当前位置:首页 » 操作系统 » 数据库可视化设计

数据库可视化设计

发布时间: 2022-11-06 01:53:06

① 数据可视化的优缺点有哪些

下面我们就给大家介绍一下数据可视化的优点。

1:动作更快,这是因为人脑对视觉信息的处理要比书面信息容易得多。使用图表来总结复杂的数据,可以确保对关系的理解要比那些混乱的报告或电子表格更快。所以说,数据可视化是一种非常清晰的沟通方式,使业务领导者能够更快地理解和处理他们的信息。大数据可视化工具可以提供实时信息,使利益相关者更容易对整个企业进行评估。对市场变化更快的调整和对新机会的快速识别是每个行业的竞争优势。正是由于这个优点,数据可视化越来越受到了大家的关注。

2:用建设性方式讨论结果。一般来说,当我们向高级管理人员提交的许多业务报告的时候,都是规范化的文档,这些文档经常被静态表格和各种图表类型所夸大。也正是因为它制作的太过于详细了,以致于那些高管人员也没办法记住这些内容,因此对于他们来说是不需要看到太详细的信息。而使用大数据可视化的工具报告就可以使我们能够用一些简短的图形就能体现那些复杂信息,甚至单个图形也能做到。决策者可以通过交互元素以及类似于热图、fever charts等新的可视化工具,轻松地解释各种不同的数据源。丰富但有意义的图形有助于让忙碌的主管和业务伙伴了解问题和未决的计划。

3:能够理解运营和结果之间的连接,具体就是数据可视化允许用户去跟踪运营和整体业务性能之间的连接。在竞争环境中,找到业务功能和市场性能之间的相关性是至关重要的。我们可以用一个案例来说明,比如说一家软件公司的执行销售总监可能会立即在条形图中看到,他们的旗舰产品在西南地区的销售额下降百分比。然后,相关主管可以深入了解这些差异发生在哪里,并开始制定计划。通过这种方式,数据可视化可以让管理人员立即发现问题并采取行动从而及时止损。

缺点:就目前而言,数据可视化缺点在我眼里还不存在,数据可视化就是为了帮助我们更直观的看到数据。可能唯一的缺点就是有些人还不能熟练使用吧

谈论起 数据可视化设计 ,许多人会产生一个疑问:什么是数据可视化?我们由此问题着手,来谈论下数据可视化设计。

经研究表明,人类大脑对视觉信息的处理优于对文本的处理。因此,数据可视化是使用图表、图形和设计元素把数据进行可视化,把相对复杂、抽象的数据通过可视的方式以人们更易理解的形式展示出来的一系列手段。数据可视化可以使人们更有效率的完成某些任务,我们可以理解为三点 优势

> 美观展示: 用数据展示企业特色,大会展台,媒体现场展示等

> 数据驱动: 实时查看业务概况、监控预警、驱动内部快速响应

> 发掘价值: 可视化数据呈现后,带来的视觉感受会帮助人发现新的因素

HT 技术支持下,数据可视化除了“可视”,还有可交流、可互动的特点。设计带来的不仅是瞬息处理海量数据搭配酷炫的可视化样式所引起的视觉震撼,更应注重为业务需求服务,设计出符合不同行业需求的个性定制可视化,利于企业做出正确的商业决策,以有根据的数据呈现而帮助企业进行更科学的判断而避免决策的失误。

缺点: 数据可视化的应该有更多丰富的表现形式,以满足简单易懂的需求。

当然在缺点上,我们也有了更多的创新,比如2.3D可视化的结合打造更加丰富多彩的数据可视化形式:

② 什么是数据可视化小白怎样快速上手

什么是数据可视化

数据可视化是利用各类图表及图形化的设计手段将复杂不直观的数据有逻辑的呈现出来,而数据可视化工具就是生成这种呈现的软件。数据可视化为用户提供了交互式探索和分析数据的直观手段,使他们能够有效地识别有趣的模式、推断相关性和因果关系,从而指导经营决策,挖掘数据背后的商业价值。

大屏可视化设计方法

准确把握业务需求

设计终归是助力业务的,准确的理解业务需求是至关重要的,它将贯穿整个设计的始终,也是可视化设计开始的必要前提。如何解决用户的问题,完成既定目标,都需要设计师对需求有一个比较准确的理解。直接有效的方法就是“沟通协作”。

图形化的方法选择

需求及数据确定后,接下来是数据图形化的选择,不同的目标不同的数据对于图表展示的选择也是有讲究的,如:部分占总体的比例(占比)更适合选用饼图、用来反映时间变化趋势的图形化更适合曲线图等等,总之不同的数据展示维度,选择的图表是有差异的。同样一组数据,存在多个图表同可展示,怎样选择最恰当的图表是至关重要的,合适有效的图表有助于信息有效的传达。遇到具体的数据要根据数据的维度,和要表达的业务目标,选择一种最佳的图表呈现。

