当前位置:首页 » 操作系统 » 意图提取算法

意图提取算法

发布时间: 2022-11-21 09:35:06

㈠ 图片特征码提取算法有哪些详细点

图像的特征可分为两个层次,包括低层视觉特征,和高级语义特征。
低层视觉特征包括纹理、颜色、形状三方面。语义特征是事物与事物之间的关系。
纹理特征提取算法有:灰度共生矩阵法,傅里叶功率谱法
颜色特征提取算法有:直方图法,累计直方图法,颜色聚类法等等。
形状特征提取算法有:空间矩特征等等
高级语义提取:语义网络、数理逻辑、框架等方法

㈡ 图像纹理特征提取算法是什么有什么用处

通常使用纹理特征模版进行相关性测量,得到相关系数,设定阈值,大于阈值者导致提取。纹理特征的提取通常用于图像识别

㈢ 网页正文及内容图片提取算法

备份自: http://blog.rainy.im/2015/09/02/web-content-and-main-image-extractor/

问题: 如何提取任意(尤其是新闻、资讯类)网页的正文内容,提取与文章内容相关的图片,源码可见: extractor.py 。

抓取单个网站网页内容时通常采用正则匹配的方式,但不同网站之间结构千奇百怪,很难用统一的正则表达式进行匹配。 《基于行块分布函数的通用网页正文抽取算法》 的作者总结了一般从网页中提取文章正文的方法,提出基于行块分布的正文抽取算法,并给出了 PHP 、Java 等实现。这一算法的主要原理基于两点:

算法步骤如下:

以上算法基本可以应对大部分(中文)网页正文的提取,针对有些网站正文图片多于文字的情况,可以采用保留 <img> 标签中图片链接的方法,增加正文密度。目前少量测试发现的问题有:1)文章分页或动态加载的网页;2)评论长度过长喧宾夺主的网页。

㈣ 对一张图片进行特征提取的具体算法和程序。越具体越好。感谢,例如算出图像的形状长宽高之类的。

对一张图片进行特征提取的具体算法和程序,越具体越好,感谢例如算出图像的形状,长宽之类的,我觉得对图片特征提取的体术法并没有什么具体算法,因为每个相机照出来的图片,它的放大缩小都是不一样的,不可能从一个图片算出一个图像的长宽高,只能够算出一个大概的长宽高,如果要算出非常准确的茶膏,只能用一些红外测距仪,还有某些特定的仪器才能构测量出,一些建筑物的长宽高不能够从一个图片上面去算出一个建筑物的长宽高的是根本没法算出来的。

㈤ 手势识别用什么图像特征提取算法

《基于计算机视觉的手势识别研究》中提到了多尺度模型,它就是采用此模型提取手势的指尖的数量和位置,将指尖和掌心连线,采用距离公式计算各指尖到掌心的距离,再采用反余弦公式计算各指尖与掌心连线间的夹角,将距离和夹角作为选择的特征。对于静态手势识别而言,边缘信息是比较常用的特征。中采用的HDC提取关键点的识别算法,基于用八方向邻域搜索法提取出手势图像的边缘,把图像的边缘看成一条曲线,然后对曲线进行处理。

㈥ 各类场景应用中涉及的AI算法汇总

整理了各类场景应用中AI算法

一、图像CV

内容安全,目标检测,图像识别,智能视觉生产,图像搜索,图像分割,物体检测,图像分类,图像标签,名人识别,概念识别,场景识别,物体识别,场景分析,智能相册,内容推荐,图库管理,网红人物识别,明星人物识别,图像搜索,商品图片搜索,版权图片搜索,通用图片搜索,车牌识别,垃圾分类,车辆检测,菜品识别,车型识别,犬类识别,实例分割,风格迁移,智能填充,智能识图,拍照搜商品,精准广告投放,电商导购,图像分析,图像理解,图像处理,图像质量评估,场景识别,物体识别,场所识别,图像自训练平台,图像分类,目标检测,图像分割,关键点检测,图像生成,场景文字识别,度量学习,图像识别,图像比对,图像分类使用手册,图像分类API文档目标检测使用手册,目标检测API文档Logo检测使用手册,Logo检测API文档,通用图片搜索,车牌识别,垃圾分类,车辆检测,车型识别,犬类识别,实例分割,风格迁移,智能填充,车牌识别,相册聚类,场景与物体识别,无限天空,图像识别引擎,黄色图片识别,暴力图像识别,工业轮胎智能检测,肋骨骨折识别,显微识别,图像处理,广告识别,人脸算法,人体算法,图像识别,图像增强,OCR,图像处理,ZoomAI,智能贴图,智能制作,质量评价,图像识别,智能鉴黄,图像识别,实时手写识别,唇语识别,通用文字识别,手写文字识别,图像技术,图像识别,图像审核,图像搜索,图像增强,图像特效,车辆分析,图像生成,绘画机器人独家,动漫化身独家,像素风独家,超清人像独家,图像融合,换脸技术,神奇变脸,图像风格化,证件照生成,线稿图像识别,宝宝检测,图像分类,圉像深度估计,天空分割,食物分割,猫狗脸技术,食物识别独家,图像美学评分,车辆分析,车型识别,车型识别(含指导价),车型识别(含配置参数),车标识别,人脸识别(活体),车牌识别,表情识别,安全帽识别,计算机影像,计算机视觉,聚焦光学字符识别、人脸识别、质检、感知、理解、交互,图像视频分析,Logo检测,内容审核,智能批改,笔记评估,思维导图评估,物体检测,物体识别。

