当前位置:首页 » 操作系统 » hmac算法c

hmac算法c

发布时间: 2022-10-30 07:11:56

❶ sha1 的hmac算法c++的 今晚急求!!!!!

HMACSHA1.h文件

#ifndef _IPSEC_SHA1_H_
#define _IPSEC_SHA1_H_
typedef unsigned long__u32;
typedef char__u8;
typedef struct
{
__u32 state[5];
__u32 count[2];
__u8 buffer[64];
} SHA1_CTX;
#if defined(rol)
#undef rol
#endif
#define SHA1HANDSOFF
#define __LITTLE_ENDIAN
#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
/* blk0() and blk() perform the initial expand. */
/* I got the idea of expanding ring the round function from SSLeay */
#ifdef __LITTLE_ENDIAN
#define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \
|(rol(block->l[i],8)&0x00FF00FF))
#else
#define blk0(i) block->l[i]
#endif
#define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
^block->l[(i+2)&15]^block->l[i&15],1))
/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
#define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
#define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30);
#define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
#define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);
#define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);
/* Hash a single 512-bit block. This is the core of the algorithm. */
void SHA1Transform(__u32 state[5], __u8 buffer[64]);
void SHA1Init(SHA1_CTX *context);
void SHA1Update(SHA1_CTX *context, char *data, __u32 len);
void SHA1Final( char digest[20], SHA1_CTX *context);
//void hmac_sha1(unsigned char *to_mac,unsigned int to_mac_length, unsigned char *key,unsigned int key_length, unsigned char *out_mac);
void SHA1_Encode
(
char* k, /* secret key */
int lk, /* length of the key in bytes */
char* d, /* data */
int ld, /* length of data in bytes */
char* out, /* output buffer, at least "t" bytes */
int t
);

#endif /* _IPSEC_SHA1_H_ */

HMACSHA1.cpp 文件

#include"stdafx.h"
#include "HMACSHA1.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <memory.h>
#ifndef SHA_DIGESTSIZE
#define SHA_DIGESTSIZE 20
#endif
#ifndef SHA_BLOCKSIZE
#define SHA_BLOCKSIZE 64
#endif
/* Hash a single 512-bit block. This is the core of the algorithm. */
void SHA1Transform(__u32 state[5], __u8 buffer[64])
{
__u32 a, b, c, d, e;
typedef union {
unsigned char c[64];
__u32 l[16];
} CHAR64LONG16;
CHAR64LONG16* block;
#ifdef SHA1HANDSOFF
static unsigned char workspace[64];
block = (CHAR64LONG16*)workspace;
// NdisMoveMemory(block, buffer, 64);
memcpy(block, buffer, 64);
#else
block = (CHAR64LONG16*)buffer;
#endif
/* Copy context->state[] to working vars */
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
/* 4 rounds of 20 operations each. Loop unrolled. */
R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
/* Add the working vars back into context.state[] */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
/* Wipe variables */
a = b = c = d = e = 0;
}
/* SHA1Init - Initialize new context */
void SHA1Init(SHA1_CTX* context)
{
/* SHA1 initialization constants */
context->state[0] = 0x67452301;
context->state[1] = 0xEFCDAB89;
context->state[2] = 0x98BADCFE;
context->state[3] = 0x10325476;
context->state[4] = 0xC3D2E1F0;
context->count[0] = context->count[1] = 0;
}
/* Run your data through this. */
void SHA1Update(SHA1_CTX* context, char* data, __u32 len)
{
__u32 i, j;
j = context->count[0];
if ((context->count[0] += len << 3) < j)
context->count[1]++;
context->count[1] += (len>>29);
j = (j >> 3) & 63;
if ((j + len) > 63) {
// NdisMoveMemory(&context->buffer[j], data, (i = 64-j));
memcpy(&context->buffer[j], data, (i = 64-j));
SHA1Transform(context->state, context->buffer);
for ( ; i + 63 < len; i += 64) {
SHA1Transform(context->state, &data[i]);
}
j = 0;
}
else i = 0;
// NdisMoveMemory(&context->buffer[j], &data[i], len - i);
memcpy(&context->buffer[j], &data[i], len - i);
}
/* Add padding and return the message digest. */
void SHA1Final( char digest[20], SHA1_CTX* context)
{
__u32 i, j; char finalcount[8];
for (i = 0; i < 8; i++) {
finalcount[i] = ( char)((context->count[(i >= 4 ? 0 : 1)]
>> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */
}
SHA1Update(context, ( char *)"\200", 1);
while ((context->count[0] & 504) != 448) {
SHA1Update(context, ( char *)"\0", 1);
}
SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */
for (i = 0; i < 20; i++) {
digest[i] = ( char)
((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
}
/* Wipe variables */
i = j = 0;
// NdisZeroMemory(context->buffer, 64);
// NdisZeroMemory(context->state, 20);
// NdisZeroMemory(context->count, 8);
// NdisZeroMemory(&finalcount, 8);
memset(context->buffer, 0x00, 64);
memset(context->state, 0x00, 20);
memset(context->count, 0x00, 8);
memset(&finalcount, 0x00, 8);

