算法大师约翰
⑴ 约翰·霍兰德的介绍
约翰·亨利·霍兰德(John Henry Holland,1929.2.2-)复杂理论和非线性科学的先驱,遗传算法之父,又译“约翰·霍尔兰” 。
⑵ 谁知道美国数学家约翰纳什的个人全面介绍他现在还在世吗要详细!
约翰·纳什生于1928年6月13日。父亲是电子工程师与教师,第一次世界大战的老兵。纳什小时孤独内向,虽然父母对他照顾有加,但老师认为他不合群不善社交。
纳什的数学天分大约在14岁开始展现。他在普林斯顿大学读博士时刚刚二十出头,但他的一篇关于非合作博弈的博士论文和其他相关文章,确立了他博弈论大师的地位。在20世纪50年代末,他已是闻名世界的科学家了。
然而,正当他的事业如日中天的时候,30岁的纳什得了严重的精神分裂症。他的妻子艾利西亚———麻省理工学院物理系毕业生,表现出钢铁一般的意志:她挺过了丈夫被禁闭治疗、孤立无援的日子,走过了惟一儿子同样罹患精神分裂症的震惊与哀伤……漫长的半个世纪之后,她的耐心和毅力终于创下了了不起的奇迹:和她的儿子一样,纳什教授渐渐康复,并在1994年获得诺贝尔奖经济学奖。
如今,纳什已经基本恢复正常,并重新开始科学研究。他现在是普林斯顿大学数学教授,但已经不再任教。学校经济学系经常会举办有关博弈论的论坛,纳什有时候会参加,但是他几乎从不发言,每次都是静静地来,静静地走。
不过,在同事印象里“极不爱说话”的纳什教授将在中国做几场演讲。8月14日至17日在青岛大学,他会以特邀报告人的身份做主题发言,探讨他所奠定学术根基的博弈论的发展趋势。8月21日晚上,在北京国际会议中心,他还将向中国公众做一个公开报告。
小约翰-纳什是所有诺贝尔经济学奖得主中最不幸的,又是不幸中最万幸的人。
纳什不是一个完人,他举止古怪,离经叛道。曾经想放弃美国国籍,几乎遗弃了同居女友和亲生儿子,与深爱他的贤妻艾莉西亚离婚……
影片《美丽心灵》一举获得8项奥斯卡提名。这部影片以1994年度诺贝尔经济学奖得主之一小约翰·纳什与他的(前)妻子艾莉西亚以及普林斯顿的朋友、同事的真实感人的故事为题材,艺术地重现了这个爱心呵护天才的传奇故事。为了使广大读者进一步了解这位数学和经济学的天才人物,本报特邀我国研究诺贝尔经济学奖获奖者及其学术思想的专家、中国科学技术大学国际经济研究所所长孙健教授,撰文详细介绍纳什博士其人其事。孙教授已发表过多篇评介诺贝尔经济学奖得主及其学术思想的文章。目前正在撰写1969年至2001年的历届诺贝尔经济学奖得主传略及其学术贡献评述的专着。
1950年和1951年纳什的两篇关于非合作博弈论的重要论文,彻底改变了人们对竞争和市场的看法。他证明了非合作博弈及其均衡解,并证明了均衡解的存在性,即着名的纳什均衡。从而揭示了博弈均衡与经济均衡的内在联系。纳什的研究奠定了现代非合作博弈论的基石,后来的博弈论研究基本上都沿着这条主线展开的。然而,纳什天才的发现却遭到冯·诺依曼的断然否定,在此之前他还受到爱因斯坦的冷遇。但是骨子里挑战权威、藐视权威的本性,使纳什坚持了自己的观点,终成一代大师。要不是30多年的严重精神病折磨,恐怕他早已站在诺贝尔奖的领奖台上了,而且也绝不会与其他人分享这一殊荣。
纳什是一个非常天才的数学家,他的主要贡献是1950至1951年在普林斯顿读博士学位时做出的。然而,他的天才发现———非合作博弈的均衡,即“纳什均衡”并不是一帆风顺的。
1948年纳什到普林斯顿大学读数学系的博士。那一年他还不到20岁。当时普林斯顿可谓人杰地灵,大师如云。爱因斯坦、冯·诺依曼、列夫谢茨(数学系主任)、阿尔伯特·塔克、阿伦佐·切奇、哈罗德·库恩、诺尔曼·斯蒂恩罗德、埃尔夫·福克斯……等全都在这里。博弈论主要是由冯·诺依曼(1903—1957)创所立的。他是一位出生于匈牙利的天才的数学家。他不仅创立了经济博弈论,而且发明了计算机。早在20世纪初,塞梅鲁(Zermelo)、鲍罗(Borel)和冯·诺伊曼已经开始研究博弈的准确的数学表达,直到1939年,冯·诺依曼遇到经济学家奥斯卡·摩根斯特恩(Oskar Morgenstern),并与其合作才使博弈论进入经济学的广阔领域。
1944年他与奥斯卡·摩根斯特恩合着的巨作《博弈论与经济行为》出版,标志着现代系统博弈理论的的初步形成。尽管对具有博弈性质的问题的研究可以追溯到19世纪甚至更早。例如,1838年古诺(Cournot)简单双寡头垄断博弈;1883年伯特兰和1925年艾奇沃奇思研究了两个寡头的产量与价格垄断;2000多年前中国着名军事家孙武的后代孙膑利用博弈论方法帮助田忌赛马取胜等等都属于早期博弈论的萌芽,其特点是零星的,片断的研究,带有很大的偶然性,很不系统。冯·诺依曼和摩根斯特恩的《博弈论与经济行为》一书中提出的标准型、扩展型和合作型博弈模型解的概念和分析方法,奠定了这门学科的理论基础。合作型博弈在20世纪50年代达到了巅峰期。然而,诺依曼的博弈论的局限性也日益暴露出来,由于它过于抽象,使应用范围受到很大限制,在很长时间里,人们对博弈论的研究知之甚少,只是少数数学家的专利,所以,影响力很有限。正是在这个时候,非合作博弈———“纳什均衡”应运而生了,它标志着博弈论的新时代的开始!纳什不是一个按部就班的学生,他经常旷课。据他的同学们回忆,他们根本想不起来曾经什么时候和纳什一起完完整整地上过一门必修课,但纳什争辩说,至少上过斯蒂恩罗德的代数拓扑学。斯蒂恩罗德恰恰是这门学科的创立者,可是,没上几次课,纳什就认定这门课不符合他的口味。于是,又走人了。然而,纳什毕竟是一位英才天纵的非凡人物,他广泛涉猎数学王国的每一个分支,如拓扑学、代数几何学、逻辑学、博弈论等等,深深地为之着迷。纳什经常显示出他与众不同的自信和自负,充满咄咄逼人的学术野心。1950年整个夏天纳什都忙于应付紧张的考试,他的博弈论研究工作被迫中断,他感到这是莫大的浪费。殊不知这种暂时的“放弃”,使原来模糊、杂乱和无绪的若干念头,在潜意识的持续思考下,逐步形成一条清晰的脉络,突然来了灵感!