当前位置:首页 » 操作系统 » 线性查找算法

线性查找算法

发布时间: 2022-11-29 18:57:16

1. 【数据结构】求线性表的长度和线性表上的查找算法

/* 顺序存储类型*/
typedef struct
{ ElemType data[MAXSIZE]; /*存放线性表的数组*/
int length; /* length是顺序表的长度*/
}sqlist; SqList L;
/* 求顺序表长度*/
int ListLength(SqList L)
{return(L.length);}
/* 给定序号从顺序表中查找元素*/
void ListGet(SqList L ,int i)
{ if(L.length==0) printf("顺序表空\n");
else if(i<1||i>L.length) printf("查找的位置不正确\n");
else printf("顺序表中第%d个元素的值为:%d\n",i,L.data[i-1]);
}
/* 从顺序表中查找与给定元素值相同的元素在顺序表中的位置*/
int ListLocate(SqList L, ElemType x)
{int i=0;
while(i<L.length && L.data[i]!=x)
i++;
if (i<L.length) return (i+1);
else return 0;
}

2. C语言编写数据结构查找算法

实验五 查找的实现
一、 实验目的
1.通过实验掌握查找的基本概念;
2.掌握顺序查找算法与实现;
3.掌握折半查找算法与实现。
二、 实验要求
1. 认真阅读和掌握本实验的参考程序。
2. 保存程序的运行结果,并结合程序进行分析。
三、 实验内容
1、建立一个线性表,对表中数据元素存放的先后次序没有任何要求。输入待查数据元素的关键字进行查找。为了简化算法,数据元素只含一个整型关键字字段,数据元素的其余数据部分忽略不考虑。建议采用前哨的作用,以提高查找效率。
2、查找表的存储结构为有序表,输入待查数据元素的关键字利用折半查找方法进行查找。此程序中要求对整型量关键字数据的输入按从小到大排序输入。
一、顺序查找
顺序查找代码:
#include"stdio.h"
#include"stdlib.h"
typedef struct node{
intkey;
}keynode;
typedef struct Node{
keynoder[50];
intlength;
}list,*sqlist;
int Createsqlist(sqlist s)
{
inti;
printf("请输入您要输入的数据的个数:\n");
scanf("%d",&(s->length));
printf("请输入您想输入的%d个数据;\n\n",s->length);
for(i=0;i<s->length;i++)
scanf("%d",&(s->r[i].key));
printf("\n");
printf("您所输入的数据为:\n\n");
for(i=0;i<s->length;i++)
printf("%-5d",s->r[i].key);
printf("\n\n");
return1;
}
int searchsqlist(sqlist s,int k)
{
inti=0;
s->r[s->length].key=k;
while(s->r[i].key!=k)
{

i++;
}
if(i==s->length)
{
printf("该表中没有您要查找的数据!\n");
return-1;
}
else
returni+1;
}
sqlist Initlist(void)
{
sqlistp;
p=(sqlist)malloc(sizeof(list));
if(p)
returnp;
else
returnNULL;
}
main()
{
intkeyplace,keynum;//
sqlistT;//
T=Initlist();
Createsqlist(T);
printf("请输入您想要查找的数据的关键字:\n\n");
scanf("%d",&keynum);
printf("\n");
keyplace=searchsqlist(T,keynum);
printf("您要查找的数据的位置为:\n\n%d\n\n",keyplace);
return2;
}
顺序查找的运行结果:
二、折半查找
折半查找代码:
#include"stdio.h"
#include"stdlib.h"
typedef struct node{
intkey;
}keynode;
typedef struct Node{
keynoder[50];
intlength;
}list,*sqlist;
int Createsqlist(sqlist s)
{
inti;
printf("请输入您要输入的数据的个数:\n");
scanf("%d",&(s->length));
printf("请由大到小输入%d个您想输入的个数据;\n\n",s->length);
for(i=0;i<s->length;i++)
scanf("%d",&(s->r[i].key));
printf("\n");
printf("您所输入的数据为:\n\n");
for(i=0;i<s->length;i++)
printf("%-5d",s->r[i].key);
printf("\n\n");
return1;
}
int searchsqlist(sqlist s,int k)
{
intlow,mid,high;
low=0;
high=s->length-1;
while(low<=high)
{
mid=(low+high)/2;
if(s->r[mid].key==k)
returnmid+1;
elseif(s->r[mid].key>k)
high=mid-1;
else
low=mid+1;
}
printf("该表中没有您要查找的数据!\n");
return-1;
}
sqlist Initlist(void)
{
sqlistp;
p=(sqlist)malloc(sizeof(list));
if(p)
returnp;
else
returnNULL;
}
main()
{
intkeyplace,keynum;//
sqlistT;//
T=Initlist();
Createsqlist(T);
printf("请输入您想要查找的数据的关键字:\n\n");
scanf("%d",&keynum);
printf("\n");
keyplace=searchsqlist(T,keynum);
printf("您要查找的数据的位置为:\n\n%d\n\n",keyplace);
return2;
}
折半查找运行结果:
三、实验总结:
该实验使用了两种查找数据的方法(顺序查找和折半查找),这两种方法的不同之处在于查找方式和过程不同,线性表的创建完全相同,程序较短,结果也一目了然。