二、人脸、体态、眼瞳、声音、指纹

人脸分割人脸识别,无,人体分析HAS,识别人的年龄,性别,穿着信息,客流统计分析,智能客服,热点区域分析,人体检测,人脸口罩识别,人脸对比,人脸搜索,人脸检测与属性分析,人脸活体检测,人体关键点检测,行人重识别,细粒度人像分割,人像分割,人脸解析,3D人体姿态估计,人脸融合,人脸识别,换脸甄别,人脸支付,人脸核身,人像变换,人脸试妆,人脸融合,人体分析,手势识别,人脸验证与检索,人脸比对,人脸比对sensetime,人脸水印照比对,静默活体检测,静默活体检测sensetime,人脸检测和属性分析,人脸特征分析tuputech,配合式活体检测,人脸安防,计算机视觉,智能应用服务,人脸查询人脸分析人脸统计名单库管理人脸布控,人脸应用,人体应用,人体查询,车辆查询车辆分析车辆统计车辆布控车辆名单库管理,车辆应用,人脸图像识别人体图像识别车辆图像识别,图像识别,图像比对,人脸比对,人体检测,人脸口罩识别,人脸对比,人脸搜索,人脸检测与属性分析,人脸活体检测,人体关键点检测,行人重识别,细粒度人像分割,人像分割,人脸解析,3D人体姿态估计,人脸融合,人脸识别,人脸检测,人脸比对,人脸搜索,人脸关键点,稠密关键点,人脸属性,情绪识别,颜值评分,视线估计,皮肤分析,3D人脸重建,面部特征分析人体识别,人体检测,人体关键点,人体抠像,人体属性,手势识别人像处理,美颜美型,人脸融合,滤镜,声纹识别支付,语音合成,语音合成,声纹识别,语音唤醒,人脸识别引擎,摄像头人脸识别,图片人脸检测,身份识别,人脸识别,人脸属性,人体识别,声纹识别,衣服检索及聚类,语音分析,声纹识别,说话人归档,人脸和人体识别,人脸检测,手势识别,人脸与人体识别,人脸识别云服务,人脸识别私有化,人脸离线识别SDK,人脸实名认证,人像特效,人体分析,人脸技不,皮肤分析独家,头部分割,宏观人脸分析,人脸关键点检测,微观人脸分析独家,头发分析独家,五官分割,头发分割人体技术,人体外轮廓点检测独家,精细化人像抠图,人体框检测,肢体关键点检测,人像分割,服饰识别,手势识别,皮肤分割,人脸,说话人识别,人脸检测识别,人脸1:1比对,人脸检测,AI人脸/人形车辆,大数据人像图片防伪,QoS保障,CDN,表情识别,举手动作识别,人脸检测,网络切片,边缘计算,人脸分析,人脸检测,人脸搜索,人体分析,手势识别,着装检测,人脸识别,行为检测,人脸识别,人形检测,行为分析,人脸检测,人脸跟踪,人脸比对,人脸查找,人脸属性分析,活体检测,声音指纹,声纹识别。

三、视频

视频分割、视频处理、视频理解、智能视觉、多媒体,视频内容分析,人体动作监控,视频分类,智能交通,人/动物轨迹分析,目标计数,目标跟踪,视频编辑-,精彩片段提取,新闻视频拆分,视频摘要,视频封面,视频拆条,视频标签-,视频推荐,视频搜索,视频指纹-,数字版权管理,广告识别,视频快速审核,视频版权,视频查重,视频换脸,车辆解析, 体育 视频摘要,视频内容分析,颜色识别,货架商品检测, 时尚 搭配,危险动作识别,无,无,视频,视频换脸,车辆解析, 体育 视频摘要,视频内容分析,颜色识别,货架商品检测, 时尚 搭配,危险动作识别,菜品识别,视频识别引擎,结肠息肉检测,胃镜评估系统,视频标签,场景识别,客流分析,手势识别,视频技术,短视频标签,视觉看点识别,动态封面图自动生成,智能剪辑,新闻拆条,智能插帧,视频技术,多模态媒资检索公测中,媒体内容分析,媒体内容审核,视频生成,视频动作识别,

四、ocr文字识别

手写识别,票据识别,通用文档,通用卡证,保险智能理赔,财税报销电子化,证照电子化审批,票据类文字识别,行业类文字识别,证件类文字识别,通用类文字识别,通用文字识别,驾驶证识别,身份证识别,增值税发票识别,行驶证识别,营业执照识别,银行卡识别,增值税发票核验,营业执照核验,智能扫码,行业文档识别, 汽车 相关识别,票据单据识别,卡证文字识别,通用文字识别,手写文字识别,印刷文字识别,银行卡识别,名片识别,身份证识别intsig,营业执照识别intsig,增值税发票识别intsig,拍照速算识别,公式识别,指尖文字识别,驾驶证识别JD,行驶证识别JD,车牌识别JD,身份证识别,增值税发票识别,营业执照识别,火车票识别,出租车发票识别,印刷文字识别(多语种),印刷文字识别(多语种)intsig内容审核,色情内容过滤,政治人物检查,暴恐敏感信息过滤,广告过滤,OCR自定义模板使用手册,OCR自定义模板API文档,通用文字识别,驾驶证识别,身份证识别,增值税发票识别,行驶证识别,营业执照识别,银行卡识别,身份证识别,驾驶证识别,行驶证识别,银行卡识别,通用文字识别,自定义模板文字识别,文字识别引擎,身份证识别,图片文字识别,通用文字识别,身份证识别,名片识别,光学字符识别服务,通用文字识别,手写体文字识别,表格识别,整题识别(含公式),购物小票识别,身份证识别,名片识别,自定义模板文字识别,文字识别,通用文字识别,银行卡识别,身份证识别,字幕识别,网络图片识别, 游戏 直播关键字识别,新闻标题识别,OCR文字识别,通用场景文字识别,卡证文字识别,财务票据文字识别,医疗票据文字识别, 汽车 场景文字识别,教育场景文字识别,其他场景文字识别,iOCR自定义模板文字识别,通用类OCR,通用文本识别(中英)通用文本识别(多语言)通用表格识别,证照类OCR,身份证社保卡户口本护照名片银行卡结婚证离婚证房产证不动产证,车辆相关OCR,行驶证驾驶证车辆合格证车辆登记证,公司商铺类OCR,商户小票税务登记证开户许可证营业执照组织机构代码证,票据类OCR,增值税发票增值税卷票火车票飞机行程单出租车发票购车发票智能技术,票据机器人证照机器人文本配置机器人表格配置机器人框选配置机器人,文字识别,行驶证识别,驾驶证识别,表单识别器,通用文本,财务票据识别,机构文档识别,个人证件识别,车辆相关识别,通用表格,印章识别,财报识别,合同比对,识别文字识别,签名比对,OCR识别,教育OCR,印刷识别,手写识别,表格识别,公式识别,试卷拆录

