当前位置:首页 » 操作系统 » 算法跳青蛙

算法跳青蛙

发布时间: 2022-12-06 06:38:53

‘壹’ 跪求算法大牛解释一下青蛙跳,也就是绿色和褐色青蛙互换问题的回溯算法!!!

Frog[191] :初始化游戏中的n只青蛙,以1-n/2代表左边的青蛙,n/2+1-n代表右边的青蛙,
Frog[]初始化即为青蛙最初的位置,如果输入n=7,Frog[]={1,2,3,0,4,5,6}
Done[191] :该数组值只取0或1,其中1代表用于表示此刻,在第i(1-n) 墩上的青蛙已换位成功。反之,取0。
DO[1926] :该数组用于记录空墩移位的状况,元素的取值范围为0-n-1(在计算机中的表示)。根据在第i步,可以根据元素值DO[i-1] 进行回溯操作。
这个算法中DO[ ]记录的是石头的移动步骤,回溯的其实是回溯DO[ ],返回上一步的操作

‘贰’ 优化算法笔记(十六)混合蛙跳算法

(以下描述,均不是学术用语,仅供大家快乐的阅读)
混合蛙跳算法(Shuffled Frog Leaping Algorithm)是根据青蛙在石块上觅食时的种群分布变化而提出的算法。算法提出于2003年,时间有点久远,但相关的论文并不是特别多,仍有较大的研究和改进空间。
混合蛙跳算法中,每个青蛙的位置代表了一个可行解。青蛙所在的池塘中有数块石块,每一代,青蛙们会被分配到石块上。在这一代中,只有石块上位置最差的青蛙会跳动。该青蛙首先会向着同一个石块上的最优位置的青蛙跳动,如果新的位置比原位置差则向则全局最优位置跳动,若该位置仍旧比原位置差则在解空间内随机跳动一次。可以看出每只跳动青蛙在每代中至少跳动一次,至多跳动三次,但由于每次跳动的青蛙数量等于石块数,故当石块数<青蛙数/3时,每代总跳动次数小于青蛙总数。
(查找文献追根溯源的时候看到了一个有趣的现象,原始的提出论文提出于2000年(Shuffled frog leaping algorithm:a memetic meta-heuristic for combinatorial optimization.)但是到2006年才出版,而2003年的论文(Optimization of Water Distribution Network Design Using the Shuffled Frog Leaping Algorithm)引用了2000年的原始论文,并标注为出版中。到了2006年出版时,原始论文引用了2003年发表的那篇论文,即这两篇论文相互引用,真是奇妙。估计是原始论文被拒了后又修改了结果到2006年才发表。)

这次的主角就是青蛙了。(没有石块就用荷叶代替吧)。

每一只青蛙只有两个属性:位置,当前位置的适应度值。
池塘中一共有m片荷叶,青蛙总数为n。
每一代中,将所有的青蛙按位置从优到劣排列,并依此放置在m个荷叶上。举个栗子,有5片荷叶(m1-m5)和21只青蛙(f1-f21,按适应度值从优到劣排列)。

即m1荷叶上的青蛙有{f1,f6,f11,f16,f21},m2荷叶上的青蛙有{f2,f7,f12,f17},依此类推。
每代中最差的青蛙会首先向着当前荷叶上最优位置的青蛙跳动,即该代中f21会向着f1跳动,f17向着f2跳动,f18向着f3跳动,f19向着f4跳动,f20向着f5跳动。
如果f21、f17、f18、f19、f20这五只青蛙没有找到优于自己当前位置的位置,则它们会向着全局最优位置的青蛙f1跳动,如果新的位置仍然差于自己的原位置,则该青蛙跳到一个随机的位置。

在D维空间内青蛙f1的位置 ,其适应度值为 。

(1)青蛙f17向f2跳动后的新位置为 :

若 优于 则青蛙f17跳到 ,否则跳到(2)。

(2)由于f1在全局最优位置,故在这一步,f17会向f1跳动:

优于 则青蛙f17跳到 ,否则跳到(3)。

(3)f17会跳到解空间内的随机位置:

若 优于 则青蛙f17跳到 。

可以看出混合蛙跳算法的流程灰常的简单,跳动的算子也非常的简单,而且每次跳动的青蛙的数量等于荷叶的数量,所有其迭代次数会快于多数其他的优化算法。
我自己特别喜欢这个优化算法,总能从中体会出分治的思想。下面我们来看看实验,看看其效果如何。

适应度函数 。
实验一:

荷叶数为1的图像及结果如下:

荷叶数为2的图像及结果如下:

荷叶数为3的图像及结果如下:

荷叶数为4的图像及结果如下:

从上述的四个实验可以看出,随着荷叶数的增加,算法的收敛速度在不断的加快。同时,随着荷叶数的增加,每代青蛙跳动的次数也在不断的增加。荷叶数为1时,每代青蛙总共会跳动1-3次,荷叶数为2时每代青蛙总共跳动2-6次,当荷叶数为10时,每代青蛙会跳动10-30次。由于每片荷叶上至少得有2只青蛙,所以荷叶数最多为总群数的一半。
算法的效果比较稳定,但好像没有体现出其跳出局部最优能力,在种群收敛后其全搜索能力较弱,大多在进行局部搜索。
看了看算法的结构,其跳出局部最优操作为第三段跳动,而这次跳动仍旧按照贪心算法跳到优于当前位置的随机位置。现在我将其增强为:如果进行了第三段跳动(随机跳动),则无论该位置的好坏,青蛙都将跳到该随机位置。

实验二: 永远接受公式(3)得到的随机位置

可以看出在种群收敛后,仍然会有一些个体随机出现在解空间内,并继续收敛。比较结果可以看出实验二的结果中的最优值不如实验一,但是其均值和最差值均优于实验一,说明对原算法进行修改后算法更加稳定,且算法的性能和全局搜索能力有一定的提升,算法跳出局部最优能力更强。

混合蛙跳算法是提出近20年,其实现的方式与分治的思想有异曲同工之处。由于每次都更新的是每片荷叶上的最差位置的青蛙,故群体不容易集中于较小的范围。同时由于“三段跳”的操作,让混合蛙跳算法有了一定的跳出局部最优能力。其全局搜索能力和局部搜索能力应该差不多,当最差的部分青蛙跳走后,次差的部分青蛙则会变成了最差的青蛙,此时群体不会过分集中。当群体相对分散时,为搜索范围较大的全局搜索,反之为搜索范围较小的局部搜索,由于收敛速度不算很快,所以进行全局搜索和局部搜索的时间相对均衡。
混合蛙跳算法的流程非常简单,几乎可以说是流程最简单的优化算法。其中的算子也很简单,优化的能力由种群的结构提供。算法的文章中比较了 “模因” “基因” ,模因类似与思想,其传播可以在同代中快速传播,比如音乐,几分钟就可以传播给其他人,而基因则只能有父母辈传递给子女背,传递的时间比较久。这也决定了混合优化算法的最重要的部分在于其群体的结构而不是其中的优化算子,实验说明这样的效果也不错,简单明了的算法也能有不错的效果。

参考文献
Eusuff M , Lansey K , Pasha F . Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization[J]. Engineering Optimization, 2006, 38(2):129-154. 提取码:ttgx

Eusuff, M.M. and Lansey, K.E., Optimization of water distribution network design using the shuffled frog leaping algorithm (SFLA). J.Water Resources Planning Mgmt,Am. Soc. Civ. Engrs, 2003, 129(3), 210–225. 提取码:cyu8

以下指标纯属个人yy,仅供参考

目录
上一篇 优化算法笔记(十五)蝙蝠算法
下一篇 优化算法笔记(十七)万有引力算法

优化算法matlab实现(十六)混合蛙跳算法matlab实现

‘叁’ 蛙跳算法怎么计算各个青蛙的适应值

对于青蛙群体,具有全局最好适应度的解表示为U g;对于每一个子族群,具有最好适应度的解表示为UB,最差适应度的解表示为UW。首先对每个子族群进行局部搜索,即对子族群中最差适应度的青蛙个体进行更新操作,更新策略为
青蛙更新距离 Ds=rand()*(Pb-Pw) (1)
更新后的青蛙 newDw=oldPw+Ds(-Dmax≦Ds≦Dmax) (2)
其中, Ds 表示青蛙个体的调整矢量, Dmax表示青蛙个体允许改变的最大步长。如设Uw=[1 3 5 4 2],UB=[2 1 5 3 4],允许改变的最大步长Dmax =3,若rand=0.5 ,则U q(1) =1+min{int[0.5 × (2−1)],3}=1;U q(2) =3+max{int[0.5×(1−3)], −3}=2;依此相同的操作完成更新策略后可得到一个新解U q=[1 2 5 4 3].

