算法与数论
❶ 算法有哪些分类
算法分类编辑算法可大致分为:
基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法,厄米变形模型,随机森林算法。
❷ 计算数论和初等数论的区别
数论是纯粹数学的分支之一,主要研究整数的性质。按研究方法来看,数论大致可分为初等数论和高等数论。计算数论是包含在高等数论里的。
区别:
1.
初等数论主要就是研究整数环的整除理论及同余理论。此外它也包括了连分数理论和少许不定方程的问题。本质上说,初等数论的研究手段局限在整除性质上。
2.
计算数论是借助电脑的算法帮助研究数论的问题,例如素数测试和因数分解等和密码学息息相关的课题。
❸ 一个算法的评价主要从哪些方面来考虑
一个算法的评价主要从以下几个方面来考虑:
1、时间复杂度
算法的时间复杂度是指执行算法所需要的计算工作量。一般来说,计算机算法是问题规模n 的函数f(n),算法的时间复杂度也因此记做。
T(n)=Ο(f(n))
因此,问题的规模n 越大,算法执行的时间的增长率与f(n) 的增长率正相关,称作渐进时间复杂度(Asymptotic Time Complexity)。
2、空间复杂度
算法的空间复杂度是指算法需要消耗的内存空间。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。同时间复杂度相比,空间复杂度的分析要简单得多。
3、正确性
算法的正确性是评价一个算法优劣的最重要的标准。
4、可读性
算法的可读性是指一个算法可供人们阅读的容易程度。
5、健壮性
健壮性是指一个算法对不合理数据输入的反应能力和处理能力,也称为容错性。
(3)算法与数论扩展阅读:
算法可大致分为基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法,厄米变形模型,随机森林算法。
算法可以宏泛的分为三类:
一、有限的,确定性算法 这类算法在有限的一段时间内终止。他们可能要花很长时间来执行指定的任务,但仍将在一定的时间内终止。这类算法得出的结果常取决于输入值。
二、有限的,非确定算法 这类算法在有限的时间内终止。然而,对于一个(或一些)给定的数值,算法的结果并不是唯一的或确定的。
三、无限的算法 是那些由于没有定义终止定义条件,或定义的条件无法由输入的数据满足而不终止运行的算法。通常,无限算法的产生是由于未能确定的定义终止条件。
❹ 算法有什么分类
算法可大致分为基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法,厄米变形模型,随机森林算法。
算法可以宏泛的分为三类:
一、有限的,确定性算法 这类算法在有限的一段时间内终止。他们可能要花很长时间来执行指定的任务,但仍将在一定的时间内终止。这类算法得出的结果常取决于输入值。
二、有限的,非确定算法 这类算法在有限的时间内终止。然而,对于一个(或一些)给定的数值,算法的结果并不是唯一的或确定的。
三、无限的算法 是那些由于没有定义终止定义条件,或定义的条件无法由输入的数据满足而不终止运行的算法。通常,无限算法的产生是由于未能确定的定义终止条件。
(4)算法与数论扩展阅读:
算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
算法中的指令描述的是一个计算,当其运行时能从一个初始状态和(可能为空的)初始输入开始,经过一系列有限而清晰定义的状态,最终产生输出并停止于一个终态。一个状态到另一个状态的转移不一定是确定的。随机化算法在内的一些算法,包含了一些随机输入。
形式化算法的概念部分源自尝试解决希尔伯特提出的判定问题,并在其后尝试定义有效计算性或者有效方法中成形。这些尝试包括库尔特·哥德尔、Jacques Herbrand和斯蒂芬·科尔·克莱尼分别于1930年、1934年和1935年提出的递归函数,阿隆佐·邱奇于1936年提出的λ演算,1936年Emil Leon Post的Formulation 1和艾伦·图灵1937年提出的图灵机。即使在当前,依然常有直觉想法难以定义为形式化算法的情况。