五、自然语言NPL

文本相似度,文本摘要,文本纠错,中心词提取,文本信息抽取,智能文本分类,命名实体,词性标注,多语言分词,NLP基础服务,地址标准化,商品评价解析智能短信解析,机器阅读理解,金融研报信息识别,法律案件抽取,行业问答推理,行业知识图谱构建,文本实体关系抽取,搜索推荐,知识问答,短文本相似度,文本实体抽取, 情感 倾向分析,兴趣画像匹配,文本分类-多标签,文本分类-单标签,定制自然语言处理,语言生成,语言理解,自然语言处理基础,文本摘要,数据转文字,文本生成,智能问答系统,内容推荐,评价分析,文本分类,对话理解,意图理解, 情感 分析,观点抽取,中文分词,短文本相似度,关键词提取,词向量,命名实体,识别依存,句法分析, 情感 分析,评论观点抽取,短文本相似度,机器翻译,词法分析,词义相似度,词向量,句法分析,文本分类,短语挖掘,闲聊,文本流畅度,同义词,聚类,语言模型填空,新闻热词生成,机器阅读理解,商品信息抽取,词法分析, 情感 分析,关键词提取,用户评论分析,资讯热点挖掘,AIUI人机交互,文本纠错,词法分析,依存句法分析,语义角色标注,语义依存分析(依存树),语义依存分析(依存图), 情感 分析,关键词提取,NLP能力生产平台,NLP基础技术,中文词法分析-LAC,词向量—Word2vec,语言模型—Language_model,NLP核心技术, 情感 分析、文本匹配、自然语言推理、词法分析、阅读理解、智能问答,信息检索、新闻推荐、智能客服, 情感 分析、文本匹配、自然语言推理、词法分析、阅读理解、智能问答,机器问答、自然语言推断、 情感 分析和文档排序,NLP系统应用,问答系统对话系统智能客服,用户消费习惯理解热点话题分析舆情监控,自然语言处理,文本分类使用手册,文本分类API文档, 情感 分析,评论观点抽取,短文本相似度,机器翻译,词法分析,词义相似度,词向量,句法分析,文本分类,短语挖掘,闲聊,文本流畅度,同义词,聚类,语言模型填空,新闻热词生成,机器阅读理解,商品信息抽取智能创作,智能写作,搭配短文,种草标题,卖点标题,社交电商营销文案,自然语言处理能力,基础文本分析,分词、词性分析技术,词向量表示,依存句法分析,DNN语言模型,语义解析技术,意图成分识别, 情感 分析,对话情绪识别,文本相似度检测,文本解析和抽取技术,智能信息抽取,阅读理解,智能标签,NLG,自动摘要,自动写文章,语言处理基础技术,文本审核, 情感 分析,机器翻译,智能聊天,自然语言,基于标题的视频标签,台词看点识别,意图识别,词法分析,相关词,舆情分析,流量预测,标签技术,自然语言处理,语义对话,自然语言处理,车型信息提取,关键词提取,语义理解,语义相似度,意图解析,中文词向量,表示依存,句法分析,上下文理解,词法分析,意图分析,情绪计算,视觉 情感 ,语音 情感 , 情感 分析,沉浸式阅读器,语言理解,文本分析,自然语言处理,在线语音识别,自然语言理解火速上线中, 情感 判别,语义角色标注,依存句法分析,词性标注,实体识别,中文分词,分词,

6、知识图谱

知识图谱,药学知识图谱,智能分诊,腾讯知识图谱,无,药学知识图谱,智能分诊,知识理解,知识图谱Schema,图数据库BGraph,知识图谱,语言与知识,语言处理基础技术,语言处理应用技术,知识理解,文本审核,智能对话定制平台,智能文档分析平台,智能创作平台,知识图谱,实体链接,意图图谱,识别实体,逻辑推理,知识挖掘,知识卡片

7、对话问答机器人

智能问答机器人,智能语音助手,智能对话质检,智能话务机器人,无,电话机器人,NeuHub助力京东智能客服升级,腾讯云小微,智能硬件AI语音助手,对话机器人,无,问答系统对话系统智能客服,Replika对话技术,客服机器人,智能问答,智能场景,个性化回复,多轮交互,情绪识别,智能客服,金融虚拟客服,电话质检,AI语音交互机器人,中移云客服·智能AI外呼,人机对话精准语义分析

8、翻译

协同翻译工具平台,电商内容多语言工具,文档翻译,专业版翻译引擎,通用版翻译引擎,无,机器翻译,无,机器翻译,音视频字幕平台,机器翻译,机器翻译niutrans,文本翻译,语音翻译,拍照翻译,机器翻译,机器翻译,文本翻译,语音翻译,通用翻译,自然语言翻译服务,文本翻译,图片翻译,语音翻译,实时语音翻译,文档翻译(开发版,机器翻译,文本翻译,语音翻译,拍照翻译,机器翻译实时长语音转写,录音文件长语音转写,翻译工具,机器翻译火速上线中