3. java线性查找算法的平均次数为什么是n/2

平均次数是(n+1)/2,不是n/2。
被查找的数是第1个数,则需用第1个数和被查找的数比较,要比较1次。
被查找的数是第2个数,则需用第1个数、第2个数和被查找的数比较,要比较2次。
...
被查找的数是第n个数,则需用第1个数、第2个数、...、第n个数和被查找的数比较,要比较n次。
平均次数为(1+2+...+n)/n=(n+1)/2。

4. 在有序顺序存储的线性表中查找一个元素

线性表顺序查找算法分析:
查找与数据的存储有关,线性表{a1,a2,....,an}有顺序和链式两种存储结构.作为顺序表存储时实现顺序查找算法.顺序查找是一种最简单的查找方法.它的基本思路是:从表的一端开始,顺序扫描线性表,依次将扫描到的关键字和给定值k相比较,若当前扫描到的关键字与k值相等,则查找成功;若扫描结束,扔未找到关键字等于k的元素,则查找失败。顺序查找算法(在顺序表R[0..n-1]中查找关键字为k的元素,成功是返回找到的元素的逻辑序号,失败时返回。
首先定义顺序表的类型,再定义一个SeqSearch()函数实现顺序查找.在SeqSearch(SeqListR,intn,KeyTypek)中,其中是在具有n个数据元素R的SeqList中查找值为k的过程.在函数进行运算过程中,首先是通过while判断,当i=n的时候,返回0,失败;当i

5. 查找算法的作用

查找就是在一个数据集合里查找到你需要的数据,查找算法就是在查找过程中使用的算法。查找算法有好多,最基础的就是线性表查找。
因为提到了算法,所以需要注意的是时间复杂度跟空间复杂度,进而涉及到数据的存储方式,比如数组,链表,矩阵,树,图等等数据结构,这些数据结构可以帮助你降低算法的复杂度。
如果有兴趣,随便找本数据结构书翻翻,里面或多或少都会有讲解。用关键字标识一个数据元素,查找时根据给定的某个值,在表中确定一个关键字的值等于给定值的记录或数据元素。在计算机中进行查找的方法是根据表中的记录的组织结构确定的。顺序查找也称为线形查找,从数据结构线形表的一端开始,顺序扫描,依次将扫描到的结点关键字与给定值k相比较,若相等则表示查找成功;若扫描结束仍没有找到关键字等于k的结点,表示查找失败。二分查找要求线形表中的结点按关键字值升序或降序排列,用给定值k先与中间结点的关键字比较,中间结点把线形表分成两个子表,若相等则查找成功;若不相等,再根据k与该中间结点关键字的比较结果确定下一步查找哪个子表,这样递归进行,直到查找到或查找结束发现表中没有这样的结点。分块查找也称为索引查找,把线形分成若干块,在每一块中的数据元素的存储顺序是任意的,但要求块与块之间须按关键字值的大小有序排列,还要建立一个按关键字值递增顺序排列的索引表,索引表中的一项对应线形表中的一块,