这是可视化图表选择比较确切的一个方法,可以作为数据可视化图表的选择依据,有助于准确快速的把数据图形化。

首先根据业务目标结合数据维度确定大的关系(比较、分部、构成、联系),随后选择合适的图表,填充数据设计排版即可。到这一步图表基本成型,但是比较基础,为了视觉效果和数据的传达,也会在此基础上进行优化设计。

设计尺寸的确定

可视化大屏一般都是多屏拼接或者LEDLCD等材质屏幕。不同的屏幕显示像素、物理像素都不同,例如同样是3*2的拼接屏,输出像素可以是X1*Y1也可以是X2*Y2。这就造成了很多潜在问题,设计之初屏幕硬件及拼接方式需要提前确定。基本有两个方法,简单的说,方法一、拼接屏可以按照拼接后的横纵像素总和设计(拼接屏像素超大可等比例缩放)。LED/LCD屏幕设计也是同样的原理。方法二、按照硬件输出像素设计,硬件设备的输出像素一定是和整个拼接屏成比例或者是吻合的。所以按照输出像素设计是可以的。

页面设计及布局

屏幕的拼接方式及屏幕材质确定后,就可以进行页面的设计及布局,页面的布局主要是根据业务及数据的重要程度来设计,通常会把核心的数据要点放在中间,一方面中间是视觉中心,二来也是最容易传达给观众的核心位置。其他的数据放两侧,排列数据一定要考虑数据的关联性及联动性,应该有意识的把相关数据放在一起,当一组数据变化时联动效果更凸显,容易传达数据的价值。如果是拼接屏,切记在设计时让数据避开拼接缝,页面布局时就要考虑屏幕拼接方式,尽量把数据有序的展示在屏幕内,合理避开拼接缝减少对用户观感的影响。

设计风格的确定

风格的确定也是至关重要的,首先应该确定应用场景,要充分考虑室内、室外、光照、灯光、硬件等因素。设计是相通的,可用UI的方式来定义可视化设计风格,AB测试、情绪版等等。差异比较大的一点是应用场景的环境。

硬件设备的校对

当风格页确定后先别急于后面的页面设计,如果有可能的话,此时最好拿设计图去现场实地测试。确定现场硬件是否存在偏色问题、文字大小在合适的观看距离是否清晰可见、现场灯光光照等是否对设计有影响、拼接缝和数据是否有穿插、硬件设备输出是否和设计匹配等等。确认无误后在开展后面的页面设计工作。

SovitChart是一个免费的在线数据可视化平台工具,基于Echarts开源API研发的数据图表可视化界面开发工具,内置了各行业丰富的组件模板,无需编码只需通过鼠标拖拽控件就能设计出精美的图表可视化web页面,同时可以方便的与后端数据进行绑定,实现数据驱动页面的变化,实现炫酷的图表展示。

③ 数据可视化功能设计表现在哪些方面

【导读】对于企业来说,应用数据可视化,在进行数据结果展现和数据可视化流程设计都是重要的方面,还有一个重要的并且难度比较高的,就是数据可视化的功能设计模块,想要拥有好的数据体验就需要做好数据可视化功能设计,主要表现在以下三个方面。

第一、图形设计

数据可视化的数据结果可以通过图形简单直观的呈现给观众,图形对于数据可视化的功能设计过程中直观重要,在进行数据可视化的图形设计的过程中,不同部门,不同的岗位角色需要的展示的界面是不一样的,好的图形设计可以很快的让观众理解数据含义,客户可以找到自己需要的信息,企业也可以通过数据可视化图形更好的展现自己的数据信息。

第二、业务指标设计

业务指标设计中的又分为几个小点:

1、关联指标设计,就是相关的关联设计包括数据逻辑关系。

2、横纵关系,指标设计对于数据的深层次分析是很重要的,指标之间有没有很强的关联性,也关系到数据分析的结果。

3、指标跟踪预警,是一种跟踪机制的设立、以及预警设备,可以周期性的把握大数据可视化工作的重点,有了追踪机制才能实时的获取想要的数据,或者说发生数据的异常变动会有预警,才能更好的起到控制的效果。

4、分析流程设计,每一个岗位都有自己不一定的岗位职责和岗位特点,每一个数据可视化工具的选用也是要根据不一样的特点需要,只有做好特定的步骤分析和流程分析才能体现不同周期内的管理重点。

第三、交互设计

也就是要实现用户的基本的使用性能,数据可视化的交互设计要建立在用户的实际需要的基础上,提供不同层次的分析,在操作的连续性、简单性以及逻辑性上都要有合理的把握和恰当的设计。

关于数据可视化功能设计表现在哪些方面?就给大家介绍到这里了,这也是数据分析师必须要掌握和了解的内容,更多相关资讯,欢迎大家继续关注和了解!

④ 如何设计成功而有价值的数据可视化

[what]什么是数据可视化?