9、声音

便携智能语音一体机,语音合成声音定制,语音合成,一句话识别,实时语音识别录音文件识别,客服电话,语音录入,语音指令,语音对话,语音识别,科学研究,安防监控,声音分类,语音合成,语音识别,实时语音转写,定制语音合成,定制语音识别,语音合成,语音合成声音定制,离线语音合成,短语音识别,录音文件识别,声纹识别,离线语音识别,实时语音识别,呼叫中心短语音识别,呼叫中心录音文件识别,呼叫中心实时语音识别,语音识别,语音合成,声纹识别,语音识别,语音听写,语音转写,实时语音转写,语音唤醒,离线命令词识别,离线语音听写,语音合成,在线语音合成,离线语音合成,语音分析,语音评测,性别年龄识别,声纹识别,歌曲识别,A.I.客服平台能力中间件,语音识别,语音交互技术,语音合成,语音合成声音定制,离线语音合成,短语音识别,录音文件识别,声纹识别,离线语音识别,实时语音识别,呼叫中心短语音识别,呼叫中心录音文件识别,呼叫中心实时语音识别,远场语音识别,语音识别,一句话识别,实时语音识别,录音文件识别,语音合成,实时语音识别,长语音识别,语音识别,语音合成,波束形成,声源定位,去混响,降噪,回声消除,分布式拾音,语音识别,语音唤醒,语音合成,声纹识别,智能语音服务,语音合成,短语音识别,实时语音识别,语音理解与交互,离线唤醒词识别,语音识别,一句话识别,实时语音识别,录音文件识别,电话语音识别,语音唤醒,离线语音识别,离线命令词识别,远场语音识别,语音合成,通用语音合成,个性化语音合成,语音技术,短语音识别,实时语音识别,音频文件转写,在线语音合成,离线语音合成,语音自训练平台,语音交互,语音合成,语音识别,一句话识别,实时短语音识别,语音合成,语音唤醒,本地语音合成,语音翻译,语音转文本,短语音听写,长语音转写,实时语音转写,语音内容审核,会议超极本,语音交互技术,语音识别,语义理解,语音合成,音频转写,音视频类产品,语音通知/验证码,订单小号,拨打验证,点击拨号,数据语音,统一认证,语音会议,企业视频彩铃,语音识别,语音文件转录,实时语音识别,一句话语音识别,语音合成,通用语音合成,个性化语音合成,语音评测,通用语音评测,中英文造句评测,在线语音识别,语音识别,语音唤醒,语音合成,语音合成,语音识别,语音听写,语音转写,短语音转写(同步),语音识别,语音 情感 识别

十、数据挖掘AI硬件

算法类型:包括二分类、多分类和回归,精准营销,表格数据预测,销量预测,交通流量预测,时序预测,大数据,无,机器学习使用手册,机器学习API文档,大数据处理,大数据传输,数据工厂,大数据分析,数据仓库,数据采集与标注,数据采集服务,数据标注服务,AI开发平台,全功能AI开发平台BML,零门槛AI开发平台EasyDL,AI硬件与平台,GPU云服务器,机器人平台,度目视频分析盒子,度目AI镜头模组,度目人脸应用套件,度目人脸抓拍机,人脸识别摄像机,昆仑AI加速卡,智能预测,购车指数,数据科学虚拟机,平台效率,云与AI,抗DDoS,天盾,网站漏洞扫描,网页防篡改,入侵检测防护,弹性云服务器,对象存储服务,云专线(CDA,AI计算机平台—360net深度学习基础模型,AI算法训练适配主流AI框架

十一、其他

内容审核,智能鉴黄,特定人物识别,通用图片审核,文本智能审核,广告检测,Logo检测,商品理解,拍照购,商品图片搜索,通用商品识别,疫情物资识别,酒标识别,细分市场划分,品牌竞争力分析,老品升级,新品定制,商品竞争力分析,商品销量预测,商品营销,用户评论占比预测,商品命名实体识别,商品颜色识别,强化学习,智能地图引擎,内容审核,智能鉴黄,特定人物识别,通用图片审核,文本智能审核,广告检测,Logo检测商品理解,拍照购,商品图片搜索,通用商品识别,疫情物资识别,酒标识别,细分市场划分,品牌竞争力分析,老品升级,新品定制,商品竞争力分析,商品销量预测,商品营销,用户评论占比预测,商品命名实体识别,商品颜色识别,个性化与推荐系统,推荐系统,舆情分析,舆情标签,智慧教育,智能语音评测,拍照搜题,题目识别切分,整页拍搜批改,作文批改,学业大数据平台,文档校审系统,会议同传系统,文档翻译系统,视频翻译系统,教育学习,口语评测,朗读听书,增强现实,3D肢体关键点SDK,美颜滤镜SDK,短视频SDK,基础服务,私有云部署,多模态交互,多模态 情感 分析,多模态意图解析,多模态融合,多模态语义,内容审查器,Microsoft基因组学,医学人工智能开放平台,数据查验接口,身份验证(公安简项),银行卡验证,发票查验,设备接入服务Web/H5直播消息设备托管异常巡检电话提醒,音视频,视频监控服务云广播服务云存储云录制,司乘体验,智能地图引擎,消息类产品,视频短信,短信通知/验证码,企业挂机彩信,来去电身份提示,企业固话彩印,模板闪信,异网短信,内容生产,试卷拆录解决方案,教学管理,教学质量评估解决方案,教学异常行为监测,授课质量分析解决方案,路况识别,人车检测,视觉SLAM,高精地图,免费SDK,智能诊后随访管理,用药管家,智能预问诊,智能导诊,智能自诊,智能问药,智能问答,裁判文书近义词计算,法条推荐,案由预测,

㈦ k-means聚类算法怎么提取图像特征

一,K-Means聚类算法原理
k-means 算法接受参数 k
;然后将事先输入的n个数据对象划分为
k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对
象”(引力中心)来进行计算的。
K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。
假设要把样本集分为c个类别,算法描述如下:
(1)适当选择c个类的初始中心;
(2)在第k次迭代中,对任意一个样本,求其到c个中心的距离,将该样本归到距离最短的中心所在的类;
(3)利用均值等方法更新该类的中心值;
(4)对于所有的c个聚类中心,如果利用(2)(3)的迭代法更新后,值保持不变,则迭代结束,否则继续迭代。
该算法的最大优势在于简洁和快速。算法的关键在于初始中心的选择和距离公式。

㈧ 图像的特征提取都有哪些算法

常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。

一 颜色特征

(一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。

(二)常用的特征提取与匹配方法

(1) 颜色直方图

其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。

最常用的颜色空间:RGB颜色空间、HSV颜色空间。

颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。

(2) 颜色集

颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从 RGB颜色空间转化成视觉均衡的颜色空间(如 HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系

(3) 颜色矩

这种方法的数学基础在于:图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(mean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。

(4) 颜色聚合向量

其核心思想是:将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。

(5) 颜色相关图

二 纹理特征

(一)特点:纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局部的偏差而无法匹配成功。作为一种统计特征,纹理特征常具有旋转不变性,并且对于噪声有较强的抵抗能力。但是,纹理特征也有其缺点,一个很明显的缺点是当图像的分辨率变化的时候,所计算出来的纹理可能会有较大偏差。另外,由于有可能受到光照、反射情况的影响,从2-D图像中反映出来的纹理不一定是3-D物体表面真实的纹理。