‘肆’ 【数据结构与算法】青蛙跳台阶问题解析

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

因为n级台阶,第一步有n种跳法:跳1级、跳2级、到跳n级 跳1级,剩下n-1级,则剩下跳法是f(n-1) 跳2级,剩下n-2级,则剩下跳法是f(n-2) 所以f(n)=f(n-1)+f(n-2)+...+f(1) 因为f(n-1)=f(n-2)+f(n-3)+...+f(1) 所以f(n)=2*f(n-1)

如果target = 0,说明是直接跳过来,否则返回1;否则,总是有target中选择,把每种选择包含的步骤起来就行了,递归到0结束循环,并合并结果。

‘伍’ 蛙跳算法的过程

全局搜索过程
步骤l 初始化。确定蛙群的数量、种群以及每个种群的青蛙数。
步骤2 随机产生初始蛙群,计算各个蛙的适应值。
步骤3 按适应值大小进行降序排序并记录最好解Px,并且将蛙群分成族群。把F个蛙分配到m个族群Y,Y,Y…,Y中去,每个族群包含n个蛙,从而使得Yk=[X(j),f(j)|X(j)=X(k+m*(j-1), f(j)=f(k+m*(j-1),j=1,…,n,k=1,…,m].这里X(j)表示蛙群中的第j蛙,f(j)表示第j个蛙的目标函数值。
步骤4根据SFLA算法公式,在每个族群中进行元进化。
步骤5将各个族群进行混合。在每个族群都进行过一轮元进化之后,将各个族群中的蛙重新进行排序和族群划分并记录全局最好解Px。
步骤6检验计算停止条件。如果满足了算法收敛条件,则停止算法执行过程,否则转到步骤3。通常而言,如果算法在连续几个全局思想交流以后,最好解没有得到明显改进则停止算法。某些情况下,最大函数评价次数也可以作为算法的停止准则。
局部搜索过程
局部搜索过程是对上述步骤4的进一步展开,具体过程
如下:
步骤4—1设im=O,这里im是族群的计数器。用来与族群总数m进行比较。设iN=0,这里iN是局部进化的计数器,用来与Ls进行比较。
步骤4-2根据式(1)在第l,,1个族群中选择q个蛙进入子族群,确定Pb和Pw并设im=im+1。
步骤4-3设iN=iN+1。
步骤4—4根据式(2)和式(3)改进子族群中的最差蛙的位置。
步骤4—5如果步骤4—4改进了最差蛙的位置(解),就用新产生的位置取代最差蛙的位置。否则就采用Px代替式(2)中的PB,重新更新最差蛙的位置。
步骤4—6如果步骤4-5没有改进最差蛙的位置,则随机产生一个处于湿地中任何位置的蛙来替代最差的蛙。
不管执行了以上三次跳跃中的任何一次,需重新计算本子群的最优个体Pb和最差个体Pw。
步骤4—7如果iN<LS,则转到步骤4-3。
步骤4—8如果im<m,则转到步骤4-2,否则转到全局搜索过程的步骤5。
算法停止条件
SFLA通常采用两种策略来控制算法的执行时间:
1)在最近的K次全局思想交流过程之后,全局最好解没有得到明显的改进;
2)算法预先定义的函数评价次数已经达到。
3)已有标准测试结果。
无论哪个停止条件得到满足,算法都要被强制退出整个循环搜索过程。

‘陆’ 蛙跳算法的原理

蛙跳算法的思想是:在一片湿地中生活着一群青蛙。湿地内离散的分布着许多石头,青蛙通过寻找不同的石头进行跳跃去找到食物较多的地方。每只青蛙个体之间通过文化的交流实现信息的交换。每只青蛙都具有自己的文化。每只青蛙的文化被定义为问题的一个解。湿地的整个青蛙群体被分为不同的子群体,每个子群体有着自己的文化,执行局部搜索策略。在子群体中的每个个体有着自己的文化,并且影响着其他个体,也受其他个体的影响,并随着子群体的进化而进化。当子群体进化到一定阶段以后,各个子群体之间再进行思想的交流(全局信息交换)实现子群体间的混合运算,一直到所设置的条件满足为止。

热点内容
c服务编译耗时优化原理及实例 发布:2024-05-03 15:35:26 浏览:15
ue编程 发布:2024-05-03 15:34:40 浏览:610
经典的c语言程序 发布:2024-05-03 15:03:24 浏览:859
工程加密网 发布:2024-05-03 14:59:55 浏览:292
吃冰球解压 发布:2024-05-03 14:59:10 浏览:895
编译芯片发烫 发布:2024-05-03 14:59:05 浏览:549
优化算法pdf 发布:2024-05-03 14:18:10 浏览:291
python算法书 发布:2024-05-03 14:14:25 浏览:736
方舟怎么加入服务器闪退 发布:2024-05-03 14:05:27 浏览:491
安卓心跳怎么打出来 发布:2024-05-03 13:59:23 浏览:100