塔夫特所说,“图形表现数据。实际上比传统的统计分析法更加精确和有启发性。”对于广大的编辑、设计师、运营分析师、大数据研究者等等都需要从不同维度、不同层面、不同粒度的数据处理统计中,借助图表和信息图的方式为用户(只获得信息)、阅读者(消费信息)及管理者(利用信息进行管理和决策)呈现不同于表格式的分析结果。数据可视化技术综合运用计算机图形学、图像、人机交互等,将采集、清洗、转换、处理过的符合标准和规范的数据映射为可识别的图形、图像、动画甚至视频,并允许用户与数据可视化进行交互和分析。而任何形式的数据可视化都会由丰富的内容、引人注意的视觉效果、精细的制作三个要素组成,概括起来就是新颖而有趣、充实而高效、美感且悦目三个特征。

[why]为什么要进行数据可视化?

无论是哪种职业和应用场景,数据可视化都有一个共同的目的,那就是准确而高效、精简而全面地传递信息和知识。可视化能将不可见的数据现象转化为可见的图形符号,能将错综复杂、看起来没法解释和关联的数据,建立起联系和关联,发现规律和特征,获得更有商业价值的洞见和价值。并且利用合适的图表直截了当且清晰而直观地表达出来,实现数据自我解释、让数据说话的目的。而人类右脑记忆图像的速度比左脑记忆抽象的文字快100万倍。因此,数据可视化能够加深和强化受众对于数据的理解和记忆。

[how] 如何实现可靠的数据可视化

数据可视化包括数据的采集、分析、治理、管理、挖掘在内的一系列复杂数据处理,然后由设计师设计一种表现形式,或许是二维图表、三维立体视图,不管是什么样的信息图,最后由前端工程师创建对应的可视化算法及前端渲染和展现的实现。如果仅仅是能够将数据转化成漂亮的图表,设计出固定维度、不同式样的图表来解释你的观点,并不说明这样的结局就足够好。这只是一个简单的开始,只是一个美好愿望的萌芽。如果要成功报告结果,将你所分析的度量和数据有效地转化为有商业价值的见解,使其能够为基于事实所做的决策提供支持,那么还需要做更多的功课。

色彩提升信息可视化的视觉效果。在信息可视化通过造型元素明确传达信息及叙述的基础上,把握好视觉元素中色彩的运用,使图形变得更加生动、有趣,信息表达得更加准确和直观。色彩可以帮助人们对信息进行深入分类,强调和淡化、生动而有趣的可视化作品的表现形式,常常给受众带来视觉效果上的享受。当然,视觉效果要将企业品牌的色调融合进去,和企业的品牌文化保持高度的一致,这是一个最基本的常识。比如,如果企业的品牌色调比较热衷红色,你设计的可视化效果,就要有意识地朝着这个基调靠拢。但没有必要吻合,因为红色的可视化效果,通常都包含警示的韵味,所以,红色适合做预警、提醒和突出信息的功能。

排版布局增强信息可视化的叙事性。我有酒,你有故事吗?排版布局四大基本原则:

(1)对比(Contrast): 如果两个项不完全相同,就应当使之不同,而且应当是截然不同。

(2)重复(Repetition):设计的某些方面在整个作品中重复。

(3)对齐(Alignment):任何元素都不能在页面上随意安放。每一项都应当与页面上的某个内容存在某种视觉联系。

(4)亲密性(Proximity):将相关的项组织在一起,使它们的物理位置相互靠近相关的项将被看作凝聚为一体的一个组。

动态增加信息可视化的视觉体验。在信息可视化的视觉表达中,动态地将相互分离的各种信息传播形式有机地融合在一起,进行有关联、有节奏的信息处理、传输和实现。最终的目的是,为了实现数据之间的联动,解释数据表现之间驱动和联系的关系。通过图表样式和色彩的运动,满足受众的视觉感受,同时将信息内容更加深刻而精简地传达给阅读者,使整个信息传达的过程更加轻松便捷。对于数据可视化有诸多工具,如:ECharts、iCharts、D3js、Flot、Raphaël等功能都十分强大,但对于非专业可视化而又经常与图表打交道的职场人士来说,一款轻便易学而又实用的可视化软件则显得十分重要。比如cognos、tebleue等。如果需要展现的数据结构不是特别复杂,而又要把数据展现的绚丽多彩,而且具有交互性,那么水晶易表是不二之选。

1.谁是你的阅读者?