这一年的10月,他骤感才思潮涌,梦笔生花。其中一个最耀眼的亮点就是日后被称之为“纳什均衡”的非合作博弈均衡的概念。纳什的主要学术贡献体现在1950年和1951年的两篇论文之中(包括一篇博士论文)。1950年他才把自己的研究成果写成题为“非合作博弈”的长篇博士论文,1950年11月刊登在美国全国科学院每月公报上,立即引起轰动。说起来这全靠师兄戴维·盖尔之功,就在遭到冯·诺依曼贬低几天之后,他遇到盖尔,告诉他自己已经将冯·诺依曼的“最小最大原理”(minimax solution)推到非合作博弈领域,找到了普遍化的方法和均衡点。盖尔听得很认真,他终于意识到纳什的思路比冯·诺伊曼的合作博弈的理论更能反映现实的情况,而对其严密优美的数学证明极为赞叹。盖尔建议他马上整理出来发表,以免被别人捷足先登。纳什这个初出茅庐的小子,根本不知道竞争的险恶,从未想过要这么做。结果还是盖尔充当了他的“经纪人”,代为起草致科学院的短信,系主任列夫谢茨则亲自将文稿递交给科学院。纳什写的文章不多,就那么几篇,但已经足够了,因为都是精品中的精品。这一点也是值得我们深思的。国内提一个教授,要求在“核心的刊物”上发表多少篇文章。按照这个标准可能纳什还不一定够资格。
1996年诺贝尔经济学奖得主莫尔里斯当牛津大学艾奇沃思经济学讲座教授时也没有发表过什么文章,特殊的人才,必须有特殊的选拔办法。
纳什在上大学时就开始从事纯数学的博弈论研究,1948年进入普林斯顿大学后更是如鱼得水。20岁出头已成为闻名世界的数学家。特别是在经济博弈论领域,他做出了划时代的贡献,是继冯·诺依曼之后最伟大的博弈论大师之一。他提出的着名的纳什均衡的概念在非合作博弈理论中起着核心的作用。后续的研究者对博弈论的贡献,都是建立在这一概念之上的。由于纳什均衡的提出和不断完善为博弈论广泛应用于经济学、管理学、社会学、政治学、军事科学等领域奠定了坚实的理论基础。
⑶ 洛必达法则是谁的研究成果
洛必达法其实是约翰·伯努利的研究成果,是在洛必达拜瑞士数学大师约翰.伯努利为师后买走的。
历史上第一本微积分教材大约是1696年, 作者就是那个求解极限非常有用的洛必达法则的作者洛必达 L Hopital。而多年之后, 根据书信往来的记录, 数学家才发现那本书的真正作者, 是Johann Bernouli。也就是伯努利, 那个来自瑞士的人才辈出的伯努利家族。
背后的故事:
故事发生在17世纪的欧洲,数学学科空前繁荣,整个社会表现出对数学的推崇和喜爱。主人公洛必达出生于法国贵族家庭,家境优渥,自幼酷爱数学,并展现出了过人天赋。
后来,洛必达拜瑞士数学大师约翰.伯努利为师,成为其座下弟子。值得一提的是洛必达为此所支付的薪酬是伯努利工资的两倍。后来洛必达找到他:“亲爱的老师啊,你看你家里这么穷,不如把你的文章卖一份给我,你也赚点钱花,我也落得个美名,如何?”伯努利欣然接受:“好啊好啊!我这里还有好几份,你都买走吧!”
于是洛必达在伯努利处陆陆续续买了数份文章,基于这些文章整理出版了《无限小分析》一书,书中提出了着名的算法“洛必达法则”,发表后轰动一时。
⑷ 约翰纳什的传奇一生
约翰·纳什(JohnF Nash),任普林斯顿大学数学系教授。约翰·纳什的数学天分约在14岁展现。1948年获得硕士学位。1950,约翰·纳什获得美国普林斯顿高等研究院的博士学位,是继冯·诺依曼之后最伟大的博弈论大师之一。他提出的着名的纳什均衡的概念在非合作博弈理论中起着核心的作用。由于纳什均衡的提出和不断完善为博弈论广泛应用于经济学、管理学、社会学、政治学、军事科学等领域奠定了坚实的理论基础,1994年因此获得诺贝尔奖经济学奖。因其传奇而坎坷的人生经历,其传记被改编成电影《美丽心灵》,并获得2002年奥斯卡最佳电影。2015年5月24日,约翰·纳什夫妇遇车祸,在美国新泽西州逝世。纳什最重要的理论就是现在广泛出现在经济学教科书上的“纳什均衡”。而“纳什均衡”最着名的一个例子就是“囚徒困境”,大意是:一个案子的两 个嫌疑犯被分开审讯,警官分别告诉两个囚犯,如果两人均不招供,将各被判刑一年;如果你招供,而对方不招供,则你将被判刑三个月,而对方将被判刑十年;如 果两人均招供,将均被判刑五年。于是,两人同时陷入招供还是不招供的两难处境。两个囚犯符合自己利益的选择是坦白招供,原本对双方都有利的策略不招供从而 均被判刑1年就不会出现。这样两人都选择坦白的策略以及因此被判5年的结局被称为“纳什均衡”,也叫非合作均衡。“纳什均衡”是他21岁博士毕业的论文, 也奠定了数十年后他获得诺贝尔经济学奖的基础。
⑸ 约翰·霍兰德的人物简介
约翰·霍兰德1929年生于印第安娜,在俄亥俄州西部长大。小的时候,约翰就对表现出了强烈的求知欲。他的数学和物理都非常好。高三那一年,在全州的数理考试中,他以仅比第一名低两分的成绩获得第三名,并赢得了进入麻省理工学院学习的全额奖学金。从那时起,他就开始了用计算机来模拟自然界生物进化的探索。“这种研究花了他二十年的时间才取得成果,也让人们二十多年以后才开始认识到其重要性”霍兰德的第一个博士学位是计算机科学。他十分着迷于基于程序的人工智能神经网络(以神经元细胞构成网络,借以产生记忆和复杂的行为的想法),因为这种方法和他人造生命智能的思路不谋而合。
就像霍兰德所看到的,生物和计算科学有着紧密地联系。机器可以像动物一样被训练去适应周围的环境。自底向上,“从虚拟的随机状态开始,把自然特性编写到程序中。”一本名为“自然选择的遗传原理”的书改变了霍兰德的生活。在这本书中,进化被视为是引擎的自我适应。“进化就像学习适应环境的一种方式。进化是次代叠加的,而不是只发生在某一生命周期里。”霍兰德认为如果这个原理存在于有机体中,那么也有可能存在于计算机程序中。这就是他所提出的遗传算法。“遗传算法是基于达尔文物种选择理论的问题分析方法。它开始于一定数量的初始点,每一个节点具有随机生成的特征,用一些方法来评估哪些节点的成功率高。成功的节点被合并来生成孩子,孩子因而具有双亲的特征。”这是霍兰德算法高明的一步。“遗传算法在两方面取得了突破:一是它利用进化论的思想来提供强有力的方法去进行计算机函数优化,二是它提供了研究进化论的空间和研究自然现象的独特方法。”