❺ 算法的描述、特性以及概念
描述算法的方法有多种,常用的有自然语言、结构化流程图、伪代码和PAD图等,其中最普遍的是流程图。
分类:算法可大致分为基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法,厄米变形模型,随机森林算法。
特征:有穷性,算法的有穷性是指算法必须能在执行有限个步骤之后终止;确切性,算法的每一步骤必须有确切的定义;输入项:一个算法有0个或多个输入,;输出项;可行性,算法中执行的任何计算步骤都是可以被分解为基本的可执行的操作步,即每个计算步都可以在有限时间内完成。
(5)算法与数论扩展阅读
算法历史:
“算法”即算法的大陆中文名称出自《周髀算经》;而英文名称Algorithm 来自于9世纪波斯数学家al-Khwarizmi,al-Khwarizmi在数学上提出了算法这个概念。“算法”,意思是阿拉伯数字的运算法则,在18世纪演变为"algorithm"。
因为巴贝奇未能完成他的巴贝奇分析机,这个算法未能在巴贝奇分析机上执行。 20世纪的英国数学家图灵提出了着名的图灵论题,并提出一种假想的计算机的抽象模型,这个模型被称为图灵机。图灵机的出现解决了算法定义的难题,图灵的思想对算法的发展起到了重要作用。
❻ 算法的要素是什么算法的特征是什么
一、算法的要素包括:
1、数据对象的操作和操作:计算机可以执行的基本操作以指令的形式描述。
2、算法的控制结构:算法的功能结构不仅取决于所选的操作,还取决于操作之间的执行顺序。
二、算法的特征如下:
1、有穷性:算法的有穷性意味着算法在执行有限的步骤之后必须能够终止。
2、确切性:算法的每一步都必须确切定义。
3、输入项:一个算法有0个或多个输入来描述操作对象的初始条件。所谓的零输入是指由算法本身决定的初始条件。
4、输出项:一个算法有一个或多个输出来反映处理输入数据的结果。没有输出的算法毫无意义。
5、可行性:算法中执行的任何计算步骤都可以分解为基本的可执行操作步骤,即每个计算步骤都可以在有限的时间内完成。
(6)算法与数论扩展阅读:
算法可大致分为基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法,厄米变形模型,随机森林算法。
描述算法的方法有多种,常用的有自然语言、结构化流程图、伪代码和PAD图等,其中最普遍的是流程图。
随着计算机的发展,算法在计算机方面已有广泛的发展及应用,如用随机森林算法,来进行头部姿势的估计,用遗传算法来解决弹药装载问题,信息加密算法在网络传输中的应用,并行算法在数据挖掘中的应用等。
❼ 数论包括哪些内容
包括:初等数论、解析数论、代数数论、几何数论、计算数论、超越数论、组合数论、算术代数几何。
1、初等数论
初等数论主要就是研究整数环的整除理论及同余理论。此外它也包括了连分数理论和少许不定方程的问题。本质上说,初等数论的研究手段局限在整除性质上。
初等数论中经典的结论包括算术基本定理、欧几里得的质数无限证明、中国剩余定理、欧拉定理(其特例是费马小定理)、高斯的二次互反律, 勾股方程的商高定理、佩尔方程的连分数求解法等等。
2、解析数论
借助微积分及复分析(即复变函数)来研究关于整数的问题,主要又可以分为乘性数论与加性数论两类。乘性数论借由研究积性生成函数的性质来探讨素数分布的问题,其中质数定理与狄利克雷定理为这个领域中最着名的古典成果。加性数论则是研究整数的加法分解之可能性与表示的问题,华林问题是该领域最着名的课题。
解析数论的创立当归功于黎曼。他发现了黎曼zeta函数之解析性质与数论中的素数分布问题存在深刻联系。确切的说, 黎曼ζ函数的非平凡零点的分布情况决定了素数的很多性质。黎曼猜测, 那些零点都落在复平面上实部为1/2的直线上。这就是着名的黎曼假设—千禧年大奖难题之一。值得注意的是, 欧拉实际上在处理素数无限问题时也用到了解析方法。
解析数论方法除了圆法、筛法等等之外, 也包括和椭圆曲线相关的模形式理论等等。此后又发展到自守形式理论,从而和表示论联系起来。
3、代数数论