无论你是否在做一份传统的报表还是新式的信息图,首先问问自己有哪些阅读者看到这份报告?他们对将要讨论的事项了解多少?他们需要什么?、还有,他们会如何利用你要展示的信息和数据呢?而我在 《一份靠谱的数据分析报告都有什么套路?》 里讲过,明确清晰的分析目标和方法会有多重要,因为只有明确分析目标,才能有一个良好的驱动过程。无论是目标驱动还是分析过程驱动,后续的数据分析工作和分析报告里所要呈现的全部内容事项都是紧紧围绕着这个目标主题而服务的。

2.规划数据可视化方案

数据可视化方案,是一定是能够解决用户特定问题的。既然是能够解决用户特定的问题,那么这样的高度,是在基于你在深入地理解了这些数据的现象和本质的基础之上。简单来说,就是你的可视化方案,不仅懂得并且能够很好地解释数据分析的结论、信息和知识。并且管理者能够沿着你规划的可视化路径能够迅速地找到和发现决策之道。

举例来说,当企业的业绩不达标时(企业的业绩是否达标,关系到企业最关键的利益和存亡。)可视化方案的设计路径应该是这样的:

Step1,从整体运营出发,明确有哪些关键因素会影响成交和业绩。

比如:有效名单、demo品质、客服服务、产品属性等,相应地去看这些关键因素对应的KPI的表现,对整体的业绩来讲,这些因素都会是驱动因素,这些因素对应的KPI都会是对STV有直接驱动和影响作用的。这些驱动数据的可视化是基础,也是寻找解决方案最终的出发点和落脚点。因为,这些数据的表现,是关乎运营成功与否的最直接视图。

Step2,对关键因素深入分析确定是什么因素导致了业绩没达成,发现和挖掘导致业绩未达标的根本原因和问题。

比如:

1、对比分析,逐一观测201601月-201612月全部关键因素对应的KPI的表现,对比成交业绩最高的月份和成交业绩最差月份的关键因素对应的KPI差异在哪里,能够快速定位出哪些方面、哪些因素导致业绩未达标。然后能够有针对性地驱动和帮助业务部门去改善。

2、追踪对成交和业绩有驱动和改善的行动方案的落地和实施进度,存在什么样的问题,是否存在行动方案的执行不力影响了业绩达标。

Step3,针对这些问题因素,有的放矢地去做改善和探索提升业绩之道。

否则,设计再商业绚丽的可视化图表,如果不能快速地得到信息和商业决策建议和方案就毫无意义。可视化仅仅成了虚假和欺骗,华丽而不务实的结果。基于准备好的全部的这些问题所得出的答案,就要开始定制你的数据可视化方案以满足每个决策者的特定要求。数据可视化始终都应该是为其受众专门定制的,这样的报告里只应包括受众需要知道的信息,且应将这些信息置于和他们有关并对他们有意义的背景下。

3.给数据可视化一个清晰的标题。

当你的报告像一份报纸、杂志的新闻一样。从这个标题,就能给阅读者强烈的冲击。一个清晰的标题是能够很好地阐释报告和故事的主题,是对整个报告和故事概括的信息。当然,并不是鼓励运营分析人员去做“标题党”。好的标题,既不要模棱两可,也不要画蛇添足,只要解释清楚图表即可。这有助于帮受众直接进入主题。这样能让读者大致浏览文件,并能快速抓住核心所在。尽量让你的标题突出。

4.将数据可视化和你的策略、方案联系起来

如果数据可视化的目的在于介绍能解决具体的、可衡量的、可执行的、有相关性和时效性问题的数据,那就在开场白里加上这些问题。稍后再和你的策略连接起来以理清这些数据的定位,因此,读者便能立刻明白可视化数据的相关性和价值。最终,他们便能更好地参与进来,并能够更明智地利用这些信息。数据可视化,最终时为了企业良好的运营而服务的,这是它的商业价值。如果你不关注企业的战略和行动方案,很难建立起具有联动价值的信息图。比如,企业执行的行动方案,通常是为了达成和实现企业的战略目标,通过这样的手段实现精益管理和精益运营。所以,可视化的解决方案要能够做到,行动方案对战略目标的驱动效果、个体、团队对部门整体指标、KPI的驱动和影响效果。只有建立起来具有联系的信息视图,才会获得有价值的数据可视化。

5.明智地选择你的展示图表。

不管使用哪一类图表,bar图、折线图、雷达图等等,每一种图表都有它自身的优点和局限性。你无法找到完美的可视化图表。但你可以通过尝试混合展现方式让可视化表现再人性化一点点。所以的可视化效果,都应该尽可能简单精准地传达讯息。这就意味着:不论有多新潮、多好看或者多绚丽,这都不是设计数据可视化的初衷。诚然,我们在持续地并且永不满足地追求数据之美。但最佳的平衡点在于,用合适的数据可视化开阐释恰到好处的信息和知识的价值之美。