从遗传算法发展出霍兰德的模式定理. 霍兰德发现可以在单个基因应用菲舍原理。
霍兰德被邀请作为圣菲学院的外部教师,这个学院没有全职工作的本部教师。学院就像一个复杂的思想库。“圣菲学院成立于1984年,是一个私立、非营利、多学科的教育与科研机构,致力于创建一种新的科研社区,探索新兴课题。”在这些方面,霍兰德做出的一些最重要的成就。
⑹ 约翰·麦卡锡的人生旅程
1927年9月4日麦卡锡生于美国波士顿一个共产党家庭,父母的工作性质决定全家需不断搬迁,从波士顿迁到纽约,然后又到了洛杉矶。信仰爱尔兰天主教的父亲当过木匠,渔夫和工会组织者,母亲是立陶宛犹太人,在联合通讯社当记者,后来在一家共产党报社工作。麦卡锡从小把自己对科学的兴趣与家庭的政治倾向结合起来。
1948年获得加州理工学院数学学士学位,1951年获得普林斯顿大学数学博士学位。
作为备受尊敬的计算机科学家、认知科学家,麦卡锡在1955年的达特矛斯会议上提出了“人工智能”一词,并被誉为人工智能之父,并将数学逻辑应用到了人工智能的早期形成中。
麦卡锡在1958年发明了LISP语言(该语言至今仍在人工智能领域广泛使用)并于1960年将其设计发表在《美国计算机学会通讯》上。他帮助推动了麻省理工学院的MAC项目。 然而,他在1962年了离开麻省理工学院,前往斯坦福大学并在那里协助建立了斯坦福人工智能实验室,成为MAC项目多年来的一个友好的竞争对手。
他因在人工智能领域的贡献而在1971年获得计算机界的最高奖项图灵奖。
他分别短暂地为普林斯顿大学、斯坦福大学、达特茅斯学院和麻省理工学院供职后,麦卡锡于1962年-2000年底在斯坦福担任教授,退休后成为名誉教授。
他在1991年获得了美国国家科学奖章(National Medal of Science Award),2003年获得富兰克林学院奖章。
约翰·麦卡锡时常在网络论坛上对时事作出右翼倾向的评论。 麦卡锡生于美国波士顿一个共产党家庭,父母的工作性质决定全家需不断搬迁,从波士顿迁到纽约,然后又到了洛杉矶。信仰爱尔兰天主教的父亲当过木匠、渔夫和工会组织者,母亲是立陶宛,犹太人,在联合通讯社(TheFeder?atedPress)当记者,后来在一家共产党报社工作。麦卡锡从小把自己对科学的兴趣与家庭的政治倾向结合起来。麦卡锡在接受采访时说:“我们确信技术的进步对人类有利。我记得小时候读过《十万个为什么》,这是30年代苏联作家伊林(M.Ilin)撰写的通俗科技读物。在美国好像没有这样的书。10至15年前我很高兴得知中国有许多非常早熟的儿童,他们都读过《十万个为什么》。”
麦卡锡说他的童年平平淡淡,实际上在读中学时,他就找到加州理工大学的一份课程清单,自学了大学一年和二年的数学课程。1944年他真的到了这所大学,免修头两年的数学课。1948年9月在读研究生时,他出席了该校主办的“行为的大脑机制西克森研讨会”(Hixon Symposiumon Cerebral Mechanism in Behavior at CalTech)。大数学家、计算机设计大师冯·诺伊曼在会上散发了关于自复制自动机的论文。尽管当时还没有人精确地将机器智能与人的智能联系起来,但诺伊曼的报告却激发了麦卡锡的好奇心。1949年在普林斯顿大学数学系作博士论文时,他决定尝试在机器上模拟人的智能。1955年他联合申农(信息论创立者)、明斯基(人工智能大师,《心智社会》的作者)、罗彻斯特(IBM计算机设计者之一),发起了达特茅斯项目(Dartmouth Project),第二年正式启动,洛克菲勒基金会提供了极有限的资助。现在看来,这个项目不但是人工智能发展史的一个重要事件,也是计算机科学的一个里程碑。正是在1956年,麦卡锡首次提出“人工智能”(artificial intelligence)这一概念。现在看来,那次讨论并没有实质上解决有关智能机的任何具体问题,但它确立了研究目标,使人工智能成为计算机科学中一门独立的经验科学。
1957年巴库斯(John Barkus)及其IBM小组发布了Fortran语言,这是第一个成功的高级语言,使程序设计者从繁琐的汇编语言中解脱出来。卡内基梅龙大学的纽维尔(A.Newell)、司马赫(H.Simon)等提出信息处理语言IPL,麦卡锡则提出表处理语言Lisp。在Fortran中不允许有递归,麦卡锡希望改进它。1960年巴黎会议大家讨论了Algol语言,采纳了麦卡锡的建议,增加了递归和条件表达式。Algol最早接受了Lisp的观念,但不是最后一个。如今的Pascal、C、Ada等都接受了Lisp的创新。但至今,主流程序设计语言仍然没有吸收麦卡锡建议的“评价函数”(eval),认为它很危险。麦卡锡发明Lisp语言,只是把它作为工具,他的目标是制造具有人类智能的机器。Lisp自发明以后,像其他语言一样,发明人失去了对其的控制能力,马库斯和凯(A.Kay,“面向对象程序设计”的创始人)也一样。
1959年麦卡锡发表《具有常识的程序》一文,标志着他向“常识逻辑推理”难题开始宣战。“与所有专门化的理论一样,所有科学也都体现于常识中。当你试图证明这些理论时,你就回到了常识推理,因为常识指导着你的实验。”设想一个旅行者从英国格拉斯哥经过伦敦去莫斯科,计算机程序可以分段处理:从格拉斯哥到伦敦,再从伦敦到莫斯科。但是如果假设此人不幸在伦敦丢失了机票怎么办?当然现实中此人一般不会因此取消原来去莫斯科的计划,他可能会再买一张票。但是预先设计好的模拟程序却不允许如此灵活。因此要发展一种具有常识推理能力的逻辑。
