跟踪过程:1)对一个连续视频帧序列进行处理;2)对每一帧进行前景目标检测;3)对某一帧出现的前景目标,找出具有代表性的特征点(Harris角点);4)对于前后帧做像素值比较,寻找上一帧在当前帧中的最佳位置,从而得到前景目标在当前帧中的位置信息;5)重复上述步骤,即可实现目标跟踪

2、运动场(分为相机固定,但是视角变化和相机是运动的)

1)运动建模(如视觉里程计运动模型、速度运动模型等)

运动学是对进行刚性位移的相机进行构型,一般通过6个变量来描述,3个直角坐标,3个欧拉角(横滚、俯仰、偏航)。

Ⅰ、对相机的运动建模

由于这个不是我们本次所要讨论的重点,但是在《概率机器人》一书中提出了很多很好的方法,相机的运动需要对图像内的像素做位移矩阵和旋转矩阵的坐标换算。除了对相机建立传统的速度运动模型外,也可以用视觉里程计等通关过置信度的更新来得到概率最大位置。

Ⅱ、对于跟踪目标的运动建模

该方法需要提前通过先验知识知道所跟踪的目标对象是什么,比如车辆、行人、人脸等。通过对要跟踪的目标进行建模,然后再利用该模型来进行实际的跟踪。该方法必须提前知道要跟踪的目标对象是什么,然后再去跟踪指定的目标,这是它的局限性,因而其推广性相对比较差。(比如已知跟踪的物体是羽毛球,那很容易通过前几帧的取点,来建立整个羽毛球运动的抛物线模型)

2)核心搜索算法(常见的预测算法有Kalman(卡尔曼)滤波、扩展卡尔曼滤波、粒子滤波)

Ⅰ、Kalman 滤波

Kalman滤波器是通过前一状态预测当前状态,并使用当前观测状态进行校正,从而保证输出状态平稳变化,可有效抵抗观测误差。因此在运动目标跟踪中也被广泛使用。

在视频处理的运动目标跟踪里,每个目标的状态可表示为(x,y,w,h),x和y表示目标位置,w和h表示目标宽高。一般地认为目标的宽高是不变的,而其运动速度是匀速,那么目标的状态向量就应该扩展为(x,y,w,h,dx,dy),其中dx和dy是目标当前时刻的速度。通过kalman滤波器来估计每个时刻目标状态的大致过程为:

对视频进行运动目标检测,通过简单匹配方法来给出目标的第一个和第二个状态,从第三个状态开始,就先使用kalman滤波器预测出当前状态,再用当前帧图像的检测结果作为观测值输入给kalman滤波器,得到的校正结果就被认为是目标在当前帧的真实状态。(其中,Zt为测量值,为预测值,ut为控制量,Kt为增益。)

Ⅱ、扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)

由于卡尔曼滤波的假设为线性问题,无法直接用在非线性问题上,EKF和UKF解决了这个问题(这个线性问题体现在用测量量来计算预测量的过程中)。EKF是通过构建线性函数g(x),与非线性函数相切,并对每一时刻所求得的g(x)做KF,如下图所示。

UKF与EKF去求解雅可比矩阵拟合线性方程的方法不同,通过对那个先验分布中的采集点,来线性化随机变量的非线性函数。与EKF所用的方法不同,UKF产生的高斯分布和实际高斯分布更加接近,其引起的近似误差也更小。

Ⅲ、粒子滤波

1、初始状态:基于粒子滤波的目标追踪方法是一种生成式跟踪方法,所以要有一个初始化的阶段。对于第一帧图像,人工标定出待检测的目标,对该目标区域提出特征;

2、搜索阶段:现在已经知道了目标的特征,然后就在目标的周围撒点(particle), 如:a)均匀的撒点;b)按高斯分布撒点,就是近的地方撒得多,远的地方撒的少。论文里使用的是后一种方法。每一个粒子都计算所在区域内的颜色直方图,如初始化提取特征一样,然后对所有的相似度进行归一化。文中相似性使用的是巴氏距离;

3、重采样:根据粒子权重对粒子进行筛选,筛选过程中,既要大量保留权重大的粒子,又要有一小部分权重小的粒子;

4、状态转移:将重采样后的粒子带入状态转移方程得到新的预测粒子;

5、测量及更新:对目标点特征化,并计算各个粒子和目标间的巴氏距离,更新粒子的权重;

