提升度算法
㈠ 个性化推荐算法的四大策略02
在复杂的推荐系统中,推荐算法作为其最核心、最关键的部分,很大程度上决定了推荐系统性能的好坏,且重点体现在数据决策层。
在个性化推荐系统中,简单推荐策略主要分为:基于热门推荐推荐、基于基本信息推荐、基于内容推荐、基于关联规则推荐。
热门推荐,顾名思义就是使用统计的方法将最热门的物品进行推荐,越热门的物品被点击的可能性越大。
基于基本信息推荐是根据用户的基本信息如:领域、职位、工作年龄、性别和所在地等给用户推荐感兴趣或者相关的内容,比如年龄-关联电影表、收入-关联商品类型表,性别-文章关联表等等。
因为基于热门推荐与基于基本信息推荐使用比较简单,所以这两个推荐策略应用比较广泛。
基于内容推荐是指(Content Based Recommandation)利用用户和物品的相关信息,例如前述用户和物品画像信息及用户对物品的行为构建的模型,例如浏览、点击、打电话、收藏、评论、下单等。内容推荐算法根据用户行为推断用户偏好,并为用户推荐相同偏好的物品。
基于内容推荐的计算过程一般分为四个步骤:
由这些共性属性查找其他物品,并实施推荐。
基于关联规则推荐(Association Rules)是通过数据挖掘的方法找到物品之间的相关关系,再进行标签推荐,比如大家所熟知的“啤酒”和“尿布”,就是某超市工作人员通过对顾客的购物清单进行分析后,才发现了啤酒和尿布之间的共现关系。
而衡量物品之间的关联性时,主要看支持度、置信度和提升度这三大指标。
支持度表示 AB 共现情况占所有情况的比例,则有表达式 Support(A->B)=P(A&B),它往往用来评估搜索词当中该词出现的概率。
置信度表示 AB 共现情况占 A 情况的比例,其表达式为 Confidence(A->B)=P(A&B)/P(A)。
提升度表示以 A 为前提下 B 出现的情况与 B 情况的比例,表达式为 Lift(A->B)=P(B|A)/P(B) ,它往往用来评估推荐效果。
在计算 Lift(A->B) 时,主要出现以下三种情况:
Lift(A->B)>1 时,说明搜索 A 时推荐 B 比直接推荐 B 的效果更好
Lift(A->B)=1 时,说明搜索 A 和搜素 B 属于独立事件,二者没什么关系
Lift(A->B)<1 时,说明搜索 A 和搜索 B 负相关,搜索 A 还不如不去推荐 B。
㈡ 关联规则-算法原理与案例
✓ 关联规则(Association Rules)反映一个事务与其他事务之间的相
互依存性和关联性。如果两个或者多个事务之间存在一定的关联关
系,那么,其中一个事务就能够通过其他事务预测到。
✓ 关联规则是无监督的机器学习方法,用于知识发现,而非预测
✓ 关联规则的学习器(learner)无需事先对训练数据进行打标签,因
为无监督学习没有训练这个步骤。缺点是很难对关联规则学习器进
行模型评估,一般都可以通过业务经验观测结果是否合理
关联规则之前,需要理解一些基本概念。
下图数据集中,每一组数据ti表示不同的顾客一次在商场购买的商品
的集合,以该数据为例来说明关联规则相关概念。
图片显示, 表中存储着二维结构的记录集,记为D,简称事务集D,含事务的个数称为|D|。那么图片中从t1,t2,......直到t7含7个事务,|D|=7。
设I={i1,i2,…im}是m个不同项目的集合,每个ik(k=1,2,…m)称为一个项目(Item),I是所有项目(Item)的集合,称为所有项集(Items)。图片中所有项集I={牛肉,鸡肉,牛奶,奶酪,靴子,衣服},其中,“牛 肉”、“鸡肉”等均为项目。
在事务数据集里的一笔记录,记为事务T,{牛肉、鸡肉、牛奶}便是一个事务,每个事务T(Transaction)是所有项集I的一个子集。
项目的集合简称为项集(Itemset),其元素个数为项集的长度,长度为k的项集称为k-项集(k-Itemset)。
如{牛肉}、{鸡肉}均为1-项集,{牛肉、奶酪}为2-项集,{鸡肉、衣 服、牛奶}为3-项集。