• 只用有关联能传达重要信息的且为你的受众所需要的图形。

•无需填满页面的所有空白——太多杂乱的内容只会干扰对重要信息的接收,会让人太难记住,又太容易忽略。

• 恰当运用色彩,增加信息深度。同时要注意有些色彩具备潜在含义。举例来说,红色被认为是代表警告或危险的颜色。适合预警额。

• 不要使用太多不同类的图表、表格和图形。如果需要对比各种图表,要确保你阐述数据时使用的是同类的图表,这样才能便于互相比较。

6.在恰当处备注文字说明

文字说明有助于用语言解释数据,并能在情境化图表的同时增加内容的深度。数字和表格或许仅能提供快照,而文字说明则让人对关键处了解更多,加以评论并强调其内涵。引导观看者去思考图形的主题,而不是方法论、图形设计、图形生成或其他东西。

• 避免歪曲数据原本的意图。

• 让庞大的数据集连贯一致。

• 吸引读者将不同的数据片段进行比对和比较,突出重点和优劣。

• 主旨要相当明确:描述、挖掘、作表、可视化自我解读。

⑤ 大数据可视化设计到底是啥,该怎么用

大数据可视化是个热门话题,在信息安全领域,也由于很多企业希望将大数据转化为信息可视化呈现的各种形式,以便获得更深的洞察力、更好的决策力以及更强的自动化处理能力,数据可视化已经成为网络安全技术的一个重要趋势。

文章目录

        一、什么是网络安全可视化

1.1 故事+数据+设计 =可视化

1.2 可视化设计流程

二、案例一:大规模漏洞感知可视化设计

2.1整体项目分析

2.2分析数据

2.3匹配图形

2.4确定风格

2.5优化图形

2.6检查测试

三、案例二:白环境虫图可视化设计

3.1整体项目分析

3.2分析数据

3.3 匹配图形

3.4优化图形

3.5检查测试

一、什么是网络安全可视化

攻击从哪里开始?目的是哪里?哪些地方遭受的攻击最频繁……通过大数据网络安全可视化图,我们可以在几秒钟内回答这些问题,这就是可视化带给我们的效率 。 大数据网络安全的可视化不仅能让我们更容易地感知网络数据信息,快速识别风险,还能对事件进行分类,甚至对攻击趋势做出预测。可是,该怎么做呢?

1.1 故事+数据+设计 =可视化

做可视化之前,最好从一个问题开始,你为什么要做可视化,希望从中了解什么?是否在找周期性的模式?或者多个变量之间的联系?异常值?空间关系?比如政府机构,想了解全国各个行业漏洞的分布概况,以及哪个行业、哪个地区的漏洞数量最多;又如企业,想了解内部的访问情况,是否存在恶意行为,或者企业的资产情况怎么样。总之,要弄清楚你进行可视化设计的目的是什么,你想讲什么样的故事,以及你打算跟谁讲。

有了故事,还需要找到数据,并且具有对数据进行处理的能力,图1是一个可视化参考模型,它反映的是一系列的数据的转换过程:

我们有原始数据,通过对原始数据进行标准化、结构化的处理,把它们整理成数据表。

将这些数值转换成视觉结构(包括形状、位置、尺寸、值、方向、色彩、纹理等),通过视觉的方式把它表现出来。例如将高中低的风险转换成红黄蓝等色彩,数值转换成大小。

将视觉结构进行组合,把它转换成图形传递给用户,用户通过人机交互的方式进行反向转换,去更好地了解数据背后有什么问题和规律。

最后,我们还得选择一些好的可视化的方法。比如要了解关系,建议选择网状的图,或者通过距离,关系近的距离近,关系远的距离也远。

总之,有个好的故事,并且有大量的数据进行处理,加上一些设计的方法,就构成了可视化。

1.2 可视化设计流程

一个好的流程可以让我们事半功倍,可视化的设计流程主要有分析数据、匹配图形、优化图形、检查测试。首先,在了解需求的基础上分析我们要展示哪些数据,包含元数据、数据维度、查看的视角等;其次,我们利用可视化工具,根据一些已固化的图表类型快速做出各种图表;然后优化细节;最后检查测试。

具体我们通过两个案例来进行分析。

二、案例一:大规模漏洞感知可视化设计

图2是全国范围内,各个行业漏洞的分布和趋势,橙黄蓝分别代表了漏洞数量的高中低。

2.1整体项目分析

我们在拿到项目策划时,既不要被大量的信息资料所迷惑而感到茫然失措,也不要急于完成项目,不经思考就盲目进行设计。首先,让我们认真了解客户需求,并对整体内容进行关键词的提炼。可视化的核心在于对内容的提炼,内容提炼得越精确,设计出来的图形结构就越紧凑,传达的效率就越高。反之,会导致图形结构臃肿散乱,关键信息无法高效地传达给读者。

对于大规模漏洞感知的可视化项目,客户的主要需求是查看全国范围内,各个行业的漏洞分布和趋势。我们可以概括为三个关键词:漏洞量、漏洞变化、漏洞级别,这三个关键词就是我们进行数据可视化设计的核心点,整体的图形结构将围绕这三个核心点来展开布局。