6、决策阶段:每个粒子都获得一个和目标的相似度,相似度越高,目标在该范围出现的可能性越高,将保留的所有粒子通过相似度加权后的结果作为目标可能的位置。

3)Meanshift算法

MeanShift算法属于核密度估计法,它不需要任何先验知识而完全依靠特征空间中样本点的计算其密度函数值。对于一组采样数据,直方图法通常把数据的值域分成若干相等的区间,数据按区间分成若干组,每组数据的个数与总参数个数的比率就是每个单元的概率值;核密度估计法的原理相似于直方图法,只是多了一个用于平滑数据的核函数。采用核函数估计法,在采样充分的情况下,能够渐进地收敛于任意的密度函数,即可以对服从任何分布的数据进行密度估计。

Meanshift算法步骤

1、通过对初始点(或者上一帧的目标点)为圆心,绘制一个半径为R的圆心,寻找特征和该点相似的点所构成的向量;

2、所有向量相加,可以获得一个向量叠加,这个向量指向特征点多的方向;

3、取步骤二的向量终点为初始点重复步骤一、二,直到得到的向量小于一定的阈值,也就是说明当前位置是特征点密度最密集的地方,停止迭代,认为该点为当前帧的目标点;

4)Camshift算法

Camshift算法是MeanShift算法的改进,称为连续自适应的MeanShift算法。Camshift 是由Meanshift 推导而来 Meanshift主要是用在单张影像上,但是独立一张影像分析对追踪而言并无意义,Camshift 就是利用MeanShift的方法,对影像串行进行分析。

1、首先在影像串行中选择目标区域。

2、计算此区域的颜色直方图(特征提取)。

3、用MeanShift算法来收敛欲追踪的区域。

4、通过目标点的位置和向量信息计算新的窗口大小,并标示之。

5、以此为参数重复步骤三、四。

Camshift 关键就在于当目标的大小发生改变的时候,此算法可以自适应调整目标区域继续跟踪。

3、小结

第一阶段的单目标追踪算法基本上都是传统方法,计算量小,在嵌入式等设备中落地较多,opencv中也预留了大量的接口。通过上面的两节的介绍,我们不难发现,目标检测算法的步骤分为两部分,一部分是对指定目标寻找可以跟踪的特征,常用的有颜色,轮廓,特征点,轨迹等,另一部分是对目标特征进行跟踪,如上文所提及的方法。所以目标检测方法的发展,也可总结为两个方面,一个是如何去获得更加具有区分性的可跟踪的稳定特征,另一个是如何建立帧与帧之间的数据关联,保证跟踪目标是正确的。

随着以概率为基础的卡尔曼滤波、粒子滤波或是以Meanshift为代表向量叠加方法在目标检测的运用,使得目标检测不再需要假设自身的一个状态为静止的,而是可以是运动的,更加符合复杂场景中的目标跟踪。

‘捌’ 目标检测算法---faster rcnn 知识简要回顾(测试篇)

Faster RCNN检测部分主要可以分为四个模块:
1.特征抽取:用于抽取图像特征,一般可以使用vgg、resnet和mobilenet等backbone;
2.RPN(Region Proposal Network):用于产生候选框,主要做一些粗糙的分类和回归操作;
3.RoI Pooling:主要是为了解决全连接层需要固定尺寸输入,而实际输入大小不一的问题;
4.Classification and Regression:精细化分类和回归。

faster rcnn算法大致流程如下:
彩色图像通过backbone进行特征提取,输出最后一层的feature map。接着将这些feature map进一步做基于3x3卷积核的特征提取,该目的是增强模型的鲁棒性。将输出送入两个分支,第一个分支跟类别有关,这里主要是用于简单分类,区分是背景还是物体,这是针对anchor而言的;第二个分支则是用于初步预测候选框的偏移量,这个也是基于anchor而言的;再将前两个分支的结果送入图中的proposal中,首先会根据positive类的score筛选前6000个候选框,再将anchor的坐标和得到的偏移进行整合,得到初步候选框坐标,接着在做NMS,除去重叠严重的框,再经过了NMS后的框中,根据类别score取前300个框。然后将结果送入roi pooing层,用于生成固定尺寸的特征区域,以方便后边的全连接层接受信息;全连接层用于最后提取特征,得到精细的类别和框的偏移量。

‘玖’ 目标跟踪检测算法(四)——多目标扩展

姓名:刘帆;学号:20021210609;学院:电子工程学院

https://blog.csdn.net/qq_34919792/article/details/89893665

【嵌牛导读】基于深度学习的算法在图像和视频识别任务中取得了广泛的应用和突破性的进展。从图像分类问题到行人重识别问题,深度学习方法相比传统方法表现出极大的优势。与行人重识别问题紧密相关的是行人的多目标跟踪问题。

【嵌牛鼻子】深度多目标跟踪算法

【嵌牛提问】深度多目标跟踪算法有哪些?