#ifdef SHA1HANDSOFF /* make SHA1Transform overwrite its own static vars */
SHA1Transform(context->state, context->buffer);
#endif
}
void truncate
(
char* d1, /* data to be truncated */
char* d2, /* truncated data */
int len /* length in bytes to keep */
)
{
int i ;
for (i = 0 ; i < len ; i++) d2[i] = d1[i];
}
/* Function to compute the digest */
void SHA1_Encode
(
char* k, /* secret key */
int lk, /* length of the key in bytes */
char* d, /* data */
int ld, /* length of data in bytes */
char* out, /* output buffer, at least "t" bytes */
int t
)
{
SHA1_CTX ictx, octx ;
char isha[SHA_DIGESTSIZE], osha[SHA_DIGESTSIZE] ;
char key[SHA_DIGESTSIZE] ;
char buf[SHA_BLOCKSIZE] ;
int i ;
if (lk > SHA_BLOCKSIZE) {
SHA1_CTX tctx ;
SHA1Init(&tctx) ;
SHA1Update(&tctx, k, lk) ;
SHA1Final(key, &tctx) ;
k = key ;
lk = SHA_DIGESTSIZE ;
}
/**** Inner Digest ****/
SHA1Init(&ictx) ;
/* Pad the key for inner digest */
for (i = 0 ; i < lk ; ++i) buf[i] = k[i] ^ 0x36 ;
for (i = lk ; i < SHA_BLOCKSIZE ; ++i) buf[i] = 0x36 ;
SHA1Update(&ictx, buf, SHA_BLOCKSIZE) ;
SHA1Update(&ictx, d, ld) ;
SHA1Final(isha, &ictx) ;
/**** Outter Digest ****/
SHA1Init(&octx) ;
/* Pad the key for outter digest */
for (i = 0 ; i < lk ; ++i) buf[i] = k[i] ^ 0x5C ;
for (i = lk ; i < SHA_BLOCKSIZE ; ++i) buf[i] = 0x5C ;
SHA1Update(&octx, buf, SHA_BLOCKSIZE) ;
SHA1Update(&octx, isha, SHA_DIGESTSIZE) ;
SHA1Final(osha, &octx) ;
/* truncate and print the results */
t = t > SHA_DIGESTSIZE ? SHA_DIGESTSIZE : t ;
truncate(osha, out, t) ;
}
//int main()
//{
//char k[1024],d[1024],out[1024];
//int lk,ld,t;
//strcpy(d,"what do ya want for nothing?");
//strcpy(k,"Jefe");
//lk=strlen(k);
//ld=strlen(d);
//printf("lk=%d\n",lk);
//printf("ld=%d\n",ld);
//t=20;
//hmac_sha(k,lk,d,ld,out,t);
//
//return 0;
//}

调用方法:
SHA_RESULTSIZE =20;

char paramSrc[1024]="aaa";
char keySrc[100]="bbbb";
char sha1Str[SHA_RESULTSIZE] = "";

SHA1_Encode(keySrc,strlen(keySrc),paramSrc,strlen(paramSrc),sha1Str,sizeof(sha1Str));

sha1Str就是最终的值。

❷ 求解释一下这段签名算法,其中str1和str2是字符串变量,这个算法的逻辑是怎么样的

tr1+'&'是密钥,str2是加密的消息。

在发送数据以前,HMAC加密算法对数据块和双方约定的公钥进行“散列操作”,以生成称为“摘要”的东西,附加在待发送的数据块中。当数据和摘要到达其目的地时,就使用HMAC加密算法来生成另一个校验和,如果两个数字相匹配,那么数据未被做任何篡改。

python官网的pypi可以下载hmac的安装包,里面有hmac源码

下面是一个简单的C/S程序,使用了hmac签名


#客户端(signsthedata)
importxmlrpclib,hmac,hashlib
key="mysecret"
server=xmlrpclib.ServerProxy("http://localhost:8888")
name="Homer"
signature=hmac.new(key,name).hexdigest()
printserver.sayHello(signature,name)