麦卡锡发明了LISP并于1960年将其设计发表在《美国计算机学会通讯》(en:Communications of the ACM)上。他帮助推动了麻省理工学院的MAC项目(en:Project MAC)。然而,他在1962年了离开麻省理工学院,前往斯坦福大学并在那里协助建立了斯坦福人工智能实验室(en:Stanford Artificial Intelligence Laboratory),成为MAC项目多年来的一个友好的竞争对手。
1964年麦卡锡已是斯坦福大学人工智能实验室的主任,他提出了一种称之为“情景演算”(situational calculus)的理论,其中“情景”表示世界的一种状态。当主体(agent)行动时,情景发生变化。主体下一步如何行动取决于他所知道的情景。情景演算的思想吸收了有穷自动机状态转移的概念。在情景演算中,推理不但取决于状态,而且取决于主体关于状态知道些什么。主体知道得越多,了解得越详细,他就会更好地作出决策。这种情景演算理论吸引了许多研究者,但它本身也引起一种问题。在多主体的世界中,与一个主体有关的情景的变化可能还取决于其他主体的行动。这样处理起来十分困难。在常识世界中,我们的决策可能不大受其他主体的影响,当然有时也受。很难说麦卡锡的努力最终是否成功了,但他向通常的“演绎推理”挑战,强调人类智能推理的非单调性(nonmonotonicity),发展状态描述法,在人工智能研究中具有重要意义。麦卡锡试图让机器能像人一样,在某种语境下,进行基本的猜测。但这很难做,即使是人,也常常误解语境。一个有趣的例子是:白宫发言人奥涅尔欢迎新当选的里根总统时说:“您成了Grover Cleveland”(他指的是美国的一个总统)。而里根却微笑着说:“我只在电影中扮演过一次Cleveland。”(里根指的是棒球手Grover Cleveland Alexander)
不管人们对人工智能还有什么偏见,它现在已成为严肃的经验科学,而麦卡锡为这一领域培养了大量人才,他的学生遍及世界。关于人工智能,想了解更多的东西可以直接访问麦卡锡的网页,从“公众理解科学的角度”看,他的网页做得非常棒。他讨论了人工智能与哲学的关系,人工智能的分类及应用领域等。还详细回答了有关人类“可持续发展”的问题。他是技术乐观派,相信人类会有一个美好的未来(他提供了许多论据,可从网上看到)。
⑺ 数学家"约翰纳什"的事迹
约翰·纳什 约翰·纳什生于1928年6月13日。父亲是电子工程师与教师,第一次世界大战的老兵。纳什小时孤独内向,虽然父母对他照顾有加,但老师认为他不合群不善社交。 纳什的数学天分大约在14岁开始展现。他在普林斯顿大学读博士时刚刚二十出头,但他的一篇关于非合作博弈的博士论文和其他相关文章,确立了他博弈论大师的地位。在20世纪50年代末,他已是闻名世界的科学家了。 然而,正当他的事业如日中天的时候,30岁的纳什得了严重的精神分裂症。他的妻子艾利西亚———麻省理工学院物理系毕业生,表现出钢铁一般的意志:她挺过了丈夫被禁闭治疗、孤立无援的日子,走过了惟一儿子同样罹患精神分裂症的震惊与哀伤……漫长的半个世纪之后,她的耐心和毅力终于创下了了不起的奇迹:和她的儿子一样,纳什教授渐渐康复,并在1994年获得诺贝尔奖经济学奖。 如今,纳什已经基本恢复正常,并重新开始科学研究。他现在是普林斯顿大学数学教授,但已经不再任教。学校经济学系经常会举办有关博弈论的论坛,纳什有时候会参加,但是他几乎从不发言,每次都是静静地来,静静地走。 不过,在同事印象里“极不爱说话”的纳什教授将在中国做几场演讲。8月14日至17日在青岛大学,他会以特邀报告人的身份做主题发言,探讨他所奠定学术根基的博弈论的发展趋势。8月21日晚上,在北京国际会议中心,他还将向中国公众做一个公开报告。
⑻ 现代计算机之父——约翰·冯·诺依曼
冯·诺依曼(John von Neumann,1903年12月28日-1957年2月8日),美籍匈牙利数学家、计算机科学家、物理学家,是20世纪最重要的数学家之一。冯·诺依曼是布达佩斯大学数学博士,在现代计算机、博弈论、核武器和生化武器等领域内的科学全才之一,被后人成为“现代计算机之父”、“博弈论之父”。
冯·诺依曼1944年与奥斯卡·摩根斯特恩合着《博弈论与经济行为》,是博弈论学科的奠基性着作。晚年,冯·诺依曼转向研究自动机理论,着有对人脑和计算机系统进行精确分析的着作《计算机与人脑》(1958年),为研制电子数字计算机提供了基础性的方案。其余主要着作有《量子力学的数学基础》(1926)、《经典力学的算子方法》、《连续几何》(1960)等。
冯·诺依曼,着名匈牙利裔美籍数学家、计算机科学家、物理学家和化学家。1903年12月28日生于匈牙利布达佩斯的一个犹太人家庭。
冯·诺依曼的父亲麦克斯年轻有为、风度翩翩,凭着勤奋、机智和善于经营,年轻时就已经跻身于布达佩斯的银行家行列。冯·诺依曼的母亲是一位善良的妇女,贤惠温顺,受过良好教育。
冯·诺依曼从小就显示出数学和记忆方面的天才,从孩提时代起,冯·诺依曼就有过目不饿昂的天赋,六岁时他就能用希腊语同父亲互相开玩笑。六岁时他能心算做八位数除法,八岁时掌握微积分,在十岁时他花费了数月读完了一部四十八卷的世界史,并可以对当前发生的事件和历史上某个事件做出对比,并讨论两者的军事理论和政治策略,十二岁就读懂领会了波莱尔的大作《函数论》要义。
微积分的实质是对无穷小量进行数学分析。人类探索有限、无限以及它们之间的关系由来已久,17世纪由牛顿莱布尼茨发现的微积分,是人类探索无限方面取得的一项激动人心的伟大成果。三百年来,它一直是高等学府的教学内容,随着时代的发展,微积分在不断地改变他的形式,概念变得精确了,基础理论扎实了甚至有不少简明恰当的陈述。但不管怎么说,八岁的儿童要弄懂微积分,仍然是罕见的。上述种种传闻虽然不尽可信,但·冯诺依曼的才智过人,则是与他相识的人们的一直看法。
1929年,冯·诺依曼转任汉堡大学兼职讲师。1930年他首次赴美,成为品丽斯顿大学的客座讲师。善于汇集人才的美国不久就聘冯·诺依曼为客座教授。