【嵌牛正文】

第一阶段(概率统计最大化的追踪)

1)多假设多目标追踪算法(MHT,基于kalman在多目标上的拓展)

多假设跟踪算法(MHT)是非常经典的多目标跟踪算法,由Reid在对雷达信号的自动跟踪研究中提出,本质上是基于Kalman滤波跟踪算法在多目标跟踪问题中的扩展。

卡尔曼滤波实际上是一种贝叶斯推理的应用,通过历史关联的预测量和k时刻的预测量来计算后验概率:

关联假设的后验分布是历史累计概率密度的连乘,转化为对数形式,可以看出总体后验概率的对数是每一步观察似然和关联假设似然的求和。但是若同时出现多个轨迹的时候,则需要考虑可能存在的多个假设关联。

左图为k-3时刻三个检测观察和两条轨迹的可能匹配。对于这种匹配关系,可以继续向前预测两帧,如图右。得到一种三层的假设树结构,对于假设树根枝干的剪枝,得到k-3时刻的最终关联结果。随着可能性增加,假设组合会爆炸性增多,为此,只为了保留最大关联性,我们需要对其他的节点进行裁剪。下式为选择方程

实际上MHT不会单独使用,一般作为单目标追踪的扩展添加。

2)基于检测可信度的粒子滤波算法

这个算法分为两个步骤:

1、对每一帧的检测结果,利用贪心匹配算法与已有的对象轨迹进行关联。

其中tr表示一个轨迹,d是某一个检测,他们的匹配亲和度计算包含三个部分:在线更新的分类学习模型(d),用来判断检测结果是不是属于轨迹tr; 轨迹的每个粒子与检测的匹配度,采用中心距离的高斯密度函数求和(d-p)表示;与检测尺寸大小相关的阈值函数g(tr,d),表示检测与轨迹尺度的符合程度, 而α是预设的一个超参数。

计算出匹配亲和度矩阵之后,可以采用二部图匹配的Hungarian算法计算匹配结果。不过作者采用了近似的贪心匹配算法,即首先找到亲和度最大的那个匹配,然后删除这个亲和度,寻找下一个匹配,依次类推。贪心匹配算法复杂度是线性,大部分情况下,也能得到最优匹配结果。

2、利用关联结果,计算每个对象的粒子群权重,作为粒子滤波框架中的观察似然概率。

其中tr表示需要跟踪的对象轨迹,p是某个粒子。指示函数I(tr)表示第一步关联中,轨迹tr是不是关联到某个检测结果,当存在关联时,计算与关联的检测d 的高斯密度P{n}(p-d );C{tr}§是对这个粒子的分类概率;§是粒子通过检测算法得到的检测可信度,(tr)是一个加权函数,计算如下:

3)基于马尔科夫决策的多目标跟踪算法

作者把目标跟踪看作为状态转移的过程,转移的过程用马尔科夫决策过程(MDP)建模。一个马尔科夫决策过程包括下面四个元素:(S, A, T(.),R(.))。其中S表示状态集合,A表示动作集合,T表示状态转移集合,R表示奖励函数集合。一个决策是指根据状态s确定动作a, 即 π: SA。一个对象的跟踪过程包括如下决策过程:

从Active状态转移到Tracked或者Inactive状态:即判断新出现的对象是否是真。

从Tracked状态转移到Tracked或者Lost状态:即判断对象是否是持续跟踪或者暂时处于丢失状态。

从Lost状态转移到Lost或者Tracked或者Inactive状态:即判断丢失对象是否重新被跟踪,被终止,或者继续处于丢失状态。

作者设计了三个奖励函数来描述上述决策过程:

第一个是:

即判断新出现的对象是否为真,y(a)=1时表示转移到跟踪状态,反之转移到终止状态。这是一个二分类问题,采用2类SVM模型学习得到。这里用了5维特征向量:包括x-y坐标、宽、高和检测的分数。