例如,水中的倒影,光滑的金属面互相反射造成的影响等都会导致纹理的变化。由于这些不是物体本身的特性,因而将纹理信息应用于检索时,有时这些虚假的纹理会对检索造成“误导”。

在检索具有粗细、疏密等方面较大差别的纹理图像时,利用纹理特征是一种有效的方法。但当纹理之间的粗细、疏密等易于分辨的信息之间相差不大的时候,通常的纹理特征很难准确地反映出人的视觉感觉不同的纹理之间的差别。

(二)常用的特征提取与匹配方法

纹理特征描述方法分类

(1)统计方法统计方法的典型代表是一种称为灰度共生矩阵的纹理特征分析方法Gotlieb 和 Kreyszig 等人在研究共生矩阵中各种统计特征基础上,通过实验,得出灰度共生矩阵的四个关键特征:能量、惯量、熵和相关性。统计方法中另一种典型方法,则是从图像的自相关函数(即图像的能量谱函数)提取纹理特征,即通过对图像的能量谱函数的计算,提取纹理的粗细度及方向性等特征参数

(2)几何法

所谓几何法,是建立在纹理基元(基本的纹理元素)理论基础上的一种纹理特征分析方法。纹理基元理论认为,复杂的纹理可以由若干简单的纹理基元以一定的有规律的形式重复排列构成。在几何法中,比较有影响的算法有两种:Voronio 棋盘格特征法和结构法。

(3)模型法

模型法以图像的构造模型为基础,采用模型的参数作为纹理特征。典型的方法是随机场模型法,如马尔可夫(Markov)随机场(MRF)模型法和 Gibbs 随机场模型法

(4)信号处理法

纹理特征的提取与匹配主要有:灰度共生矩阵、Tamura 纹理特征、自回归纹理模型、小波变换等。

灰度共生矩阵特征提取与匹配主要依赖于能量、惯量、熵和相关性四个参数。Tamura 纹理特征基于人类对纹理的视觉感知心理学研究,提出6种属性,即:粗糙度、对比度、方向度、线像度、规整度和粗略度。自回归纹理模型(simultaneous auto-regressive, SAR)是马尔可夫随机场(MRF)模型的一种应用实例。

三 形状特征

(一)特点:各种基于形状特征的检索方法都可以比较有效地利用图像中感兴趣的目标来进行检索,但它们也有一些共同的问题,包括:①目前基于形状的检索方法还缺乏比较完善的数学模型;②如果目标有变形时检索结果往往不太可靠;③许多形状特征仅描述了目标局部的性质,要全面描述目标常对计算时间和存储量有较高的要求;④许多形状特征所反映的目标形状信息与人的直观感觉不完全一致,或者说,特征空间的相似性与人视觉系统感受到的相似性有差别。另外,从 2-D 图像中表现的 3-D 物体实际上只是物体在空间某一平面的投影,从 2-D 图像中反映出来的形状常不是 3-D 物体真实的形状,由于视点的变化,可能会产生各种失真。

(二)常用的特征提取与匹配方法

Ⅰ几种典型的形状特征描述方法

通常情况下,形状特征有两类表示方法,一类是轮廓特征,另一类是区域特征。图像的轮廓特征主要针对物体的外边界,而图像的区域特征则关系到整个形状区域。

几种典型的形状特征描述方法:

(1)边界特征法该方法通过对边界特征的描述来获取图像的形状参数。其中Hough 变换检测平行直线方法和边界方向直方图方法是经典方法。Hough 变换是利用图像全局特性而将边缘像素连接起来组成区域封闭边界的一种方法,其基本思想是点—线的对偶性;边界方向直方图法首先微分图像求得图像边缘,然后,做出关于边缘大小和方向的直方图,通常的方法是构造图像灰度梯度方向矩阵。

(2)傅里叶形状描述符法

傅里叶形状描述符(Fourier shape descriptors)基本思想是用物体边界的傅里叶变换作为形状描述,利用区域边界的封闭性和周期性,将二维问题转化为一维问题。

由边界点导出三种形状表达,分别是曲率函数、质心距离、复坐标函数。

(3)几何参数法

形状的表达和匹配采用更为简单的区域特征描述方法,例如采用有关形状定量测度(如矩、面积、周长等)的形状参数法(shape factor)。在 QBIC 系统中,便是利用圆度、偏心率、主轴方向和代数不变矩等几何参数,进行基于形状特征的图像检索。

需要说明的是,形状参数的提取,必须以图像处理及图像分割为前提,参数的准确性必然受到分割效果的影响,对分割效果很差的图像,形状参数甚至无法提取。

(4)形状不变矩法

利用目标所占区域的矩作为形状描述参数。

(5)其它方法

近年来,在形状的表示和匹配方面的工作还包括有限元法(Finite Element Method 或 FEM)、旋转函数(Turning Function)和小波描述符(Wavelet Descriptor)等方法。

Ⅱ 基于小波和相对矩的形状特征提取与匹配

该方法先用小波变换模极大值得到多尺度边缘图像,然后计算每一尺度的 7个不变矩,再转化为 10 个相对矩,将所有尺度上的相对矩作为图像特征向量,从而统一了区域和封闭、不封闭结构。

四 空间关系特征

(一)特点:所谓空间关系,是指图像中分割出来的多个目标之间的相互的空间位置或相对方向关系,这些关系也可分为连接/邻接关系、交叠/重叠关系和包含/包容关系等。通常空间位置信息可以分为两类:相对空间位置信息和绝对空间位置信息。前一种关系强调的是目标之间的相对情况,如上下左右关系等,后一种关系强调的是目标之间的距离大小以及方位。显而易见,由绝对空间位置可推出相对空间位置,但表达相对空间位置信息常比较简单。

空间关系特征的使用可加强对图像内容的描述区分能力,但空间关系特征常对图像或目标的旋转、反转、尺度变化等比较敏感。另外,实际应用中,仅仅利用空间信息往往是不够的,不能有效准确地表达场景信息。为了检索,除使用空间关系特征外,还需要其它特征来配合。

(二)常用的特征提取与匹配方法
提取图像空间关系特征可以有两种方法:一种方法是首先对图像进行自动分割,划分出图像中所包含的对象或颜色区域,然后根据这些区域提取图像特征,并建立索引;另一种方法则简单地将图像均匀地划分为若干规则子块,然后对每个图像子块提取特征,并建立索引。