2.2分析数据

想要清楚地展现数据,就要先了解所要绘制的数据,如元数据、维度、元数据间关系、数据规模等。根据需求,我们需要展现的元数据是漏洞事件,维度有地理位置、漏洞数量、时间、漏洞类别和级别,查看的视角主要是宏观和关联。涉及到的视觉元素有形状、色彩、尺寸、位置、方向,如图4。

2.3匹配图形

2.4确定风格

匹配图形的同时,还要考虑展示的平台。由于客户是投放在大屏幕上查看,我们对大屏幕的特点进行了分析,比如面积巨大、深色背景、不可操作等。依据大屏幕的特点,我们对设计风格进行了头脑风暴:它是实时的,有紧张感;需要新颖的图标和动效,有科技感;信息层次是丰富的;展示的数据是权威的。

最后根据设计风格进一步确定了深蓝为标准色,代表科技与创新;橙红蓝分别代表漏洞数量的高中低,为辅助色;整体的视觉风格与目前主流的扁平化一致。

2.5优化图形

有了图形后,尝试把数据按属性绘制到各维度上,不断调整直到合理。虽然这里说的很简单,但这是最耗时耗力的阶段。维度过多时,在信息架构上广而浅或窄而深都是需要琢磨的,而后再加上交互导航,使图形更“可视”。

在这个任务中,图形经过很多次修改,图7是我们设计的过程稿,深底,高亮的地图,多颜色的攻击动画特效,营造紧张感;地图中用红、黄、蓝来呈现高、中、低危的漏洞数量分布情况;心理学认为上方和左方易重视,“从上到下”“从左至右”的“Z”字型的视觉呈现,简洁清晰,重点突出。

完成初稿后,我们进一步优化了维度、动效和数量。维度:每个维度,只用一种表现,清晰易懂;动效:考虑时间和情感的把控,从原来的1.5ms改为3.5ms;数量:考虑了太密或太疏时用户的感受,对圆的半径做了统一大小的处理。

2.6检查测试

最后还需要检查测试,从头到尾过一遍是否满足需求;实地投放大屏幕后,用户是否方便阅读;动效能否达到预期,色差是否能接受;最后我们用一句话描述大屏,用户能否理解。

三、案例二:白环境虫图可视化设计

如果手上只有单纯的电子表格(左),要想找到其中IP、应用和端口的访问模式就会很花时间,而用虫图(右)呈现之后,虽然增加了很多数据,但读者的理解程度反而提高了。

3.1整体项目分析

当前,企业内部IT系统复杂多变,存在一些无法精细化控制的、非法恶意的行为,如何精准地处理安全管理问题呢?我们的主要目标是帮助用户监测访问内网核心服务器的异常流量,概括为2个关键词:内网资产和访问关系,整体的图形结构将围绕这两个核心点来展开布局。

3.2分析数据

接下来分析数据,案例中的元数据是事件,维度有时间、源IP、目的IP和应用,查看的视角主要是关联和微观。

3.3 匹配图形

根据以往的经验,带有关系的数据一般使用和弦图和力导向布局图。最初我们采用的是和弦图,圆点内部是主机,用户要通过3个维度去寻找事件的关联。通过测试发现,用户很难理解,因此选择了力导向布局图(虫图)。第一层级展示全局关系,第二层级通过对IP或端口的钻取进一步展现相关性。

3.4优化图形

优化图形时,我们对很多细节进行了调整: – 考虑太密或太疏时用户的感受,只展示了TOP N。 – 弧度、配色的优化,与我们UI界面风格相一致。 – IP名称超长时省略处理。 – 微观视角中,源和目的分别以蓝色和紫色区分,同时在线上增加箭头,箭头向内为源,向外是目的,方便用户理解。 – 交互上,通过单击钻取到单个端口和IP的信息;鼠标滑过时相关信息高亮展示,这样既能让画面更加炫酷,又能让人方便地识别。

3.5检查测试

通过调研,用户对企业内部的流向非常清楚,视觉导向清晰,钻取信息方便,色彩、动效等细节的优化帮助用户快速定位问题,提升了安全运维效率。

四、总结

总之,借助大数据网络安全的可视化设计,人们能够更加智能地洞悉信息与网络安全的态势,更加主动、弹性地去应对新型复杂的威胁和未知多变的风险。

可视化设计的过程中,我们还需要注意:1、整体考虑、顾全大局;2、细节的匹配、一致性;3、充满美感,对称和谐。

⑥ 数据可视化的设计步骤有哪些

1、需求分析


需求分析是大数据可视化项目开展的前提,要描述项目背景与目的、业务目标、业务范围、业务需求和功能需求等内容,明确实施单位对可视化的期望和需求。包括需要分析的主题、各主题可能查看的角度、需要发泄企业各方面的规律、用户的需求等内容。


2、建设数据仓库/数据集市的模型


数据仓库/数据集市的模型是在需求分析的基础上建立起来的。数据仓库/数据集市建模除了数据库的ER建模和关系建模,还包括专门针对数据仓库的维度建模技术。


3、数据抽取、清洗、转换、加载(ETL)