冯·诺依曼曾经算过,德国大学里现有的和可以期待的空缺很少,照他典型的推理得出,在三年内可以得到的教授任命是三,而参加竞争的讲师则有40多名。在普林斯顿,冯·诺依曼每到夏季就回欧洲,一直到1933年担任普林斯顿高级研究院教授为止。当时高级研究院聘有六名教授,其中就包括爱因斯坦,而年仅30岁的冯·诺依曼是他们当中最年轻的一位。
1946年,冯·诺依曼开始研究程序编制问题,他是现代数值分析——计算数学的缔造者之一,他首先研究线性代数和算术的数值计算,后来着重研究非线性微分方程的离散化以及稳定问题,并给出误差的估计。他协助发展了一些算法,特别是蒙特卡罗方法。
40年代末,他开始研究自动机理论,研究一般逻辑理论以及自复制系统。在生命的最后时刻他深入比较天然自动机与人工自动机。他逝世后其未完成的手稿在1958年以《计算机与人脑》为名出版。
冯·诺伊曼的主要着作收集在《冯·诺伊曼全集》(6卷,1961)中。
无论在纯粹数学还是在应用数学研究方面,冯·诺依曼都显示了卓越的才能,取得了众多影响深远的重大成果。不断变换研究主题,常常在几种学科交叉渗透中获得成就是他的特色。
简单来说他的精髓贡献是两点:2进制思想与程序内存思想。
冯诺依曼体系结构
说到计算机的发展,就不能不提到美国科学家冯诺依曼。从20世纪初,物理学和电子学科学家们就在争论制造可以进行数值计算的机器应该采用什么样的结构。人们被十进制这个人类习惯的计数方法所困扰。所以,那时以研制模拟计算机)的呼声更为响亮和有力。20世纪30年代中期,美国科学家冯诺依曼大胆的提出,抛弃十进制,采用二进制作为数字计算机的数制基础。同时,他还说预先编制计算程序,然后由计算机来按照人们事前制定的计算顺序来执行数值计算工作。
冯诺依曼理论的要点是:数字计算机的数制采用二进制;计算机应该按照程序顺序执行。
冯诺依曼理论的要点是:数字计算机的数制采用二进制;计算机应该按照程序顺序执行。
人们把冯诺依曼的这个理论称为冯诺依曼体系结构到当前最先进的计算机都采用的是冯诺依曼体系结构。所以冯诺依曼是当之无愧的数字计算机之父。
根据冯诺依曼体系结构构成的计算机,必须具有如下功能:
把需要的程序和数据送至计算机中。
必须具有长期记忆程序、数据、中间结果及最终运算结果的能力。
能够完成各种算术、逻辑运算和数据传送等数据加工处理的能力。
能够根据需要控制程序走向,并能根据指令控制机器的各部件协调操作。
能够按照要求将处理结果输出给用户。
为了完成上述的功能,计算机必须具备五大基本组成部件,包括:
输入数据和程序的输入设备
记忆程序和数据的存储器
完成数据加工处理的运算器
控制程序执行的控制器
输出处理结果的输出设备
《经典力学的算子方法》
《量子力学的数学基础》(1932年)
冯·诺依曼逝世后,未完成的手稿于1958年以《计算机与人脑》为名出版。 他的主要着作收集在六卷《冯·诺依曼全集》中,1961年出版。
另外,冯·诺依曼40年代出版的着作《博弈论和经济行为》(与摩根斯顿合着),使他在经济学和决策科学领域竖起了一块丰碑。他被经济学家公认为博弈论之父。当时年轻的约翰·纳什在普林斯顿求学期间开始研究发展这一领域,并在1994年凭借对博弈论的突出贡献获得了诺贝尔经济学奖。
《程序内存》是诺伊曼的另一杰作。通过对ENIAC的考察,诺伊曼敏锐地抓住了它的最大弱点--没有真正的存储器。ENIAC只在20个暂存器,它的程序是外插型的,指令存储在计算机的其他电路中。这样,解题之前,必需先想好所需的全部指令,通过手工把相应的电路联通。这种准备工作要花几小时甚至几天时间,而计算本身只需几分钟。计算的高速与程序的手工存在着很大的矛盾。
1. 一次,在一个数学聚会上,有一个年轻人兴冲冲的找到他,向他求教一个问题,他看了看就报出了正确答案。年轻人高兴地请求他告诉自己简便方法,并抱怨其他数学家用无穷级数求解的繁琐。冯·诺依曼却说道:“你误会了,我正是用无穷级数求出的。”可见他拥有过人的心算能力。
2.据说有一天,冯·诺依曼心神不定地被同事拉上了牌桌。一边打牌,一边还在想他的课题,狼狈不堪地“输掉”了10元钱。这位同事也是数学家,突然心生一计,想要捉弄一下他的朋友,于是用赢得的5元钱,购买了一本冯·诺依曼撰写的《博弈论和经济行为》,并把剩下的5元贴在书的封面,以表明他 “战胜”了“赌博经济理论家”,着实使冯·诺依曼“好没面子”。
⑼ 约翰·冯·诺依曼的生平
冯·诺依曼,着名匈牙利裔美籍数学家 计算机科学家 物理学家 化学家 。1903年12月28日生于匈牙利布达佩斯的一个犹太人家庭。
冯·诺依曼的父亲麦克斯年轻有为、风度翩翩,凭着勤奋、机智和善于经营,年轻时就已跻身于布达佩斯的银行家行列。冯·诺依曼的母亲是一位善良的妇女,贤慧温顺,受过良好教育。
冯·诺依曼从小就显示出数学和记忆方面的天才,从孩提时代起,冯诺依曼就有过目不忘的天赋,六岁时他就能用希腊语同父亲互相开玩笑。六岁时他能心算做八位数除法,八岁时掌握微积分,在十岁时他花费了数月读完了一部四十八卷的世界史,并可以对当前发生的时间和历史上某个时间做出对比,并讨论两者的军事理论和政治策略 ,十二岁就读懂领会了波莱尔的大作《函数论》要义。
微积分的实质是对无穷小量进行数学分析。人类探索有限、无限以及它们之间的关系由来已久,l7世纪由牛顿莱布尼茨发现的微积分,是人类探索无限方面取得的一项激动人心的伟大成果。三百年来,它一直是高等学府的教学内容,随着时代的发展,微积分在不断地改变它的形式,概念变得精确了,基础理论扎实了,甚至有不少简明恰当的陈述。但不管怎么说,八岁的儿童要弄懂微积分,仍然是罕见的。上述种种传闻虽然不尽可信,但冯·诺伊曼的才智过人,则是与他相识的人们的一致看法。