重点概念5-项集的支持度:项集支持度用于描述X的重要性,对于项集X,count为事务集D中包含X的事务的数量,项集X的支持度就是项集X出现的概率。
项集的支持度就是该项集出现的次数除以总的记录数,例如,上述的7个事务中,{牛肉、鸡肉}出现的次数是3次,支持度就是3/7 。
我们在发现规则的时候,希望关注频次高的项集,发现关联规则要求项集必须满足的最小支持阈值,称为项集的最小支持度(Minimum Support),记为supmin。支持度大于或等于最小支持度的项集称为频繁项集,简称频繁集,反之则称为非频繁集。支持度在这个算法中通常是人为规定的参数。
规则R的支持度是交易集中同时包含X和Y的交易数与所有交易数之比;
支持度计算在事务集中,既有A又有B的概率。
例:在7条记录中,既有牛肉又有鸡肉的记录有3条,则 R:牛肉 鸡肉的支持度为3/7,即 ,表示在所有顾客当中有3/7同时购买了牛肉和鸡肉,其反映了同时购买牛肉和鸡肉的顾客在所有顾客当中的覆盖范围。
规则R的置信度是指包含X和Y的交易数与包含X的交易数之比。
规则的置信度的意义在于项集{X,Y}同时出现的次数占项集{X}出现次数的比例,即发生X的条件下,又发生Y的概率。
关联规则的最小支持度也就是衡量频繁集的最小支持度(Minimum
Support),记为supmin,它用于衡量规则需要满足的最低重要性。
Minimum Support是一个阈值参数,必须在处理关联规则之前指定该
参数。该参数表示用户对某些项集和规则感兴趣,这些规则表示数
据集的最低支持度。它是用于对项集进行限制,而不是对规则进行
限制。
✓ 如果关联规则R: A→B满足Support(A→B )>=supmin 且
Confidence( A→B )>=confmin,则称关联规则R: 为强关联规则,否
则称关联规则为弱关联规则;
✓ 在挖掘关联规则时,产生的关联规则要经过supmin和confmin的衡量,
筛选出来的强关联规则才能用于指导商家的决策;
引入例题来计算这个概念,例:在所分析的10000个事务中,6000个事务包含计算机游戏,7500包含游戏机游戏,4000个事务同时包含两者。
下面我们计算:关联规则(计算机游戏 → 游戏机游戏)支持度=4000/10000=0.4,置信度=4000/6000=0.67,但其实这个关联规则是一个误导。
在用户购买了计算机游戏后有(4000/6000)=0.667的概率去购买游戏机游戏,而在没有任何前提条件下,用户反而有(7500/10000) =0.75的概率去购买游戏机游戏,也就是说设置了购买计算机游戏这样的条件反而会降低用户去购买游戏机游戏的概率,所以计算机游戏和游戏机游戏是相斥的。
此时需要引入提升度的概念。
如果两个条件相互独立,则P(XY)=P(X)· P(Y),即提升度为1;如果小于1,说明使用这条规则来进行推荐,还不如不推荐(推荐无效);
一般在数据挖掘中当提升度大于3时,我们才承认挖掘出的关联规则是有价值的。
上述例子中,假设购买计算机游戏为X,购买游戏机游戏为Y,则有提升度数=0.667/0.75<1
这表明这样的推荐是无效的,提升度小于1,还不如不推荐。
第一步,生成候选项集,然后根据指定的最小支持度,过滤掉非频繁项集,生成频繁项集。
该步骤需要多次遍历:第一次遍历,对所有单项的支持度进行计数并确定频繁项;在后续的每次遍历中,利用上一次遍历所得频繁项集作为种子项集,产生新的频繁项集-候选项集,并对候选项集的支持度进行计数,在本次遍历结束时统计满足最小支持度的候选项集,本次遍历对应的频繁项集就算是确定了,这些频繁项集又成为下一次遍历的种子;重复此遍历过程,直到再不能发现新的频繁项集。
第二步,找出第一步的频繁项集中的规则,然后根据指定的最小置信度,过滤掉弱规则。第一步的计算量比第二步的计算量大。
步骤1:
✓ 生成候选1-项集C1,计算支持度
✓ 根据最小支持度,生成频繁1-项集L1
步骤2:
✓ 生成候选2-项集C2,计算支持度
✓ 根据最小支持度,生成频繁2-项集L2
✓ 生成关联规则时,最简单的方法就是对于每个频繁项集,列出其所有非空