㈨ 图像的特征提取都有哪些算法

图像的特征可分为两个层次,包括低层视觉特征,和高级语义特征。低层视觉特征包括纹理、颜色、形状三方面。语义特征是事物与事物之间的关系。纹理特征提取算法有:灰度共生矩阵法,傅里叶功率谱法颜色特征提取算法有:直方图法,累计直方图法,颜色聚类法等等。形状特征提取算法有:空间矩特征等等高级语义提取:语义网络、数理逻辑、框架等方法

㈩ 生活中的人工智能之搜索和推荐算法

姓名:陈心语  学号:21009102266 书院:海棠1号书院

转自: 人工智能在搜索中的应用_u014033218的专栏-CSDN博客

人工智能在搜索的应用和实践_qq_40954115的博客-CSDN博客

【嵌牛导读】日常生活中的搜索和推荐算法也与人工智能有所关联,让我们一起来看看吧!

【嵌牛鼻子】人工智能运用于搜索和推荐算法。

【嵌牛提问】人工智能在搜索和推荐算法中有什么运用呢?

【嵌牛正文】

智能交互

智能交互有三个方面的这部分组成,第一个就是Query推荐,这是比较古老的课题;第二个做智能导购,这是现在正在做的一个原形,后面我会讲为什么做智能导购;第三个内容的展示和个性化的创意。就是说你把商品怎么展示给用户,也是我们认为是交互的一部分。

第一个是Query推荐,这个问题怎么来抽象呢?Query推荐是一个用户当前Query下面我们怎么推荐其它Query,这是我们相关搜索一样的。我们推荐这样的一个Query以后,如果用户一旦点了其中的一个Query,用户的状态就会发生变化,从当前的Query跳到另外一个Query,这是用户状态的变化。第二个就是说我们怎么评价我们推荐的Query的好坏,它由几部分组成,一个Query有没有被点,第二个就是说推荐Query里面,它的SRP页会不会点,因为Query推荐本质上不是Query推荐做的最好就是最好的,它是说最终要在搜索SRP用户有没有买,有没有点击,这才是做的好的,这是第二个收益。还有一个更加间接的,通过Query推,这个状态转到下一个状态以后,这个里面还会推其它Query,还会有其它点击,这个时候也是个间接推荐。如果我不推Query就不能到这个状态,不到状态不会有这个Query,不会有这个收益。我们了解,这就是典型的一个马尔科夫决策过程,我们是用强化学习来做的,Actions就是我们的Query list,根据用户和当前Query推荐其他Query,状态就是User + Query,收益就是包括推荐Query击,还有一个间接收益,间接收益通过bellman 公式可以算出来,这就是一个DQN的强化学习项目。

智能导购

现在的搜索呈现的问题就是说,如果去看搜索的Query都是一些品类词、品牌词、型号词或者属性词。假定用户他知道买什么再来搜索搜,但是有各很大的东西用户不知道买什么吗?智能导购就是做做一个类似智能导购机器人的产品,引导用户怎么搜,用户也可以主动问,获取知识或购物经验。这是后台的算法的一个原形,不久后会上线。

智能内容

因为淘宝的商品,卖家为了适应我们的引擎,做了大量的SEO,里面都是罗列热门的关健词,导致问题淘宝的标题没什么差异,都写的差不多,看标题也不知道什么东西,或者知道但里面没有很多特色的内容。我们做智能内容很重要的出发点是怎么从商品的评价、详情页、属性里面挖出一些比较有卖点,或者商品比较有特色的东西展示给用户,让用户更好的了解商品,这是第一个。第二个淘宝上面还有类似商品聚合的,比如清单,生成一个清单,怎么给清单生成一个比较好的导入的描述,让用户描述这个清单干什么。这里面主要做了这两个事情。具体怎么做的?一个会生成一些Topic,比如行业运营加上我们挖的一些点,比如像手机一般大家关注点会是手机的性价比,拍照是不是清晰,还有速度是不是快,是不是发热什么的,这是用户关注的兴趣点。然后它会根据这个商品会选择一个兴趣点,通过Seq2seq生成短文本。

语义搜索

我们的商品属性基本上是比较标准化的,因为这里淘宝有一个这样的商品库,非标准化的内容是没法上传的。导致的问题是我们的商品内容相对来说是比较规范化的,但是用户的输入的Query不是这样的,比如我这里举一些例子,比如一个新品有各种表达,2017新品,2017冬季新品,是吧?新品,有很多的表达。所以就是从从用户的需求跟商品的内容,就存在了一个语义的Gap。还有我们经常举例,比如三口之家用的电饭锅,很多这种语义的问题,这个语义从语义角度解决语义Match的事情。

大概会有这么几个方面。比如一个就是意图的理解,还有意图的Mapping,比如大容量冰箱,首先知道大的是跟冰箱的容量相关的,冰箱是个类目,最后要Mapping到人的冰箱,把‘大’改写成一个容量大于多少升,类目是冰箱这样才能够比较好的解决我们这个搜索的这个召回的问题。 第二个语义理解,这里面包括Query和商品都要做语义理解,比如通过image tagging计算从图片里面抽取很多文本的语义标签补充到商品文本索引中。 第三个就是现在有这个端到端的深度学习技术来直接学Query和商品的Similarity,通过端到端的深度学习技术来做语义的召回和语义的相关性。

智能匹配

主要就是讲个性化,做个性化的首要就是个性化数据。个性化本质上就是说以用户为中心构建用户的标签,用户的行为,还有用户的偏好,再通过这些数据找到,去Match到商品,比如说你看过相似商品,典型的协同过滤,还有你偏好的品牌的其它商品。那就是基于这些经历了一个以用户为中心的电商图谱,这里面还加了一些辅助的数据,比如商品的相似度,店铺之间的相似度,这样构建了我们这样的叫电商图谱。

