当前位置:首页 » 操作系统 » linux报文

linux报文

发布时间: 2022-12-12 04:05:49

⑴ 如何让linux系统发送dhcp release报文

是redhat?在/etc/sysconfig/network-scripts/ifcfg-eth0加入

DHCPRELEASE=yes

当运行ifdown eth0的时候就会发出dhcprelase报文,看/etc/sysconfig/network-scripts/ifdown-eth脚本中实际上是调用dhclient命令,用下面这个命令应该也可以,试试看吧。
/sbin/dhclient -r eth0

⑵ linux禁用网口收发报文,网卡ip还在

因为禁用的只是网卡对外收发报文功能,并没有禁用网卡的IP地址,所以网卡的ip地址还在。

⑶ 关于 Linux 网络,你必须知道这些

我们一起学习了文件系统和磁盘 I/O 的工作原理,以及相应的性能分析和优化方法。接下来,我们将进入下一个重要模块—— Linux 的网络子系统。

由于网络处理的流程最复杂,跟我们前面讲到的进程调度、中断处理、内存管理以及 I/O 等都密不可分,所以,我把网络模块作为最后一个资源模块来讲解。

同 CPU、内存以及 I/O 一样,网络也是 Linux 系统最核心的功能。网络是一种把不同计算机或网络设备连接到一起的技术,它本质上是一种进程间通信方式,特别是跨系统的进程间通信,必须要通过网络才能进行。随着高并发、分布式、云计算、微服务等技术的普及,网络的性能也变得越来越重要。

说到网络,我想你肯定经常提起七层负载均衡、四层负载均衡,或者三层设备、二层设备等等。那么,这里说的二层、三层、四层、七层又都是什么意思呢?

实际上,这些层都来自国际标准化组织制定的开放式系统互联通信参考模型(Open System Interconnection Reference Model),简称为 OSI 网络模型。

但是 OSI 模型还是太复杂了,也没能提供一个可实现的方法。所以,在 Linux 中,我们实际上使用的是另一个更实用的四层模型,即 TCP/IP 网络模型。

TCP/IP 模型,把网络互联的框架分为应用层、传输层、网络层、网络接口层等四层,其中,

为了帮你更形象理解 TCP/IP 与 OSI 模型的关系,我画了一张图,如下所示:

当然了,虽说 Linux 实际按照 TCP/IP 模型,实现了网络协议栈,但在平时的学习交流中,我们习惯上还是用 OSI 七层模型来描述。比如,说到七层和四层负载均衡,对应的分别是 OSI 模型中的应用层和传输层(而它们对应到 TCP/IP 模型中,实际上是四层和三层)。

OSI引入了服务、接口、协议、分层的概念,TCP/IP借鉴了OSI的这些概念建立TCP/IP模型。

OSI先有模型,后有协议,先有标准,后进行实践;而TCP/IP则相反,先有协议和应用再提出了模型,且是参照的OSI模型。

OSI是一种理论下的模型,而TCP/IP已被广泛使用,成为网络互联事实上的标准。

有了 TCP/IP 模型后,在进行网络传输时,数据包就会按照协议栈,对上一层发来的数据进行逐层处理;然后封装上该层的协议头,再发送给下一层。

当然,网络包在每一层的处理逻辑,都取决于各层采用的网络协议。比如在应用层,一个提供 REST API 的应用,可以使用 HTTP 协议,把它需要传输的 JSON 数据封装到 HTTP 协议中,然后向下传递给 TCP 层。

而封装做的事情就很简单了,只是在原来的负载前后,增加固定格式的元数据,原始的负载数据并不会被修改。

比如,以通过 TCP 协议通信的网络包为例,通过下面这张图,我们可以看到,应用程序数据在每个层的封装格式。

这些新增的头部和尾部,增加了网络包的大小,但我们都知道,物理链路中并不能传输任意大小的数据包。网络接口配置的最大传输单元(MTU),就规定了最大的 IP 包大小。在我们最常用的以太网中,MTU 默认值是 1500(这也是 Linux 的默认值)。