真子集,任取其中两个分别作为LHS和RHS,形成关联规则,并计算每条关
联规则的置信度,删除弱规则
✓ 上例中 , 对于频繁项集 {B,C,E} , 它的非空子集有 {B},{C},{E},
{B,C},{B,E},{C,E}。据此获得的关联规则及其置信度,置信度>=50%(最小
置信度),都是强关联规则
✓ Apriori原理可以帮助减少计算量
✓ Apriori原理:某个项集是频繁的,那么它的所有子集也是频繁的;
更常用的是它的逆否命题,即如果一个项集是非频繁的,那么它的
所有超集也是非频繁的(称为项集的反单调性,向下闭合性)
已知阴影项集{2,3}是非频繁的。利用Apriori原理,我们知道项集{0,2,3}, {1,2,3}以及{0,1,2,3}也是非频繁的。也就是说,一旦计算出了{2,3}的支持 度 , 知 道 它 是 非 频 繁 的 , 就 可 以 紧 接 着 排 除 {0,2,3} , {1,2,3} 和 {0,1,2,3}。
✓ 反单调性能迅速剪枝,提高搜索频繁项集的处理效率
在商品列表中找出频繁项集,构建商品列表。
创建模型,传入数据,输出的support就是支持度。
该段输出结果如下
接下来可以筛选支持度大于某特定值的二项集
输出结果
㈢ 电梯提升高度如何计算法
提升高度就是从最底层到最顶层的一个提升高度,也就是从最底层的电梯地砍到最顶层的电梯地砍之间的一个距离。 电梯地坑深度就是从最底层地砍面到底坑地面之间一个垂直间距 顶层空间高度就是从最顶层厅门地砍面到井道顶面之间的一个垂直间距。
如果采用螺杆式电梯,一般提升高度在13米以内,迅立达电梯采用曳引式驱动电梯其安全性与稳定性更高,采用这种驱动方式的家用电梯提升高度可以做到18米,一般的6层别墅和高层复式楼都可以安装。
(3)提升度算法扩展阅读
北极星水力发电网讯:2018年1月11日,世界提升最高的升船机,向家坝升船机进实船过机预演圆满成功,为即将进行的实船试验提供了有力保证,
同时也证明了向家坝升船机制造、安装、调试质量的优良,预示向家坝水电站的通航已进入倒计时。向家坝升船机进实船过机预演由武汉船舶工业公司、三峡集团升船机部、向家坝电厂联合进行。
㈣ 数据挖掘中提升度是什么意思
采用数据挖掘方法作分析后,对于问题(客户识别等)判断效率的提升幅度。
如,贷款客户的违约率为2%,你用数据挖掘方法建立了一个预测贷款客户将来违约可能性的模型,用这个模型将客户进行评分后,违约可能性最高的10%的客户中,实际违约客户占了50%,说明你所建立的模型对于这一部分客户识别的提升率是25(50%是2%的25倍),你只要做好这10%的客户的贷后管理,就能够避免50%违约客户的损失,比起你毫无目的地对所有贷款客户进行贷后管理效率要高得多。
㈤ 谁能告诉我‘提升度’的准确含义及计算方法
用完成的数减原完成的数
如120-50=70
再用原完成的数除以多出来的数乘上100%
如50/70*100%=71%
㈥ 单一决策树 随机森林和梯度提升算法的区别
其实,在计算量方面,两者有很大的不同,因而在面对给定的问题时,可以有选择性的根据问题的性质选择两种方法中的一个. 具体来说,最 小二乘法的矩阵公式是 ,这里的 A 是一个矩阵,b 是一个向量.如果有离散数据点,,而想要拟合的方程又大致形如 ,那么,A 就是一个 的矩阵,第 i 行的数据点分别是 ,而 b 则是一个向量,其值为 .而又已知,计算一个矩阵的逆是相当耗费时间的,而且求逆也会存在数值不稳定的情况 (比如对希尔伯特矩阵求逆就几乎是不可能的).因而这样的计算方法有时不值得提倡. 相比之下,梯度下降法虽然有一些弊端,迭代的次数可能也比较高,但是相对来说计算量并不是特别大.而且,在最小二乘法这个问题上,收敛性有保证.故在大数据量的时候,反而是梯度下降法 (其实应该是其他一些更好的迭代方法) 更加值得被使用. 当然,其实梯度下降法还有别的其他用处,比如其他找极值问题.另外,牛顿法也是一种不错的方法,迭代收敛速度快于梯度下降法,只是计算代价也比较高.