数据抽取是指将数据仓库/集市需要的数据从各个业务系统中抽离出来,因为每个业务系统的数据质量不同,所以要对每个数据源建立不同的抽取程序,每个数据抽取流程都需要使用接口将元数据传送到清洗和转换阶段。


4、建立可视化场景


建立可视化场景是对数据仓库/集市中的数据进行分析处理的成果,用户能够借此从多个角度查看企业/单位的运营状况,按照不同的主题和方式探查企业/单位业务内容的核心数据,从而作出更精准的预测和判断。

⑦ 数据可视化的方法有哪些

数据可视化就是将数据分析的结果用图表的形式展现出来。

可以实现数据可视化的工具有:Excel、报表、BI

图表的展现形式有:柱状图、条形图、折线图、饼图、雷达图、地图、漏斗图、仪表板图、散点图、桑基图、词云和矩形树图等各种各种图形。

以下展示几张通过观远数据BI平台做的数据可视化大屏:

⑧ 数据可视化一般方法

一、面积&尺寸可视化

对同一类图形(例如柱状、圆环和蜘蛛图等)的长度、高度或面积加以区别,来清晰的表达不同指标对应的指标值之间的对比。这种方法会让浏览者对数据及其之间的对比一目了然。制作这类数据可视化图形时,要用数学公式计算,来表达准确的尺度和比例。

二、颜色可视化

通过颜色的深浅来表达指标值的强弱和大小,是数据可视化设计的常用方法,用户一眼看上去便可整体的看出哪一部分指标的数据值更突出。

三、图形可视化

在我们设计指标及数据时,使用有对应实际含义的图形来结合呈现,会使数据图表更加生动的被展现,更便于用户理解图表要表达的主题。

四、地域空间可视化

当指标数据要表达的主题跟地域有关联时,我们一般会选择用地图为大背景。这样用户可以直观的了解整体的数据情况,同时也可以根据地理位置快速的定位到某一地区来查看详细数据。

五、概念可视化

通过将抽象的指标数据转换成我们熟悉的容易感知的数据时,用户便更容易理解图形要表达的意义。

这是一条来自#加米谷大数据-专注大数据人才培养#的小尾巴

⑨ 后台产品设计之数据可视化

这是《后台产品设计指南》系列文章的 第13篇 内容,更多精彩可以点击下方链接查看。

后台产品设计指南

把复杂、抽象的数据通过可视的方式以人们更易理解的形式展示出来的一系列手段叫做数据可视化。数据可视化在后台产品中的应用主要包括和数据图表数据大屏和两部分,本文会和大家介绍一下数据可视化的产品设计规范。

数据图表一般出现在后台产品中的首页、统计模块。后面提到的数据大屏实际上也是不同数据图表的组合,因为比较特殊所以单独进行介绍。

后台的首页可以是简单的欢迎页面,但这样做会比较浪费首页这个黄金位置。更合适的做法是根据用户的角色和身份设计不同的内容,展示用户当前的待办、平台的关键数据、数据预警,用图表的形式展示会更加直观。用户一进入首页就能看到核心内容,可以知道当前的宏观情况,接下来要做哪些事情。

至于统计模块则是平台管理层决策的利器,除了展示基础的数据报表、图表,还需要结合平台业务,相关政策等信息给到用户决策的辅助信息。下面和大家介绍一下常用的数据图表类型。

柱状图

柱状图一般用来表达某种分类下的数据的大小,分类可以是单个也可以是多个。比如某地2021年不同月份的最大值。

横向的柱状图也叫条形图,和柱状图的使用场景比较类似。条形图更适用于类别名称比较长的数据展示,使用柱状图会出现数据展示不全的情况。

折线图

折线图一般用来反映数据一段时间内的变化趋势。比如最近10年的考研报名人数。

柱状图和折线图有些类似,柱状图适合数据较少时的分析,折线图适合连续时间内较多数据的分析。

饼图

饼图一般用来表达不同类型的数据的占比情况。比如某公司不同部门的业绩占比。饼图也有一些特殊的展现形式,比如玫瑰图,理解起来需要一定的成本。

散点图

散点图一般用来变现两组数据之间的是否存在某种关联,这个关系可能是线性相关,也可能是正相关或者其他类型。比如员工工作年限和薪资的对应关系。

雷达图

雷达图一般用来对不同指标进行对比分析。比如腾讯公司产品经理的能力雷达图。

热力图

热力地图用高亮的形式表达数据的集中区域。比如国内国庆假期游客的分布情况。

关系图

关系图一般用来表示实物之间的相互联系。比如下图中围绕李白展开的关系图。

漏斗图

漏斗图一般用来表达不同业务环节的价值转化情况。比如电商行业客户访问、注册、下单、付费的转化数据。

其他诸如K线图、桑基图、盒须图等类型使用的场景不多,这里就不做展开,感兴趣的读者可以自行研究。

数据大屏是以大屏为主要载体的数据可视化设计。数据大屏是数据的最后应用环节,与数据怎么收集、清洗、处理,是否使用数仓技术没有必然的联系。

数据大屏设计流程

1.了解业务流程

数据大屏一般是用来做信息展示、数据分析和监控预警,无论是哪一种都需要对业务有充分的理解,否则设计出来的大屏只能是空中楼阁。

2.提炼数据指标

每个行业的数据指标是不同的,比如电商消费的核心数据就是GMV;购买人数,订单数,最受欢迎品牌就是次要数据。大屏因为空间限制可以展示的内容有限,一定要优先展示核心数据。