一旦网络包超过 MTU 的大小,就会在网络层分片,以保证分片后的 IP 包不大于 MTU 值。显然,MTU 越大,需要的分包也就越少,自然,网络吞吐能力就越好。

理解了 TCP/IP 网络模型和网络包的封装原理后,你很容易能想到,Linux 内核中的网络栈,其实也类似于 TCP/IP 的四层结构。如下图所示,就是 Linux 通用 IP 网络栈的示意图:

我们从上到下来看这个网络栈,你可以发现,

这里我简单说一下网卡。网卡是发送和接收网络包的基本设备。在系统启动过程中,网卡通过内核中的网卡驱动程序注册到系统中。而在网络收发过程中,内核通过中断跟网卡进行交互。

再结合前面提到的 Linux 网络栈,可以看出,网络包的处理非常复杂。所以,网卡硬中断只处理最核心的网卡数据读取或发送,而协议栈中的大部分逻辑,都会放到软中断中处理。

我们先来看网络包的接收流程。

当一个网络帧到达网卡后,网卡会通过 DMA 方式,把这个网络包放到收包队列中;然后通过硬中断,告诉中断处理程序已经收到了网络包。

接着,网卡中断处理程序会为网络帧分配内核数据结构(sk_buff),并将其拷贝到 sk_buff 缓冲区中;然后再通过软中断,通知内核收到了新的网络帧。

接下来,内核协议栈从缓冲区中取出网络帧,并通过网络协议栈,从下到上逐层处理这个网络帧。比如,

最后,应用程序就可以使用 Socket 接口,读取到新接收到的数据了。

为了更清晰表示这个流程,我画了一张图,这张图的左半部分表示接收流程,而图中的粉色箭头则表示网络包的处理路径。

了解网络包的接收流程后,就很容易理解网络包的发送流程。网络包的发送流程就是上图的右半部分,很容易发现,网络包的发送方向,正好跟接收方向相反。

首先,应用程序调用 Socket API(比如 sendmsg)发送网络包。

由于这是一个系统调用,所以会陷入到内核态的套接字层中。套接字层会把数据包放到 Socket 发送缓冲区中。

接下来,网络协议栈从 Socket 发送缓冲区中,取出数据包;再按照 TCP/IP 栈,从上到下逐层处理。比如,传输层和网络层,分别为其增加 TCP 头和 IP 头,执行路由查找确认下一跳的 IP,并按照 MTU 大小进行分片。

分片后的网络包,再送到网络接口层,进行物理地址寻址,以找到下一跳的 MAC 地址。然后添加帧头和帧尾,放到发包队列中。这一切完成后,会有软中断通知驱动程序:发包队列中有新的网络帧需要发送。

最后,驱动程序通过 DMA ,从发包队列中读出网络帧,并通过物理网卡把它发送出去。

多台服务器通过网卡、交换机、路由器等网络设备连接到一起,构成了相互连接的网络。由于网络设备的异构性和网络协议的复杂性,国际标准化组织定义了一个七层的 OSI 网络模型,但是这个模型过于复杂,实际工作中的事实标准,是更为实用的 TCP/IP 模型。

TCP/IP 模型,把网络互联的框架,分为应用层、传输层、网络层、网络接口层等四层,这也是 Linux 网络栈最核心的构成部分。

我结合网络上查阅的资料和文章中的内容,总结了下网卡收发报文的过程,不知道是否正确:

当发送数据包时,与上述相反。链路层将数据包封装完毕后,放入网卡的DMA缓冲区,并调用系统硬中断,通知网卡从缓冲区读取并发送数据。

了解 Linux 网络的基本原理和收发流程后,你肯定迫不及待想知道,如何去观察网络的性能情况。具体而言,哪些指标可以用来衡量 Linux 的网络性能呢?