1914年夏天,约翰进入了大学预科班学习,是年7月28日,奥匈帝国借故向塞尔维亚宣战,揭开了第一次世界大战的序幕。由于战争动乱连年不断,冯·诺依曼全家离开过匈牙利,以后再重返布达佩斯。当然他的学业也会受到影响。但是在毕业考试时,冯·诺依曼的成绩仍名列前茅(除体育和书写外,都是A )。
1921年,冯·诺依曼通过“成熟”考试时,已被大家当作数学家了。他的第一篇论文是和菲克特合写的,那时他还不到18岁。麦克斯由于考虑到经济上原因,请人劝阻年方17的冯·诺依曼不要专攻数学,后来父子俩达成协议,冯·诺依曼便去攻读化学。
其后的四年间,冯·诺依曼在布达佩斯大学注册为数学方面的学生,但并不听课,只是每年按时参加考试,考试都得A 。与此同时,冯·诺依曼进入柏林大学(1921年),1923年又进入瑞士苏黎世联邦工业大学学习化学。1926年他在苏黎世联邦工业大学获得化学方面的大学毕业学位,通过在每学期期末回到布达佩斯大学通过课程考试,他也获得了布达佩斯大学数学博士学位。
冯·诺依曼的这种不参加听课只参加考试的求学方式,当时是非常特殊的,就整个欧洲来说也是完全不合规则的。但是这不合规则的学习方法,却又非常适合冯·诺依曼。
逗留在苏黎世期间,冯·诺依曼常常利用空余时间研读数学、写文章和数学家通信。在此期间冯·诺依曼受到了希尔伯特和他的学生施密特和外尔的思想影响,开始研究数理逻辑。当时外尔和波伊亚两位也在苏黎世,他和他们有过交往。一次外尔短期离开苏黎世,冯·诺依曼还代他上过课。聪慧加上得天独厚的栽培,冯·诺依曼在茁壮地成长,当他结束学生时代的时候,他已经漫步在数学、物理、化学三个领域的某些前沿。
1926年春,冯·诺依曼到哥廷根大学任希尔伯特的助手。1927~1929年,冯·诺依曼在柏林大学任兼职讲师,期间他发表了集合论、代数和量子理论方面的文章。1927年冯·诺依曼到波兰里沃夫出席数学家会议,那时他在数学基础和集合论方面的工作已经很有名气。
1929年,冯·诺依曼转任汉堡大学兼职讲师。1930年他首次赴美,成为普林斯顿大学的客座讲师。善于汇集人才的美国不久就聘冯·诺依曼为客座教授。
冯·诺依曼曾经算过,德国大学里现有的和可以期待的空缺很少,照他典型的推理得出,在三年内可以得到的教授任命数是三,而参加竞争的讲师则有40名之多。在普林斯顿,冯·诺依曼每到夏季就回欧洲,一直到1933年担任普林斯顿高级研究院教授为止。当时高级研究院聘有六名教授,其中就包括爱因斯坦,而年仅30岁的冯·诺依曼是他们当中最年轻的一位。
在高等研究院初创时间,欧洲来访者会发现,那里充满着一种极好的不拘礼节的、浓厚的研究风气。教授们的办公室设置在大学的“优美大厦”里,生活安定,思想活跃,高质量的研究成果层出不穷。可以这样说,那里集中了有史以来最多的有数学和物理头脑的人才。
1930年冯·诺依曼和玛丽达·柯维斯结婚。1935年他们的女儿玛丽娜出生在普林斯顿。冯·诺依曼家里常常举办时间持续很长的社交聚会,这是远近皆知的。1937年冯·诺依曼与妻子离婚,1938年又与克拉拉·丹结婚,并一起回到普林斯顿。丹随冯·诺依曼学数学,后来成为优秀的程序编制家。与克拉拉婚后,冯·诺依曼的家仍是科学家聚会的场所,还是那样殷勤好客,在那里人人都会感到一种聪慧的气氛。
二次大战欧洲战事爆发后,冯·诺依曼的活动超越了普林斯顿,参与了同反法西斯战争有关的多项科学研究计划。1943年起他成了制造原子弹的顾问,战后仍在政府诸多部门和委员会中任职。1954年又成为美国原子能委员会成员。
冯·诺依曼的多年老友,原子能委员会主席斯特劳斯曾对他作过这样的评价:从他被任命到1955年深秋,冯·诺依曼干得很漂亮。他有一种使人望尘莫及的能力,最困难的问题到他手里。都会被分解成一件件看起来十分简单的事情,用这种办法,他大大地促进了原子能委员会的工作。 冯·诺伊曼是二十世纪最重要的数学家之一,在纯粹数学和应用数学方面都有杰出的贡献。他的工作大致可以分为两个时期:1940年以前,主要是纯粹数学的研究:在数理逻辑方面提出简单而明确的序数理论,并对集合论进行新的公理化,其中明确区别集合与类;其后,他研究希尔伯特空间上线性自伴算子谱理论,从而为量子力学打下数学基础;1930年起,他证明平均遍历定理开拓了遍历理论的新领域;1933年,他运用紧致群解决了希尔伯特第五问题;此外,他还在测度论、格论和连续几何学方面也有开创性的贡献;从1936~1943年,他和默里合作,创造了算子环理论,即所谓的冯·诺伊曼代数。
1940年以后,冯·诺伊曼转向应用数学。如果说他的纯粹数学成就属于数学界,那么他在力学、经济学、数值分析和电子计算机方面的工作则属于全人类。第二次世界大战开始,冯·诺伊曼因战事的需要研究可压缩气体运动,建立冲击波理论和湍流理论,发展了流体力学;从1942年起,他同莫根施特恩合作,写作《博弈论和经济行为》一书,这是博弈论(又称对策论)中的经典着作,使他成为数理经济学的奠基人之一。
冯·诺伊曼对世界上第一台电子计算机ENIAC(电子数字积分计算机)的设计提出过建议,1945年3月他在共同讨论的基础上起草ENIAC(电子离散变量自动计算机)设计报告初稿,这对后来计算机的设计有决定性的影响,特别是确定计算机的结构,采用存储程序以及二进制编码等,至今仍为电子计算机设计者所遵循。
1946年,冯·诺依曼开始研究程序编制问题,他是现代数值分析——计算数学的缔造者之一,他首先研究线性代数和算术的数值计算,后来着重研究非线性微分方程的离散化以及稳定问题,并给出误差的估计。他协助发展了一些算法,特别是蒙特卡罗方法。
40年代末,他开始研究自动机理论,研究一般逻辑理论以及自复制系统。在生命的最后时刻他深入比较天然自动机与人工自动机。他逝世后其未完成的手稿在1958年以《计算机与人脑》为名出版。
冯·诺伊曼的主要着作收集在《冯·诺伊曼全集》(6卷,1961)中。
无论在纯粹数学还是在应用数学研究方面,冯·诺依曼都显示了卓越的才能,取得了众多影响深远的重大成果。不断变换研究主题,常常在几种学科交叉渗透中获得成就是他的特色。