#服务器(verifiesthesignature)
importSimpleXMLRPCServer,hmac,hashlib
key="mysecret"
classMyClass:
defsayHello(self,signature,name):
ifhmac.new(key,name).hexdigest()!=signature:
return"Wrongsignature!You'reahacker!"
else:
returnu"Hello,%s!"%name
server_object=MyClass()
server=SimpleXMLRPCServer.SimpleXMLRPCServer(("localhost",8888))#(2)
server.register_instance(server_object)#(3)
print"Listeningonport8888"
server.serve_forever()

❸ 用C#实现hmac-sha256算法的代码如下,为什么和网上的在线解码的结果不同

首先你在网页上输入的,网页应该是以字符串来解析,而不是十六进制序列吧。

❹ 函数HMAC-SHA1

HMAC
根据RFC 2316(Report of the IAB,April 1998),HMAC(散列消息身份验证码: Hashed Message Authentication Code)以及IPSec被认为是Interact安全的关键性核心协议。它不是散列函数,而是采用了将MD5或SHA1散列函数与共享机密密钥(与公钥/私钥对不同)一起使用的消息身份验证机制。基本来说,消息与密钥组合并运行散列函数。然后运行结果与密钥组合并再次运行散列函数。这个128位的结果被截断成96位,成为MAC.
hmac主要应用在身份验证中,它的使用方法是这样的:
1. 客户端发出登录请求(假设是浏览器的GET请求)
2. 服务器返回一个随机值,并在会话中记录这个随机值
3. 客户端将该随机值作为密钥,用户密码进行hmac运算,然后提交给服务器
4. 服务器读取用户数据库中的用户密码和步骤2中发送的随机值做与客户端一样的hmac运算,然后与用户发送的结果比较,如果结果一致则验证用户合法
在这个过程中,可能遭到安全攻击的是服务器发送的随机值和用户发送的hmac结果,而对于截获了这两个值的黑客而言这两个值是没有意义的,绝无获取用户密码的可能性,随机值的引入使hmac只在当前会话中有效,大大增强了安全性和实用性。大多数的语言都实现了hmac算法,比如php的mhash、python的hmac.py、java的MessageDigest类,在web验证中使用hmac也是可行的,用js进行md5运算的速度也是比较快的。
SHA
安全散列算法SHA(Secure Hash Algorithm)是美国国家标准和技术局发布的国家标准FIPS PUB 180-1,一般称为SHA-1。其对长度不超过264二进制位的消息产生160位的消息摘要输出,按512比特块处理其输入。
SHA是一种数据加密算法,该算法经过加密专家多年来的发展和改进已日益完善,现在已成为公认的最安全的散列算法之一,并被广泛使用。该算法的思想是接收一段明文,然后以一种不可逆的方式将它转换成一段(通常更小)密文,也可以简单的理解为取一串输入码(称为预映射或信息),并把它们转化为长度较短、位数固定的输出序列即散列值(也称为信息摘要或信息认证代码)的过程。散列函数值可以说时对明文的一种“指纹”或是“摘要”所以对散列值的数字签名就可以视为对此明文的数字签名。
HMAC_SHA1
HMAC_SHA1(Hashed Message Authentication Code, Secure Hash Algorithm)是一种安全的基于加密hash函数和共享密钥的消息认证协议。它可以有效地防止数据在传输过程中被截获和篡改,维护了数据的完整性、可靠性和安全性。HMAC_SHA1消息认证机制的成功在于一个加密的hash函数、一个加密的随机密钥和一个安全的密钥交换机制。
HMAC_SHA1 其实还是一种散列算法,只不过是用密钥来求取摘要值的散列算法。
HMAC_SHA1算法在身份验证和数据完整性方面可以得到很好的应用,在目前网络安全也得到较好的实现。

热点内容
python实用代码 发布:2025-05-13 22:19:41 浏览:842
dede数据库的配置文件 发布:2025-05-13 22:19:08 浏览:966
给字符加密 发布:2025-05-13 22:12:32 浏览:972
数据库系统实现答案 发布:2025-05-13 22:11:57 浏览:140
哪个软件可以共存安卓 发布:2025-05-13 22:10:15 浏览:552
上传宦妃天下野泉肉肉 发布:2025-05-13 22:10:10 浏览:408
洗眼睛解压 发布:2025-05-13 21:58:28 浏览:272
c存储指针 发布:2025-05-13 21:49:04 浏览:921
结绳编程软件 发布:2025-05-13 21:49:03 浏览:850
解压体育馆 发布:2025-05-13 21:27:48 浏览:263