实际上,我们通常用带宽、吞吐量、延时、PPS(Packet Per Second)等指标衡量网络的性能。

除了这些指标,网络的可用性(网络能否正常通信)、并发连接数(TCP 连接数量)、丢包率(丢包百分比)、重传率(重新传输的网络包比例)等也是常用的性能指标。

分析网络问题的第一步,通常是查看网络接口的配置和状态。你可以使用 ifconfig 或者 ip 命令,来查看网络的配置。我个人更推荐使用 ip 工具,因为它提供了更丰富的功能和更易用的接口。

以网络接口 eth0 为例,你可以运行下面的两个命令,查看它的配置和状态:

你可以看到,ifconfig 和 ip 命令输出的指标基本相同,只是显示格式略微不同。比如,它们都包括了网络接口的状态标志、MTU 大小、IP、子网、MAC 地址以及网络包收发的统计信息。

第一,网络接口的状态标志。ifconfig 输出中的 RUNNING ,或 ip 输出中的 LOWER_UP ,都表示物理网络是连通的,即网卡已经连接到了交换机或者路由器中。如果你看不到它们,通常表示网线被拔掉了。

第二,MTU 的大小。MTU 默认大小是 1500,根据网络架构的不同(比如是否使用了 VXLAN 等叠加网络),你可能需要调大或者调小 MTU 的数值。

第三,网络接口的 IP 地址、子网以及 MAC 地址。这些都是保障网络功能正常工作所必需的,你需要确保配置正确。

第四,网络收发的字节数、包数、错误数以及丢包情况,特别是 TX 和 RX 部分的 errors、dropped、overruns、carrier 以及 collisions 等指标不为 0 时,通常表示出现了网络 I/O 问题。其中:

ifconfig 和 ip 只显示了网络接口收发数据包的统计信息,但在实际的性能问题中,网络协议栈中的统计信息,我们也必须关注。你可以用 netstat 或者 ss ,来查看套接字、网络栈、网络接口以及路由表的信息。

我个人更推荐,使用 ss 来查询网络的连接信息,因为它比 netstat 提供了更好的性能(速度更快)。

比如,你可以执行下面的命令,查询套接字信息:

netstat 和 ss 的输出也是类似的,都展示了套接字的状态、接收队列、发送队列、本地地址、远端地址、进程 PID 和进程名称等。

其中,接收队列(Recv-Q)和发送队列(Send-Q)需要你特别关注,它们通常应该是 0。当你发现它们不是 0 时,说明有网络包的堆积发生。当然还要注意,在不同套接字状态下,它们的含义不同。

当套接字处于连接状态(Established)时,

当套接字处于监听状态(Listening)时,

所谓全连接,是指服务器收到了客户端的 ACK,完成了 TCP 三次握手,然后就会把这个连接挪到全连接队列中。这些全连接中的套接字,还需要被 accept() 系统调用取走,服务器才可以开始真正处理客户端的请求。

与全连接队列相对应的,还有一个半连接队列。所谓半连接是指还没有完成 TCP 三次握手的连接,连接只进行了一半。服务器收到了客户端的 SYN 包后,就会把这个连接放到半连接队列中,然后再向客户端发送 SYN+ACK 包。

类似的,使用 netstat 或 ss ,也可以查看协议栈的信息:

这些协议栈的统计信息都很直观。ss 只显示已经连接、关闭、孤儿套接字等简要统计,而 netstat 则提供的是更详细的网络协议栈信息。

比如,上面 netstat 的输出示例,就展示了 TCP 协议的主动连接、被动连接、失败重试、发送和接收的分段数量等各种信息。

接下来,我们再来看看,如何查看系统当前的网络吞吐量和 PPS。在这里,我推荐使用我们的老朋友 sar,在前面的 CPU、内存和 I/O 模块中,我们已经多次用到它。

给 sar 增加 -n 参数就可以查看网络的统计信息,比如网络接口(DEV)、网络接口错误(EDEV)、TCP、UDP、ICMP 等等。执行下面的命令,你就可以得到网络接口统计信息:

这儿输出的指标比较多,我来简单解释下它们的含义。

其中,Bandwidth 可以用 ethtool 来查询,它的单位通常是 Gb/s 或者 Mb/s,不过注意这里小写字母 b ,表示比特而不是字节。我们通常提到的千兆网卡、万兆网卡等,单位也都是比特。如下你可以看到,我的 eth0 网卡就是一个千兆网卡:

其中,Bandwidth 可以用 ethtool 来查询,它的单位通常是 Gb/s 或者 Mb/s,不过注意这里小写字母 b ,表示比特而不是字节。我们通常提到的千兆网卡、万兆网卡等,单位也都是比特。如下你可以看到,我的 eth0 网卡就是一个千兆网卡:

我们通常使用带宽、吞吐量、延时等指标,来衡量网络的性能;相应的,你可以用 ifconfig、netstat、ss、sar、ping 等工具,来查看这些网络的性能指标。

小狗同学问到: 老师,您好 ss —lntp 这个 当session处于listening中 rec-q 确定是 syn的backlog吗?
A: Recv-Q为全连接队列当前使用了多少。 中文资料里这个问题讲得最明白的文章: https://mp.weixin.qq.com/s/yH3PzGEFopbpA-jw4MythQ

看了源码发现,这个地方讲的有问题.关于ss输出中listen状态套接字的Recv-Q表示全连接队列当前使用了多少,也就是全连接队列的当前长度,而Send-Q表示全连接队列的最大长度

⑷ 怎样用Linux命令查询报文信息

抓包命令tcpmp tcp -A port 22 -w a.cap 将报文内容存在a.cap里面。a.cap文件是2进制的,需要用ethreal工具专门读取。

⑸ linux服务器接收发送报文

它使用状态的“关联”(协会),两对SCTP用户协议之间的信息交换条款的定义。 SCTP也是一个面向连接的,但在概念上,SCTP“关联”更广泛的TCP连接相比,只有一个TCP连接的源地址和目的地址,SCTP提供了另一种方式为每个SCTP端点的运输提供了一组地址等端点传输地址= IP地址+端口号。

继承的TCP功能的基础上,SCTP提供了一些额外的功能:

1有序传输中的用户数据的多个“流”(流)

“流”是一系列的TCP中指的字节,而在SCTP是指某个系列的用户消息被发送到上层协议,这些消息的顺序与在流之内的其他消息。当建立关联,SCTP的用户的数据流的数目,可被提供给相关联的载体。此号码被商定的流的??数目与源端的用户相关联的消息。 SCTP为每个邮件中的链接发送给同行的流分配的序列号。在接收端,SCTP,以确保在一个给定的消息流的顺序被发送。另一方面,当工作流正在等待的下一个非顺序的用户消息的其他数据流的发送时,将继续下去。

2根据所发现的路径MTU(最大传输单元)的大小的用户数据切片

为了确保一致的SCTP报文发送到较低的路径MTU,SCTP用户消息分得一杯羹。传递给上部SCTP用户在接收端,切片重组。

3选择性确认(SACK)和拥塞控制

选择性确认数据包丢失,TCP序列号被返回给发送者已经成功地接收到的数据字节的序列号(不包括根据确认的字节数)的认可,并在SCTP反馈给发件人丢失,并要求序列号的消息重发。

SCTP使用的TCP拥塞控制技术,包括慢启动,拥塞避免和快速重传。因此,当一个共存和TCP应用程序时,SCTP的应用程序可以接收部分SCTP的网络资源。

4块(块)结合。

选择性地绑定到??SCTP包,即多个用户消息的消息发送到一个或多个数据结构的SCTP - “块”,SCTP储备应用程序消息传递框架边界。不同类型的块可以绑定到一个SCTP报文,但任何一个数据块之前,必须放在控制块。