6. 如果要求一个线性表既能较快的查找,又能适应动态变化的要求,则可采用的方法是

应该是散列法~~散列法的算法代表是哈希表,通过哈希函数将值转化成存放该值的目标地址~~这种查找的性能是O(1),对于其动态变化要求,可以进行再次散列,时间复杂度是O(1)~~
二分法是基于顺序表的一种查找方式,体现的是折半思想,查找的时间复杂度为O(logn),不过要是动态变化的情况,移动次数还是O(n),所以不适合要求
顺序法是挨个查找,这种方法最容易实现,不过查找时间复杂度都是O(n),动态变化时可将保存值放入线性表尾部,则时间复杂度为O(1),所以不满足要求
分块法应该是将整个线性表分成若干块进行保存,若动态变化则可以添加在表的尾部(非顺序结构),时间复杂度是O(1),查找复杂度为O(n);若每个表内部为顺序结构,则可用二分法将查找时间复杂度降至O(logn),但同时动态变化复杂度则变成O(n)

7. 梯度下降中的线性搜索计算学习率是怎么理解

梯度下降法是一个最优化算法,通常也称为最速下降法。最速下降法是求解无约束优化问题最简单和最古老的方法之一,虽然现在已经不具有实用性,但是许多有效算法都是以它为基础进行改进和修正而得到的。最速下降法是用负梯度方向为搜索方向的,最速下降法越接近目标值,步长越小,前进越慢。
梯度下降法可以用于求解非线性方程组。
顾名思义,梯度下降法的计算过程就是沿梯度下降的方向求解极小值(也可以沿梯度上升方向求解极大值)。

表示梯度方向上的搜索步长。梯度方向我们可以通过对函数求导得到,步长的确定比较麻烦,太大了的话可能会发散,太小收敛速度又太慢。一般确定步长的方法是由线性搜索算法来确定,即把下一个点的坐标看做是ak+1的函数,然后求满足f(ak+1)的最小值即可。
因为一般情况下,梯度向量为0的话说明是到了一个极值点,此时梯度的幅值也为0.而采用梯度下降算法进行最优化求解时,算法迭代的终止条件是梯度向量的幅值接近0即可,可以设置个非常小的常数阈值。

8. 程序员开发用到的十大基本算法

算法一:快速排序算法
快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。

快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。

算法步骤:
1 从数列中挑出一个元素,称为 “基准”(pivot),
2 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
3 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

算法二:堆排序算法
堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序的平均时间复杂度为Ο(nlogn) 。

算法步骤:
1.创建一个堆H[0..n-1]
2.把堆首(最大值)和堆尾互换
3.把堆的尺寸缩小1,并调用shift_down(0),目的是把新的数组顶端数据调整到相应位置
4.重复步骤2,直到堆的尺寸为1

算法三:归并排序
归并排序(Merge sort,台湾译作:合并排序)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

算法步骤:

算法四:二分查找算法
二分查找算法是一种在有序数组中查找某一特定元素的搜索算法。搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜 素过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组 为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。折半搜索每次把搜索区域减少一半,时间复杂度为Ο(logn) 。

算法五:BFPRT(线性查找算法)
BFPRT算法解决的问题十分经典,即从某n个元素的序列中选出第k大(第k小)的元素,通过巧妙的分 析,BFPRT可以保证在最坏情况下仍为线性时间复杂度。该算法的思想与快速排序思想相似,当然,为使得算法在最坏情况下,依然能达到o(n)的时间复杂 度,五位算法作者做了精妙的处理。

算法步骤:

终止条件:n=1时,返回的即是i小元素。

算法六:DFS(深度优先搜索)
深度优先搜索算法(Depth-First-Search),是搜索算法的一种。它沿着树的深度遍历树的节点,尽可能深的搜索树的分 支。当节点v的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发 现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。DFS属于盲目搜索。

深度优先搜索是图论中的经典算法,利用深度优先搜索算法可以产生目标图的相应拓扑排序表,利用拓扑排序表可以方便的解决很多相关的图论问题,如最大路径问题等等。一般用堆数据结构来辅助实现DFS算法。