第二个是:

这个函数用来判断跟踪对象下一时刻状态是否是出于继续跟踪,还是处于丢失,即跟踪失败。这里作者用了5个历史模板,每个模板和当前图像块做光流匹配,emedFB表示光流中心偏差, 表示平均重合率。 和 是阈值。

第三个是:

这个函数用来判断丢失对象是否重新跟踪,或者终止,或者保持丢失状态不变。这里当丢失状态连续保持超过 (=50)时,则转向终止,其他情况下通过计算M个检测匹配,来判断是否存在最优的匹配使上式(3-14)奖励最大,并大于0。这里涉及两个问题如何设计特征以及如何学习参数。这里作者构造了12维与模板匹配相关的统计值。而参数的学习采用强化学习过程,主要思想是在犯错时候更新二类分类器值。

第二阶段 深度学习应用

1)基于对称网络的多目标跟踪算法

关于Siamese网络在单目标跟踪深度学习中有了介绍,在这里不再介绍,可以向前参考。

2)基于最小多割图模型的多目标跟踪算法

上述算法中为了匹配两个检测采用LUV图像格式以及光流图像。Tang等人在文献中发现采用深度学习计算的类光流特征(DeepMatching),结合表示能力更强的模型也可以得到效果很好的多目标跟踪结果。

基于DeepMatching特征,可以构造下列5维特征:

其中MI,MU表示检测矩形框中匹配的点的交集大小以及并集大小,ξv和ξw表示检测信任度。利用这5维特征可以学习一个逻辑回归分类器。

同样,为了计算边的匹配代价,需要设计匹配特征。这里,作者采用结合姿态对齐的叠加Siamese网络计算匹配相似度,如图9,采用的网络模型StackNetPose具有最好的重识别性能。

综合StackNetPose网络匹配信任度、深度光流特征(deepMatching)和时空相关度,作者设计了新的匹配特征向量。类似于[2], 计算逻辑回归匹配概率。最终的跟踪结果取得了非常突出的进步。在MOT2016测试数据上的结果如下表:

3)通过时空域关注模型学习多目标跟踪算法

除了采用解决目标重识别问题的深度网络架构学习检测匹配特征,还可以根据多目标跟踪场景的特点,设计合适的深度网络模型来学习检测匹配特征。Chu等人对行人多目标跟踪问题中跟踪算法发生漂移进行统计分析,发现不同行人发生交互时,互相遮挡是跟踪算法产生漂移的重要原因[4]。如图10。

在这里插入图片描述

针对这个问题,文献[4]提出了基于空间时间关注模型(STAM)用于学习遮挡情况,并判别可能出现的干扰目标。如图11,空间关注模型用于生成遮挡发生时的特征权重,当候选检测特征加权之后,通过分类器进行选择得到估计的目标跟踪结果,时间关注模型加权历史样本和当前样本,从而得到加权的损失函数,用于在线更新目标模型。

该过程分三步,第一步是学习特征可见图:

第二步是根据特征可见图,计算空间关注图(Spatial Attention):

其中fatt是一个局部连接的卷积和打分操作。wtji是学习到的参数。

第三步根据空间注意图加权原特征图:

对生成的加权特征图进行卷积和全连接网络操作,生成二元分类器判别是否是目标自身。最后用得到分类打分选择最优的跟踪结果。

4)基于循环网络判别融合表观运动交互的多目标跟踪算法

上面介绍的算法采用的深度网络模型都是基于卷积网络结构,由于目标跟踪是通过历史轨迹信息来判断新的目标状态,因此,设计能够记忆历史信息并根据历史信息来学习匹配相似性度量的网络结构来增强多目标跟踪的性能也是比较可行的算法框架。

考虑从三个方面特征计算轨迹历史信息与检测的匹配:表观特征,运动特征,以及交互模式特征。这三个方面的特征融合以分层方式计算。

在底层的特征匹配计算中,三个特征都采用了长短期记忆模型(LSTM)。对于表观特征,首先采用VGG-16卷积网络生成500维的特征ϕtA,以这个特征作为LSTM的输入计算循环。

对于运动特征,取相对位移vit为基本输入特征,直接输入LSTM模型计算没时刻的输出ϕi,对于下一时刻的检测同样计算相对位移vjt+1,通过全连接网络计算特征ϕj,类似于表观特征计算500维特征ϕm,并利用二元匹配分类器进行网络的预训练。