最简单的来说,他的精髓贡献是2点:2进制思想与程序内存思想。
回顾20世纪科学技术的辉煌发展时,不能不提及20世纪最杰出的数学家之一的冯·诺依曼。众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步。鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为“计算机之父”。而在经济学方面,他也有突破性成就,被誉为“博弈论之父”。在物理领域,冯·诺依曼在30年代撰写的《量子力学的数学基础》已经被证明对原子物理学的发展有极其重要的价值。在化学方面也有相当的造诣,曾获苏黎世高等技术学院化学系大学学位。与同为犹太人的哈耶克一样,他无愧是上世纪最伟大的全才之一。
冯·诺依曼在数学的诸多领域都进行了开创性工作,并作出了重大贡献。在第二次世界大战前,他主要从事算子理论、集合论等方面的研究。1923年关于集合论中超限序数的论文,显示了冯·诺依曼处理集合论问题所特有的方式和风格。他把集会论加以公理化,他的公理化体系奠定了公理集合论的基础。他从公理出发,用代数方法导出了集合论中许多重要概念、基本运算、重要定理等。特别在1925年的一篇论文中,冯·诺依曼就指出了任何一种公理化系统中都存在着无法判定的命题。
1933年,冯·诺依曼解决了希尔伯特第5问题,即证明了局部欧几里得紧群是李群。1934年他又把紧群理论与波尔的殆周期函数理论统一起来。他还对一般拓扑群的结构有深刻的认识,弄清了它的代数结构和拓扑结构与实数是一致的。他对算子代数进行了开创性工作,并奠定了它的理论基础,从而建立了算子代数这门新的数学分支。这个分支在当代的有关数学文献中均称为冯·诺依曼代数。这是有限维空间中矩阵代数的自然推广。冯·诺依曼还创立了博弈论这一现代数学的又一重要分支。1944年发表了奠基性的重要论文《博弈论与经济行为》。论文中包含博弈论的纯粹数学形式的阐述以及对于实际博弈应用的详细说明。文中还包含了诸如统计理论等教学思想。冯·诺依曼在格论、连续几何、理论物理、动力学、连续介质力学、气象计算、原子能和经济学等领域都作过重要的工作。
冯·诺依曼对人类的最大贡献是对计算机科学、计算机技术、数值分析和经济学中的博弈论的开拓性工作。
一般认为ENIAC机是世界第一台电子计算机,它是由美国科学家研制的,于1946年2月14日在费城开始运行。其实由汤米、费劳尔斯等英国科学家研制的“科洛萨斯”计算机比ENIAC机问世早两年多,于1944年1月10日在布莱奇利园区开始运行。ENIAC机证明电子真空技术可以大大地提高计算技术,不过,ENIAC机本身存在两大缺点:(1)没有存储器;(2)它用布线接板进行控制,甚至要搭接几天,计算速度也就被这一工作抵消了。ENIAC机研制组的莫克利和埃克特显然是感到了这一点,他们也想尽快着手研制另一台计算机,以便改进。
1944年,诺伊曼参加原子弹的研制工作,该工作涉及到极为困难的计算。在对原子核反应过程的研究中,要对一个反应的传播做出“是”或“否”的回答。解决这一问题通常需要通过几十亿次的数学运算和逻辑指令,尽管最终的数据并不要求十分精确,但所有的中间运算过程均不可缺少,且要尽可能保持准确。他所在的洛·斯阿拉莫斯实验室为此聘用了一百多名女计算员,利用台式计算机从早到晚计算,还是远远不能满足需要。无穷无尽的数字和逻辑指令如同沙漠一样把人的智慧和精力吸尽。
被计算机所困扰的诺伊曼在一次极为偶然的机会中知道了ENIAC计算机的研制计划,从此他投身到计算机研制这一宏伟的事业中,建立了一生中最大的丰功伟绩。
1944年夏的一天,正在火车站候车的诺伊曼巧遇戈尔斯坦,并同他进行了短暂的交谈。当时,戈尔斯坦是美国弹道实验室的军方负责人,他正参与ENIAC计算机的研制工作。在交谈中,戈尔斯坦告诉了诺伊曼有关ENIAC的研制情况。具有远见卓识的诺伊曼为这一研制计划所吸引,他意识到了这项工作的深远意义。
冯·诺依曼由ENIAC机研制组的戈尔德斯廷中尉介绍参加ENIAC机研制小组后,便带领这批富有创新精神的年轻科技人员,向着更高的目标进军。1945年,他们在共同讨论的基础上,发表了一个全新的“存储程序通用电子计算机方案”--EDVAC(Electronic Discrete Variable AutomaticCompUter的缩写)。在这过程中,冯·诺依曼显示出他雄厚的数理基础知识,充分发挥了他的顾问作用及探索问题和综合分析的能力。诺伊曼以“关于EDVAC的报告草案”为题,起草了长达101页的总结报告。报告广泛而具体地介绍了制造电子计算机和程序设计的新思想。这份报告是计算机发展史上一个划时代的文献,它向世界宣告:电子计算机的时代开始了。
ENIAC方案明确奠定了新机器由五个部分组成,包括:运算器、控制器、存储器、输入和输出设备,并描述了这五部分的职能和相互关系。报告中,诺伊曼对ENIAC中的两大设计思想作了进一步的论证,为计算机的设计树立了一座里程碑。
设计思想之一是二进制,他根据电子元件双稳工作的特点,建议在电子计算机中采用二进制。报告提到了二进制的优点,并预言,二进制的采用将大简化机器的逻辑线路。
计算机基本工作原理是存储程序和程序控制,它是由世界着名数学家冯·诺依曼提出的。美籍匈牙利数学家冯·诺依曼被称为“计算机之父”。
实践证明了诺伊曼预言的正确性。如今,逻辑代数的应用已成为设计电子计算机的重要手段,在ENIAC中采用的主要逻辑线路也一直沿用着,只是对实现逻辑线路的工程方法和逻辑电路的分析方法作了改进。 冯诺依曼体系机构
说到计算机的发展,就不能不提到美国科学家冯诺依曼。从20世纪初,物理学和电子学科学家们就在争论制造可以进行数值计算的机器应该采用什么样的结构。人们被十进制这个人类习惯的计数方法所困扰。所以,那时以研制模拟计算机的呼声更为响亮和有力。20世纪30年代中期,美国科学家冯诺依曼大胆的提出,抛弃十进制,采用二进制作为数字计算机的数制基础。同时,他还说预先编制计算程序,然后由计算机来按照人们事前制定的计算顺序来执行数值计算工作。