算法步骤:

上述描述可能比较抽象,举个实例:
DFS 在访问图中某一起始顶点 v 后,由 v 出发,访问它的任一邻接顶点 w1;再从 w1 出发,访问与 w1邻 接但还没有访问过的顶点 w2;然后再从 w2 出发,进行类似的访问,… 如此进行下去,直至到达所有的邻接顶点都被访问过的顶点 u 为止。

接着,退回一步,退到前一次刚访问过的顶点,看是否还有其它没有被访问的邻接顶点。如果有,则访问此顶点,之后再从此顶点出发,进行与前述类似的访问;如果没有,就再退回一步进行搜索。重复上述过程,直到连通图中所有顶点都被访问过为止。

算法七:BFS(广度优先搜索)
广度优先搜索算法(Breadth-First-Search),是一种图形搜索算法。简单的说,BFS是从根节点开始,沿着树(图)的宽度遍历树(图)的节点。如果所有节点均被访问,则算法中止。BFS同样属于盲目搜索。一般用队列数据结构来辅助实现BFS算法。

算法步骤:

算法八:Dijkstra算法
戴克斯特拉算法(Dijkstra’s algorithm)是由荷兰计算机科学家艾兹赫尔·戴克斯特拉提出。迪科斯彻算法使用了广度优先搜索解决非负权有向图的单源最短路径问题,算法最终得到一个最短路径树。该算法常用于路由算法或者作为其他图算法的一个子模块。

该算法的输入包含了一个有权重的有向图 G,以及G中的一个来源顶点 S。我们以 V 表示 G 中所有顶点的集合。每一个图中的边,都是两个顶点所形成的有序元素对。(u, v) 表示从顶点 u 到 v 有路径相连。我们以 E 表示G中所有边的集合,而边的权重则由权重函数 w: E → [0, ∞] 定义。因此,w(u, v) 就是从顶点 u 到顶点 v 的非负权重(weight)。边的权重可以想象成两个顶点之间的距离。任两点间路径的权重,就是该路径上所有边的权重总和。已知有 V 中有顶点 s 及 t,Dijkstra 算法可以找到 s 到 t的最低权重路径(例如,最短路径)。这个算法也可以在一个图中,找到从一个顶点 s 到任何其他顶点的最短路径。对于不含负权的有向图,Dijkstra算法是目前已知的最快的单源最短路径算法。

算法步骤:

重复上述步骤2、3,直到S中包含所有顶点,即W=Vi为止

算法九:动态规划算法
动态规划(Dynamic programming)是一种在数学、计算机科学和经济学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。 动态规划常常适用于有重叠子问题和最优子结构性质的问题,动态规划方法所耗时间往往远少于朴素解法。

动态规划背后的基本思想非常简单。大致上,若要解一个给定问题,我们需要解其不同部分(即子问题),再合并子问题的解以得出原问题的解。 通常许多 子问题非常相似,为此动态规划法试图仅仅解决每个子问题一次,从而减少计算量: 一旦某个给定子问题的解已经算出,则将其记忆化存储,以便下次需要同一个 子问题解之时直接查表。 这种做法在重复子问题的数目关于输入的规模呈指数增长时特别有用。

关于动态规划最经典的问题当属背包问题。

算法步骤:

算法十:朴素贝叶斯分类算法
朴素贝叶斯分类算法是一种基于贝叶斯定理的简单概率分类算法。贝叶斯分类的基础是概率推理,就是在各种条件的存在不确定,仅知其出现概率的情况下, 如何完成推理和决策任务。概率推理是与确定性推理相对应的。而朴素贝叶斯分类器是基于独立假设的,即假设样本每个特征与其他特征都不相关。

朴素贝叶斯分类器依靠精确的自然概率模型,在有监督学习的样本集中能获取得非常好的分类效果。在许多实际应用中,朴素贝叶斯模型参数估计使用最大似然估计方法,换言之朴素贝叶斯模型能工作并没有用到贝叶斯概率或者任何贝叶斯模型。