对于交互特征,取以目标中心位置周围矩形领域内其他目标所占的相对位置映射图作为LSTM模型的输入特征,计算输出特征ϕi,对于t+1时刻的检测计算类似的相对位置映射图为特征,通过全连接网络计算特征ϕj,类似于运动模型,通过全连接网络计算500维特征ϕI,进行同样的分类训练。

当三个特征ϕA,ϕM,ϕI都计算之后拼接为完整的特征,输入到上层的LSTM网络,对输出的向量进行全连接计算,然后用于匹配分类,匹配正确为1,否则为0。对于最后的网络结构,还需要进行微调,以优化整体网络性能。最后的分类打分看作为相似度用于检测与轨迹目标的匹配计算。最终的跟踪框架采用在线的检测与轨迹匹配方法进行计算。

5)基于双线性长短期循环网络模型的多目标跟踪算法

在对LSTM中各个门函数的设计进行分析之后,Kim等人认为仅仅用基本的LSTM模型对于表观特征并不是最佳的方案,在文献[10]中,Kim等人设计了基于双线性LSTM的表观特征学习网络模型。

除了利用传统的LSTM进行匹配学习,或者类似[5]中的算法,拼接LSTM输出与输入特征,作者设计了基于乘法的双线性LSTM模型,利用LSTM的隐含层特征(记忆)信息与输入的乘积作为特征,进行匹配分类器的学习。

这里对于隐含层特征ht-1,必须先进行重新排列(reshape)操作,然后才能乘以输入的特征向量xt。

其中f表示非线性激活函数,mt是新的特征输入。而原始的检测图像采用ResNet50提取2048维的特征,并通过全连接降为256维。下表中对于不同网络结构、网络特征维度、以及不同LSTM历史长度时,表观特征的学习对跟踪性能的影响做了验证。

可以看出采用双线性LSTM(bilinear LSTM)的表观特征性能最好,此时的历史相关长度最佳为40,这个值远远超过文献[5]中的2-4帧历史长度。相对来说40帧历史信息影响更接近人类的直觉。

‘拾’ 宇宙年龄138亿岁是怎样测算出来的呢

宇宙是我们这个世界最老的存在,因为这个世界的一切,都是有了宇宙之后才生发出来的。所有物质,从看不到的微观世界基本粒子,到以光年计的巨大天体,都有一个诞生、成长、成熟、衰老、死亡的过程。

我们通过看一个人的皮肤、头发、精神状态等外观,通过检查一个人的骨骼状态和各项生理指标得出这个人的大致年龄;我们可以通过探查元素同位素的半衰期,计算出地球、月亮等天体的年龄。

那么宇宙这个万事万物的源头,年龄是怎么测算得出来的呢?

欧洲航天局在2013年用普朗克卫星测得的哈勃常数(宇宙膨胀速度)为67.8公里/秒/百万秒差距。

就是说在326万光年远的地方星系膨胀的速度为67.8公里每秒。根据这个常数,我们就能够得到星系之间退行速度(v)和它们之间的距离(d)有一个正比关系,这样v=哈伯常数*d。

测出了两个星系间的退行速度和距离,就能够推算出大爆炸后两个星系分开所花费的时间,这个时间就是宇宙的年龄。

时空通讯用这种方法简单计算出宇宙年龄为144亿岁,但科学界经过长期的测算和修正,并结合宇宙微波背景辐射的研究,认为精确的宇宙年龄为138.2亿岁。

根据这个方法,还能够测算出宇宙膨胀到现在的可视范围为半径465亿光年。

热点内容
sqldist 发布:2025-05-14 18:08:18 浏览:161
人行外管局编译 发布:2025-05-14 18:07:33 浏览:648
安卓手机如何使用大流量 发布:2025-05-14 17:47:34 浏览:81
精密模具编程 发布:2025-05-14 17:45:16 浏览:499
存储顺序和逻辑顺序有什么区别 发布:2025-05-14 17:44:30 浏览:275
安卓版设置里的隐身在哪里 发布:2025-05-14 17:35:16 浏览:333
linuxshell密码 发布:2025-05-14 17:21:11 浏览:200
安卓手机听筒在哪里关闭 发布:2025-05-14 17:16:20 浏览:456
我的世界炸毁50万服务器 发布:2025-05-14 17:16:07 浏览:123
存储站源 发布:2025-05-14 17:14:20 浏览:864