冯诺依曼理论的要点是:数字计算机的数制采用二进制;计算机应该按照程序顺序执行。
人们把冯诺依曼的这个理论称为冯诺依曼体系结构。从ENIAC(ENIVAC并不是冯诺依曼体系)到当前最先进的计算机都采用的是冯诺依曼体系结构。所以冯诺依曼是当之无愧的数字计算机之父。
根据冯诺依曼体系结构构成的计算机,必须具有如下功能:
把需要的程序和数据送至计算机中。
必须具有长期记忆程序、数据、中间结果及最终运算结果的能力。
能够完成各种算术、逻辑运算和数据传送等数据加工处理的能力。
能够根据需要控制程序走向,并能根据指令控制机器的各部件协调操作。
能够按照要求将处理结果输出给用户。
为了完成上述的功能,计算机必须具备五大基本组成部件,包括:
输入数据和程序的输入设备
记忆程序和数据的存储器
完成数据加工处理的运算器
控制程序执行的控制器
输出处理结果的输出设备 程序内存是诺伊曼的另一杰作。通过对ENIAC的考察,诺伊曼敏锐地抓住了它的最大弱点--没有真正的存储器。ENIAC只在20个暂存器,它的程序是外插型的,指令存储在计算机的其他电路中。这样,解题之前,必需先想好所需的全部指令,通过手工把相应的电路联通。这种准备工作要花几小时甚至几天时间,而计算本身只需几分钟。计算的高速与程序的手工存在着很大的矛盾。
针对这个问题,诺伊曼提出了程序内存的思想:把运算程序存在机器的存储器中,程序设计员只需要在存储器中寻找运算指令,机器就会自行计算,这样,就不必每个问题都重新编程,从而大大加快了运算进程。这一思想标志着自动运算的实现,标志着电子计算机的成熟,已成为电子计算机设计的基本原则。
1946年7,8月间,冯·诺依曼和戈尔德斯廷、勃克斯在ENIAC方案的基础上,为普林斯顿大学高级研究所研制IAS计算机时,又提出了一个更加完善的设计报告《电子计算机逻辑设计初探》.以上两份既有理论又有具体设计的文件,首次在全世界掀起了一股“计算机热”,它们的综合设计思想,便是着名的“冯·诺依曼机”,其中心就是有存储程序原则--指令和数据一起存储(存储机)。这个概念被誉为“计算机发展史上的一个里程碑”。它标志着电子计算机时代的真正开始,指导着以后的计算机设计。自然一切事物总是在发展着的,随着科学技术的进步,今天人们又认识到“冯·诺依曼机”的不足,它妨碍着计算机速度的进一步提高,而提出了“非冯·诺依曼机”的设想。
冯·诺依曼还积极参与了推广应用计算机的工作,对如何编制程序及搞数值计算都作出了杰出的贡献。冯·诺依曼于1937年获美国数学会的波策奖;1938年获得博谢纪念奖;1947年获美国总统的功勋奖章、美国海军优秀公民服务奖;1956年获美国总统的自由奖章和费米奖。 冯·诺依曼逝世后,未完成的手稿于1958年以《计算机与人脑》为名出版.他的主要着作收集在六卷《冯·诺依曼全集》中,1961年出版。
另外,冯·诺依曼40年代出版的着作《博弈论和经济行为》,使他在经济学和决策科学领域竖起了一块丰碑。他被经济学家公认为博弈论之父。当时年轻的约翰·纳什在普林斯顿求学期间开始研究发展这一领域,并在1994年凭借对博弈论的突出贡献获得了诺贝尔经济学奖。
⑽ 约翰·巴克斯的简介
约翰·巴克斯(JohnWarnerBackus)(1924年12月3日-2007年3月17日),美国计算机科学家,是全世界第一套高阶语言(高levelLanguage)语言的发明小组组长。他提出了BNF(用来定义形式语言语法的记号法),发明功能levelprogramming这个概念及实践该概念的计划生育语言。被誉为“Fortran 语言之父”.
1924年12月3日生于美国宾夕法尼亚州费城,父亲是阿特拉斯火药公司的员工,后来转职为证券经纪人。巴克斯中学时念宾夕法尼亚州波茨敦市的希尔学校,平时不爱读书,勉强毕业,没有什么过人之处。后来依照父亲的要求,他在维吉尼亚大学修读化学,成绩也不好。第二次世界大战爆发,他便改为参加美国陆军,在乔治亚州服役,后来进入哈弗福德学院(HaverfordCollege)的医学院预科接受医疗训练,九个月后又退出了。在接受医疗训练期间,他被诊断出患有脑部肿瘤,并接受手术治疗。他搬到纽约市,最初打算以无线电技术员为生。在训练过程中,他对数学产生极大兴趣,于是他便在哥伦比亚大学修读学位,于1949年以硕士学位毕业,1950年加入IBM公司工作。巴克斯和同事海尔里克(阁下赫里克)一起成功开发了Speedcoding的程序,适用于浮点数运算。
巴克斯在IBM公司工作了几年,他对于机械式的程式设计感到厌烦,他希望能设计一套新式语言。1953年巴克斯向当时IBM公司董事长卡斯伯特赫德提交了一分备忘录,建议设计一种接近人类语言的编程语言代替机器语言,后来赫德批准了这项计划。1957年4月他所领导13人小组推出全世界第一套高阶电脑语言FORTRAN语言,首次用在IBM704计算机上面,1958年推出的FORTRANⅡ,几年后又推出的FORTRANⅢ,1962年推出的FORTRANⅣ,被称为高级语言之父。六十年代巴克斯转到沃森研究中心,参加了算法语言语言的设计。1977年10月17日日在西雅图举行的含石棉材料年会上获得计算机界最高奖图灵奖,会中他发表了“程序设计能从冯伊曼形式中解脱出来吗?函数式风格及其程序的代数”(?)演说。
巴克斯长期在IBM公司从事计算机研究工作,他在1979年接受INM员工杂志《Think》采访时曾风趣地说,他大部分的软件开发最初的缘由都是因为自己的懒惰。“我不喜欢写程序,所以当时在INM701(一台早期计算机)工作,为计算导弹弹道编写程序,我就开始琢磨开发一个编程系统,可以让编写程序变得简单些”。于是,Fortran应运而生。
1991年退休。1994年美国工程院授予他CharlesStarkDraper奖。2007年3月17日在美国俄勒冈州的家中去世,享年82岁。