5路径管理

SCTP路径管理功能主要是负责为目的地的运输提供了一个选择的目标地址的传输地址的远程地址,它是基于两个方面:SCTP用户的说明和合格的目的地。当其他流量控制不能提供可达性信息,定期扫描路径管理功能链接到SCTP报告在远程传输地址发生变化的可达性。 SCTP路径管理功能模块还负责建立链接,该报告的末端的本地地址,传输地址告诉SCTP用户的远程回报。

6,支持多归位

当SCTP传输的数据包的目的IP地址,如果IP地址是不可达的,SCTP消息重新路由到备用的IP地址。因此,在相关联,即使在两端的,可以容忍网络级别的错误的一端。

7对拒绝服务攻击(DoS)

DoS攻击的方法有很多种,最基本的DoS攻击就是利用合理的服务请求来占用过多的资源,从而使合法用户无法得到服务的响应。 SYN洪水攻击是一种拒绝服务攻击实例,是最好的方式了黑客攻击。针对SYN Flooding攻击的目标主机上,SCTP关联的初始化阶段,实施以“Cookie”的安全机制。

8支持多种传输模式

严格有序转移(如TCP)的有序转移(如每流)和无序传输(如UDP)的一部分。
2 SCTP报文结构

SCTP分组结构的数据分组,第一部分可以遵循由可变长度的数据块中的一个或多个。块类型 - 长度 - 值(TLV)格式。源端口,目的端口,校验的意义是与TCP类似的意义。确认标签保存价值的交流,第一次在SCTP握手初始标签。如果任何SCTP报文不包括联想这样的标签,当到达的时间将是在接收端丢弃。

包含的块类型,标记的转让处理,在每个块中的块长度,TLV。不同的块类型,可用于发送控制信息或数据。

发送序列号(TSN)和流序列号(SSN)是两个不同的序列号,TSN,以确保可靠性整个关联的SSN保证整个流的有序性,因此,在发送的数据的可靠性订货区分开来。
3 SCTP数据传输

4.1 SCTP四次握手的原则,抵制SYN洪水攻击

SCTP关联定义为:主机A的IP地址] + [主机的端口] + [IP地址的主机B] + [B主机端口。因此,相应的组的每个端部中的IP地址的任何一个可以是标记相关的,通过四向握手,作为相应的源/目的地地址和结束SCTP主机交换通信状态。

SYN洪水利用所固有的脆弱性,TCP / IP,TCP三次握手面向连接的SYN洪水的存在基础。 SYN Flooding攻击原理是:大量的恶意攻击者向服务器发送一个SYN包,服务器发出一个SYN + ACK数据包无法收到客户端的ACK包(第三次握手无法完成),服务器端将保持一个非常大名单的半连接,消耗大量的CPU时间和内存资源,也能保持此列表中的IP SYN + ACK的重试。服务器端将忙于处理攻击者伪造的TCP连接请求以及没有时间忽略正常的客户请求,从正常的客户的角度来看,服务器失去了响应。

在SCTP四次握手的INIT消息,接收端不保存任何状态信息或分配的任何资源,这样你就可以防止DoS攻击,如SYN洪水。 INIT-ACK消息发送,使用了一种机制 - “状态曲奇”的cookie的发送者建立自己的国家所需的全部信息。

SCTP产生一个Cookie状态过程如下:

1。收到的INIT发出的INIT ACK数据块的信息来创建一个关联的TCB(传输控制块)。

在TCB中,生存在协议参数设置为“有效的Cookie时间,创建日期设置为当前日期。

3根据TCB收集重建的TCB所需的最小的子集的信息,这个子集和密钥来产生一个MAC(消息认证码)。

用最小的子集的信息和MAC产生状态Cookie。

5。在发送的INIT ACK(含状态cookie参数),发送者必须删除TCB,以及任何相关的新的关联的本地资源。

INIT和INIT ACK必须包含建立初始状态所需的参数:一组IP地址,以确保可靠的传输的初始TSN,每一个收到的SCTP包中必须包含初始标签,每一端的请求发出的数据流的数量并在每一端可以支持接收的数据流的数量。交换这些消息,INIT COOKIE-ECHO消息的发送者被送回的状态Cookie。接收端在接收COOKIE-ECHO饼干的状态,完成重建自己的国家和回送COOKIE-ACK确认该协会已成立。 COOKIE-ECHO和COOKIE-ACK的用户数据信息可以绑定到每个包。