个性化召回与向量化召回

召回是这样的,首先从咱们的电商图谱里取出用户的信息,包括比如说年龄性别,还有当地温度是多少,还有行为足迹等等之类的,社交现在没用了,因为这是几年前社交特别火,什么都要掺和一下,其实社交,信息的社交到电商其实风马牛不相及的领域,没有任何价值。所以现在好友这东西几乎没有用。因为不同Query中,用户信息重要性是不一样的,我们根据上下文会做用户信息的筛选或者排序,会找出比较重要的信息做个性化召回。以上是淘宝商品索引结构,传统的搜索关键字是通过搜索关键字召回,而个性化商品索引,除了Query还会有商品簇,簇与簇之间的关系,品牌店铺等等之类的,会加很多个性化的特征做召回,通过这种带的好处是召回的结果跟用户是直接相关的,就召回这一步带来个性化。

但是这种基于行为召回还是存在一个问题的。最重要的问题它的泛化能力会比较差。最典型的比如说你通过协同过滤来做,如果两个商品,没有用户同时看过的话,这两个商品你认为他们相似度是零,这个结论是错的,但是如果通过协同过滤就有这个问题。我们今年实现了向量化召回,包括两步:一个是Similarity learning,通过这个深度学习做端到端的Similarity learning,就会把这个我们的User 和Item会变成一个向量;第二步就是做向量化召回,比如层次聚类,随机游走,learning to hash等,这样的话就是说会极大的提升召回的深度。

个性化工作

在个性化领域其实最重要的一个核心的问题就是怎么去理解用户,怎么感知用户和预测用户行为及偏好。

首先是数据,用户在淘宝有两个中类型重要的基本信息:一个是用户标签,比如年龄、性别、职业等;第二是用户足迹,比如 点过,买过的商品,店铺等;

其次是用户感知要和搜索上下文相关,即这个用户的表征和要用户搜索意图相关;

第三是搜索有很多差异化的任务,比如用户消费能力的预估, User到Item的CTR预估和用户购物状态预估等,是为每个任务做个端到端的深度学习模型还是用统一的用户表征来完成不同的Task?如果每一个任务都做端到端深度学习会有很多问题,比如离线和在线的性能开销会大很多,或部分任务样本太少。

如图是用户感知深度模型,输入X是用户的点击行为序列,下一步是embedding,embedding完以后,通过LSTM把用户行为序列做embedding,因为在搜索用户感知和Query相关,所以加入query 的 attention层,选择和当前query有关系的行为,表征完是Multi-task learning 网络。整个这个网络的参数大概有一百亿个参数,我在双11我们还实现了在线学习。

算法包括智能交互、语义搜索、智能匹配和搜索策略四个方向。

智能交互

商品搜索就是带交互的商品推荐,用户通过关键字输入搜索意图,引擎返回和搜索意图匹配的个性化推荐结果,好的交互技术能够帮助到用户更好的使用搜索引擎,目前搜索的交互主要是主动关键字输入和关键字推荐,比如搜索框中的默认查询词和搜索结果中的文字链等,推荐引擎根据用户搜索历史、上下文、行为和状态推荐关键字。和商品推荐的区别是,关键字推荐是搜索链路的中间环节,关键字推荐的收益除了关键字的点击行为外,还需要考虑对整个购物链路的影响,包括在推荐关键字的后续行为中是否有商品点击、加购和成交或跳转到另外一个关键字的后继行为,这是一个典型的强化学习问题,action 是推荐的关键字候选集合,状态是用户当前搜索关键词、上下文等,收益是搜索引导的成交。除了被动的关键字推荐,我们也在思考搜索中更加主动的交互方式,能够做到像导购员一样的双向互动,主动询问用户需求,挑选个性化的商品和给出个性化的推荐理由,目前我们已经在做智能导购和智能内容方向的技术原型及论证,智能导购在技术上主要是借鉴对话系统,通过引导用户和引擎对话与关键字推荐方式互为补充,包括自然语言理解,对话策略,对话生成,知识推理、知识问答和商品搜索等模块,功能主要包括:a. 根据用户搜索上下文生成引导用户主动交互的文本,比如搜索“奶粉”时,会生成“您宝宝多大?0~6个月,6个月到1岁….”引导文案,提示用户细化搜索意图,如果用户输入“3个月”后,会召回相应段位的奶粉,并在后续的搜索中会记住对话状态“3个月”宝宝和提示用户“以下是适合3个月宝宝的奶粉”,b. 知识导购,包含提高售前知识问答或知识提示,比如“3个月宝宝吃什么奶粉” 回答“1段”,目前对话技术还不太成熟,尤其是在多轮对话状态跟踪、知识问答和自动评价几个方面,但随着深度学习、强化学习和生成对抗学习等技术在NLP、对话策略、阅读理解等领域的应用,越来越多的训练数据和应用场景,domain specific 的对话技术未来几年应该会突飞猛进;智能内容生成,包括生成或辅助人工生成商品和清单的“卖点”,短标题和文本摘要等,让淘宝商品表达更加个性化和多元化。

语义搜索

语义搜索主要是解决关键字和商品内容之间的语义鸿沟,比如搜索“2~3周岁宝宝外套”,如果按照关键字匹配召回结果会远小于实际语义匹配的商品。语义搜索的范围主要包括:a. query tagging和改写,比如新品,年龄,尺码,店铺名,属性,类目等搜索意图识别和归一化,query tagging模型是用的经典的序列标注模型 bi-lstm + CRF,而标签分类(归一化) 作为模型另外一个任务,将序列标注和分类融合在一起学习;b. query 改写,主要是计算query之间相似度,把一个query改写成多个语义相似的query,通常做法是先用不同改写策略生成改写候选query集合,比如词替换、向量化后top k、点击商品相似度等,然后在用ltr对后续集合排序找出合适的改写集合,模型设计和训练相对简单,比较难的是如何构建高质量的训练样本集合,线上我们用bandit 的方法探测部分query 改写结果的优劣,离线则用规则和生成对抗网络生成一批质量较高的样本; c. 商品内容理解和语义标签,通过商品图片,详情页,评价和同义词,上下位词等给商品打标签或扩充商品索引内容,比如用 image tagging技术生成图片的文本标签丰富商品内容,或者更进一步用直接用图片向量和文本向量融合,实现富媒体的检索和查询;d. 语义匹配,经典的DSSM 模型技术把query 和商品变成向量,用向量内积表达语义相似度,在问答或阅读理解中大量用到多层LSTM + attention 做语义匹配,同样高质量样本,特别是高质量负样本很大程度上决定了模型的质量,我们没有采样效率很低的随机负采样,而是基于电商知识图谱,通过生成字面相似但不相关的query及相关文档的方法生成负样本。从上面可以看到query tagging、query相似度、语义匹配和语义相关性是多个目标不同但关联程度非常高的任务,下一步我们计划用统一的语义计算框架支持不同的语义计算任务,具体包括1. 开发基于商品内容的商品表征学习框架,为商品内容理解,内容生成,商品召回和相关性提供统一的商品表征学习框架,重点包括商品标题,属性,详情页和评价等文本信息抽取,图像特征抽取和多模信号融合;2. query 表征学习框架,为query 类目预测,query改写,query 推荐等提供统一的表征学习框架,重点通过多个query 相似任务训练统一的query表征学习模型;3. 语义召回,语义相关性等业务应用模型框架。语义搜索除了增加搜索结果相关性,提升用户体验外,也可以一定程度上遏制淘宝商品标题堆砌热门关键词的问题。