尽管是带着这些朴素思想和过于简单化的假设,但朴素贝叶斯分类器在很多复杂的现实情形中仍能够取得相当好的效果。

9. 线性规划(LP)基本概念和搜索算法

可以用一个符号描述一系列类似的数量值

一个方程,如果他是关于决策变量的常熟加权求和形式,则该方程式 线性方程(liner) ,佛则该方程为 非线性方程(non-linear)

目标函数 以及约束方程 中均为关于决策变量的线性方程,则该优化模型为 线性规划(linear program, LP) ,其中目标函数可以为满足约束的任意整数或者分数

目标函数 以及约束方程 中存在关于决策变量的线性方程,则该优化模型为 非线性规划(nonlinear program, LP) ,其中目标函数可以为满足约束的任意整数或者分数

一个优化模型,如果他的决策变量中存在离散变量,则该优化模型位 整数规划(integer program, IP) ,如果整数规划的所有决策变量均为离散变量,则该整数规划为 纯整数规划(pure integer program) ;否则为 混合整数规划(mixed integer program)

搜索算法(improving search) 通过检查邻域来寻找比当前更好地解,若有改进则替换当前解,继续迭代,直到邻域中没有更好的解为止。搜索算法又称为 局部改进(local improvement) 爬山算法(hillclimbing) 局部搜索(local search) 邻域搜索(neighborhood search)

倘若一组可行解周围足够小的的邻域内没有优于该解的可行点,则称为 局部最优解(local optimum) ,最小化(最大化)问题存在 局部最小(最大)解

如果在全局范围内不存在目标值优于某可行解的其他可行点,则称为 全局最优解(global optimum) ,最小化(最大化)问题存在 全局最小(最大)解

搜索算法沿 由当前点 向下一个搜索点 移动,其中 是当前点 处的 搜索方向(move direction) , 是沿该方向前进的 步长 , 。

对于所有足够小的 都有 ,则称 是当前解的一个 改进方向(improving direction) ,如果满足所有约束条件,则为 可行改进方向

如果优化模型的目标函数 是光滑的(所有决策变量都是可微的),那么,当 是一个n维向量的函数,当它有一个一阶片倒数,这些导数组成的n维向量称为 梯度

导数(derivative) ,描述函数随参数的变化率,可以看做斜率。 偏导数(partial derivative) ,是保持其他变量恒定时,关于其中一个变量的导数

对于最大化目标函数 ,若 ,搜索方向 是 处的可改进方向,若 ,搜索方向 不是 处的可改进方向。

对于最小化目标函数 ,若 ,搜索方向 是 处的可改进方向,若 ,搜索方向 不是 处的可改进方向。

当目标函数梯度 ,是最大化目标 的一个改进方向, 是最小化目标函数 的一个改进方向

如果可行域内任意两点的连线都在可行域内,则称该可行域为 凸集

离散的可行集总是非凸集

若优化模型的可行集是凸集,那么对任意可行解始终存在指向另一个解的可行方向,意味着,只要存在最优解,可能性不会阻碍局部最优解发展为全局最优解。

线性约束的可行集又称为多面体集。

如果优化模型的所有约束都是线性的,那么该模型的可行域是凸集

两阶段法

大M法

10. 折半查找法是线性查找还是非线性查找

那是两个查找算法,线性查找思路就是从第一个找的最后一个。拆半也加二分法查找,是判断大小,一步步的缩小位置,没有可比性,两种思路。

热点内容
ftp是什么检测器 发布:2024-05-07 15:37:59 浏览:401
重庆电信服务器租用教学云主机 发布:2024-05-07 15:28:05 浏览:72
python声明对象 发布:2024-05-07 15:28:03 浏览:127
存储过程的应用场景 发布:2024-05-07 15:12:16 浏览:612
车内配置怎么看 发布:2024-05-07 15:11:39 浏览:208
outlook已发送文件夹 发布:2024-05-07 14:08:13 浏览:31
佛系源码 发布:2024-05-07 14:04:03 浏览:674
php蚂蚁 发布:2024-05-07 13:49:22 浏览:401
phpfpmpid 发布:2024-05-07 13:44:29 浏览:521
linuxtty1 发布:2024-05-07 13:40:10 浏览:865