3.确定分析维度

同一个数据指标有不同的分析维度,比如电商GMV可以统计平台的累计金额,也可以按照月份统计新增金额,还可以按照商品类型来统计数据。

4.确定图表类型

这个步骤需要使用到前面提到的图表,根据业务数据里选择合理的图表类型。选择图表时既要考虑用户能直观地理解,又要考虑开发实现的可行性。

5.了解大屏参数

在正式输出设计稿之前,需要提前了解现场环境中信号源电脑的分辨率以及大屏的相关参数,如果没有提前了解做出来的效果很容易出问题,再返工会浪费很多成本。

6.页面设计稿

设计师按照一定的规范根据要展现的内容输出设计稿。大屏产品不能贪图炫技,而忽视了本质,即大屏是为了高效地展示信息,提供决策辅助。

7.程序开发实现

这个过程包括前端样式的实现和数据的接入,实际上数据的接入在前期就可以先行了。有一些效果开发很难实现,这个时候可以设计师配合提供切图实现。开发完成后需要内部验收测试,除了关注样式还需要验证数据的准确性。

大屏适配

数据大屏的展示可以使拼接屏,也可以使一块完整的大屏。数据大屏的本质是把电脑屏幕通过有线信号投放到大屏上,两者的内容是一致的。

一般情况下我们需要了解大屏的类型和分辨率,选择合适的设计稿尺寸。如果 大屏和电脑比例一致 ,可以按照大屏的分辨率来做设计稿,然后再进行开发实现;或者是使用等比例缩小的分辨率尺寸来做设计稿,再导出2倍图和开发实现。如果 大屏和电脑比例不一致 ,这个时候需要优先保证大屏上的展示效果,电脑上和大屏上会出现一定的误差。

数据大屏实现后,一定要到现场进行调试,避免出现突发情况。数据大屏的设计稿和开发适配不需要产品经理过多地关注,只需要关注最终的质量即可。

注意事项

1.数据大屏上一定要有主次,不能贪多,也不需要炫技;

2.数据大屏的字体大小和PC上有区别,需要重点关注;

3.需要根据行业、应用场景等因素选择合适的配色方案;

4.合理地使用动效可以增强大屏的品质和空间感。

数据可视化在后台产品中应用非常广泛,先了解数据可视化的应用场景和设计规范才能设计出实用的可视化产品。

在写作过程中,如果有意见或者想法,欢迎有兴趣的读者添加我的微信一起交流探索,共同进步。

⑩ 如何将数据进行数据可视化展现

1、确认需求

在数据可视化设计前,分析人员要先完成业务需求的分析,将分析需求拆分成不同层级、不同主题的任务,捕捉其中业务的数据指标、标签,划分出不同优先级,为下一步取数做准备。

数据可视化-派可数据商业智能BI

此外,整个可视化图表页面中,色彩不宜太过丰富,颜色最好也不要太过鲜艳,把色彩对比强烈的颜色放到关键信息,用清晰的逻辑去呈现变化,突出重点部分,使用户产生更好地体验,这才是他们最希望看到的。

最后,回到数据分析本身,分析人员可以选择为制作完成的可视化图表附上自己从业务逻辑思考的信息,帮助用户更好地分辨图表展现的意义。

派可数据 商业智能BI可视化分析平台

热点内容
探岳什么配置才有驾驶模式选择 发布:2025-05-14 23:53:17 浏览:143
如何在手机上看无限流量密码 发布:2025-05-14 23:43:31 浏览:114
19投篮脚本 发布:2025-05-14 23:36:57 浏览:513
编译器怎么处理c变长数组 发布:2025-05-14 23:31:46 浏览:663
存折每天可以输错多少次密码 发布:2025-05-14 23:22:06 浏览:909
安卓手机怎么找微信隐藏对话 发布:2025-05-14 23:07:47 浏览:338
怎么查看泰拉服务器ip 发布:2025-05-14 23:03:29 浏览:74
c语言学生成绩查询系统 发布:2025-05-14 22:58:30 浏览:6
怎么进别人的服务器 发布:2025-05-14 22:45:55 浏览:774
用编程写音乐 发布:2025-05-14 22:45:08 浏览:783