代数数论,将整数环的数论性质研究扩展到了更一般的整环上,特别是代数数域。一个主要课题就是关于代数整数的研究,目标是为了更一般地解决不定方程求解的问题。其中一个主要的历史动力来自于寻找费马大定理的证明。
代数数论更倾向于从代数结构角度去研究各类整环的性质, 比如在给定整环上是否存在算术基本定理等等。
这个领域与代数几何之间的关联尤其紧密, 它实际上也构成了交换代数理论的一部分。它也包括了其他深刻内容,比如表示论、p-adic理论等等。
4、几何数论
主要在于通过几何观点研究整数(在此即格点, 也称整点)的分布情形。最着名的定理为Minkowski定理。这门理论也是有闵科夫斯基所创。对于研究二次型理论有着重要作用。
5、计算数论
借助电脑的算法帮助研究数论的问题,例如素数测试和因数分解等和密码学息息相关的课题。
❽ “计算数论”讲的是什么啊
计算数论:
分为初等数论,计算/算法数论,数论在计算和密码学上的应用。
初等数论部分包括:整除理论,丢番图方程,数论函数,素数分布,同余理论,椭圆曲线算法;
计算/算法数论包括:素性测试算法,整数分解算法,离散对数算法,量子数论算法,其它数论算法;
应用包括:计算机系统设计(散列,随机数生成等)和密码学与信息安全(DES,RSA等)。
❾ 数学的各种算法
算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
算法中的指令描述的是一个计算,当其运行时能从一个初始状态和(可能为空的)初始输入开始,经过一系列有限而清晰定义的状态,最终产生输出并停止于一个终态。一个状态到另一个状态的转移不一定是确定的。随机化算法在内的一些算法,包含了一些随机输入。
形式化算法的概念部分源自尝试解决希尔伯特提出的判定问题,并在其后尝试定义有效计算性或者有效方法中成形。这些尝试包括库尔特·哥德尔、Jacques Herbrand和斯蒂芬·科尔·克莱尼分别于1930年、1934年和1935年提出的递归函数,阿隆佐·邱奇于1936年提出的λ演算,1936年Emil Leon Post的Formulation 1和艾伦·图灵1937年提出的图灵机。即使在当前,依然常有直觉想法难以定义为形式化算法的情况。
一个算法应该具有以下五个重要的特征:
有穷性
(Finiteness)
算法的有穷性是指算法必须能在执行有限个步骤之后终止;
确切性
(Definiteness)
算法的每一步骤必须有确切的定义;
输入项
(Input)
一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定出了初始条件;
输出项
(Output)
一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的;
可行性
(Effectiveness)
算法中执行的任何计算步骤都是可以被分解为基本的可执行的操作步,即每个计算步都可以在有限时间内完成(也称之为有效性)。
一、数据对象的运算和操作:计算机可以执行的基本操作是以指令的形式描述的。一个计算机系统能执行的所有指令的集合,成为该计算机系统的指令系统。一个计算机的基本运算和操作有如下四类:[1]
1.算术运算:加减乘除等运算
2.逻辑运算:或、且、非等运算
3.关系运算:大于、小于、等于、不等于等运算
4.数据传输:输入、输出、赋值等运算[1]
二、算法的控制结构:一个算法的功能结构不仅取决于所选用的操作,而且还与各操作之间的执行顺序有关。
算法可大致分为基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法,厄米变形模型,随机森林算法。
算法可以宏泛地分为三类:
一、有限的,确定性算法 这类算法在有限的一段时间内终止。他们可能要花很长时间来执行指定的任务,但仍将在一定的时间内终止。这类算法得出的结果常取决于输入值。
二、有限的,非确定算法 这类算法在有限的时间内终止。然而,对于一个(或一些)给定的数值,算法的结果并不是唯一的或确定的。
三、无限的算法 是那些由于没有定义终止定义条件,或定义的条件无法由输入的数据满足而不终止运行的算法。通常,无限算法的产生是由于未能确定的定义终止条件。
希望我能帮助你解疑释惑。