因此,使用上述的以这样的方式,即使接收INIT消息,接收终端,也没有任何的资源消耗:它既不分配任何系统资源,并且不保存的新的关联的状态,它是只对口援建的状态状态的Cookie作为一个参数,它包含每一个回送的INIT-ACK消息,并最终状态cookie COOKIE-ECHO消息发送回。

2.2 SCTP的数据交换

正常的两个SCTP主机之间的数据交换。 SCTP主机发送SACK块,用来确认每一个收到的SCTP报文。 SACK的完全描述的接收侧的状态,可以使发送侧决定的重发,因此,在根据对SACK。 SCTP支持TCP快速重传和超时重传算法类似。

SCTP和TCP数据包丢失,使用不同的机制:TCP序列号空缺已被填补缺口,直到收到,发送丢失的数据包数据的序列号是高于之前。但是,SCTP即使收到订单的序列号空缺,并会不断发回数据。

3.3 SCTP关联关闭

面向连接的传输协议,SCTP还可以使用与TCP的三次握手关闭相关,但有一点不同:在“关联关闭”的过程中保持连接打开一个TCP终端,新的数据来自对等体,但不支持TCP SCTP这个“半封闭”状态。 1日发布由主机A“OFF”(关闭)块终止与主机B,主机A就会进入“SHUTDOWN-PENDING”状态,相应的动作是:不再接受上层应用的数据,并且只发送队列中剩余的数据,进入“SHUTDOWN-SENT”状态。

一旦主机B接收到“OFF”挡,进入“SHUTDOWN-RECEIVED”状态,与主机A,不再接受上层应用的数据,只发送队列中剩余的数据。

主机A再发送“关闭”块,剩余的数据已经达到主机B发出的通知,并重申,该协会正在关闭。

当第二个获得“关闭”块,主机B发送确认关闭“块。

随后的主机发送“关闭”结束“块完成关闭的关联。

4结论

SCTP是开发用于传输信令流量,但它有一定的优势,先进的TCP协议机制,如选择性确认,快速重传,无序提交,因此,它也满足高性能传输的需求,这将赋予它更广泛的应用的要求。目前,有各种各样的操作系统都支持SCTP,如Linux,AIX和Solaris上,Windows中,FressBSD。不同的协议之间的互操作性测试取得成功,揭示了SCTP正走向商业产品的道路。

IEFT致力于SCTP进一步的,以使其更好地满足下一代应用的需求,如支持IPv6地址,解决对端的IPv6站点本地和链路本地地址不连接的问题,以及在现有的关联动态添加或删除IP地址,而无需重新启动关联。

此外,在第三代移动通信,SCTP信令承载层的选择之一,它的应用及其性能评价是还待研究。
参考文献:

⑹ 怎么实现linux报文截获功能

可以用logger命令发送日志信息到本地的/var/log/message,小设备 可以编译个rsyslog上去 这样发日志比较好弄一些。 系统调用man 2 syslog 库函数看看man 3 syslog

⑺ Linux里面icmp是什么

ICMP是Internet控制报文协议。它是TCP/IP协议族的一个子协议,用于在IP主机、路由器之间传递控制消息。

ping是DOS命令,通常用于检测网络连接和故障。Ping是Internet包资源管理器,用于测试网络连接量的程序。Ping向目的地发送ICMP回声清除消息,并报告是否接收到所需的ICMP回声响应。

⑻ linux系统怎么抓报文

修改系统拒收ICMP重定向报文 在linux下可以通过在防火墙上拒绝ICMP重定向报文或者是修改内核选项重新编译内核来拒绝接收ICMP重定向报文。 在win2000下可以通过防火墙和IP策略拒绝接收ICMP报文。