智能匹配

这里主要是指个性化和排序。内容包括:a. ibrain (深度用户感知网络),搜索或推荐中个性化的重点是用户的理解与表达,基于淘宝的用户画像静态特征和用户行为动态特征,我们基于multi-modals learning、multi-task representation learning以及LSTM的相关技术,从海量用户行为日志中直接学习用户的通用表达,该学习方法善于“总结经验”、“触类旁通”,使得到的用户表达更基础且更全面,能够直接用于用户行为识别、偏好预估、个性化召回、个性化排序等任务,在搜索、推荐和广告等个性化业务中有广泛的应用场景,感知网络超过10B个参数,已经学习了几千亿次的用户行为,并且会保持不间断的增量学习越来越聪明; b. 多模学习,淘宝商品有文本、图像、标签、id 、品牌、类目、店铺及统计特征,这些特征彼此有一定程度的冗余和互补,我们利用多模学习通过多模联合学习方法把多维度特征融合在一起形成统一的商品标准,并多模联合学习中引入self-attention实现特征维度在不同场景下的差异,比如女装下图片特征比较重要,3C下文本比较重要等;c. deepfm,相对wide & deep 模型,deepfm 增加了特征组合能力,基于先验知识的组合特征能够应用到深度学习模型中,提升模型预测精度;d. 在线深度排序模型,由于行为类型和商品重要性差异,每个样本学习权重不同,通过样本池对大权重样本重复分批学习,有效的提升了模型学习稳定性,同时通过融合用户状态深度ltr模型实现了千人千面的排序模型学习;e. 全局排序,ltr 只对单个文档打分然后按照ltr分数和打散规则排序,容易导致搜索结果同质化,影响总页效率,全局排序通过已知排序结果做为上下文预测下一个位置的商品点击概率,有效提升了总页排序效率;f. 另外工程还实现了基于用户和商品向量的向量召回引擎,相对倒排索引,向量化召回泛化能力更强,对语义搜索和提高个性化匹配深度是非常有价值的。以上实现了搜索从召回、排序特征、排序模型、个性化和重排的深度学习升级,在双11无线商品搜索中带来超过10% (AB-Test)的搜索指标提升。

智能决策

搜索中个性化产品都是成交最大化,导致的问题是搜索结果趋同,浪费曝光,今年做的一个重要工作是利用多智能体协同学习技术,实现了搜索多个异构场景间的环境感知、场景通信、单独决策和联合学习,实现联合收益最大化,而不是此消彼长,在今年双11中联合优化版本带来的店铺内和无线搜索综合指标提升12% (AB-Test),比非联合优化版本高3% (AB-Test)。

性能优化

在深度学习刚起步的时候,我们意识到深度模型inference 性能会是一个瓶颈,所以在这方面做了大量的调研和实验,包括模型压缩(剪枝),低秩分解,量化和二值网络,由于缺少相应的指令集和硬件支持,最终只在个别场景下上线,期待支持低精度矩阵计算和稀疏矩阵计算的硬件早日出现。

未来计划

通用用户表征学习。前面介绍的DUPN 是一个非常不错的用户表征学习模型,但基于query 的attention 只适合搜索,同时缺少基于日志来源的attention,难以推广到其他业务,在思考做一个能够适合多个业务场景的用户表征模型,非搜索业务做些简单fine tuning 就能取得比较好的效果;同时用户购物偏好受季节和周期等影响,时间跨度非常大,最近K个行为序列假设太简单,我们在思考能够做life-long learning 的模型,能够学习用户过去几年的行为序列;搜索链路联合优化。从用户进入搜索到离开搜索链路中的整体优化,比如 搜索前的query 引导(底纹),搜索中的商品和内容排序,搜索后的 query推荐(锦囊)等场景;跨场景联合优化。今年搜索内部主搜索和店铺内搜索联合优化取得了很好的结果,未来希望能够拓展在更多大流量场景,提高手淘的整体购物体验;多目标联合优化。搜索除了成交外,还需要承担卖家多样性,流量公平性,流量商业化等居多平台和卖家的诉求,搜索产品中除了商品搜索外还有“穹顶”,“主题搜索”,“锦囊”,“内容搜索”等非商品搜索内容,不同搜索目标和不同内容(物种)之间的联合优化未来很值得深挖。

热点内容
内置存储卡可以拆吗 发布:2025-05-18 04:16:35 浏览:330
编译原理课时设置 发布:2025-05-18 04:13:28 浏览:371
linux中进入ip地址服务器 发布:2025-05-18 04:11:21 浏览:606
java用什么软件写 发布:2025-05-18 03:56:19 浏览:27
linux配置vim编译c 发布:2025-05-18 03:55:07 浏览:100
砸百鬼脚本 发布:2025-05-18 03:53:34 浏览:935
安卓手机如何拍视频和苹果一样 发布:2025-05-18 03:40:47 浏览:729
为什么安卓手机连不上苹果7热点 发布:2025-05-18 03:40:13 浏览:798
网卡访问 发布:2025-05-18 03:35:04 浏览:505
接收和发送服务器地址 发布:2025-05-18 03:33:48 浏览:367