⑼ Linux网络协议栈7--ipsec收发包流程

流程路径:ip_rcv() --> ip_rcv_finish() --> ip_local_deliver() --> ip_local_deliver_finish()
解封侧一定是ip报文的目的端,ip_rcv_finish中查到的路由肯定是本机路由(RTCF_LOCAL),调用 ip_local_deliver 处理。
下面是贴的网上的一张图片。

ip_local_deliver_finish中 根据上次协议类型,调用对应的处理函数。inet_protos 中挂载了各类协议的操作集,对于AH或者ESP来说,是xfrm4_rcv,对于ipsec nat-t情况下,是udp协议的处理函数udp_rcv,内部才是封装的ipsec报文(AH或者ESP)。

xfrm4_rcv --> xfrm4_rcv_spi --> xfrm4_rcv_encap --> xfrm_input
最终调用 xfrm_input 做收包解封装流程。
1、创建SKB的安全路径;
2、解析报文,获取daddr、spi,加上协议类型(esp、ah等),就可以查询到SA了,这些是SA的key,下面列出了一组linux ipsec的state(sa)和policy,方便一眼就能看到关键信息;
3、调用SA对应协议类型的input函数,解包,并返回更上层的协议类型,type可为esp,ah,ipcomp等。对应的处理函数esp_input、ah_input等;
4、解码完成后,再根据ipsec的模式做解封处理,常用的有隧道模式和传输模式。对应xfrm4_mode_tunnel_input 和 xfrm4_transport_inout,处理都比较简单,隧道模式去掉外层头,传输模式只是设置一些skb的数据。
5、协议类型可以多层封装,如ESP+AH,所以需要再次解析内存协议,如果还是AH、ESP、COMP,则解析新的spi,返回2,查询新的SA处理报文。
6、经过上面流程处理,漏出了用户数据报文(IP报文),根据ipsec模式:

流程路径如下图,这里以转发流程为例,本机发送的包主要流程类似。
转发流程:

ip_forward 函数中调用xfrm4_route_forward,这个函数:
1、解析用户报文,查找对应的Ipsec policy(__xfrm_policy_lookup);
2、再根据policy的模版tmpl查找对应最优的SA(xfrm_tmpl_resolve),模版的内容以及和SA的对应关系见上面贴出的ip xfrm命令显示;
3、最后根据SA生成安全路由,挂载再skb的dst上; 一条用户流可以声明多个安全策略(policy),所以会对应多个SA,每个SA处理会生成一个安全路由项struct dst_entry结构(xfrm_resolve_and_create_bundle),这些安全路由项通过 child 指针链接为一个链表,其成员 output挂载了不同安全协议的处理函数,这样就可以对数据包进行连续的处理,比如先压缩,再ESP封装,再AH封装。
安全路由链的最后一个路由项一定是普通IP路由项,因为最终报文都得走普通路由转发出去,如果是隧道模式,在tunnel output封装完完成ip头后还会再查一次路由挂载到安全路由链的最后一个。
注: SA安全联盟是IPsec的基础,也是IPsec的本质。 SA是通信对等体间对某些要素的约定,例如使用哪种协议、协议的操作模式、加密算法、特定流中保护数据的共享密钥以及SA的生存周期等。

然后,经过FORWARD点后,调用ip_forward_finish()-->dst_output,最终调用skb_dst(skb)->output(skb),此时挂载的xfrm4_output

本机发送流程简单记录一下,和转发流程殊途同归:
查询安全路由: ip_queue_xmit --> ip_route_output_flow --> __xfrm_lookup
封装发送: ip_queue_xmit --> ip_local_out --> dst_output --> xfrm4_output

注:
1). 无论转发还是本地发送,在查询安全路由之前都会查一次普通路由,如果查不到,报文丢弃,但这条路由不一定需要指向真实的下一跳的出接口,只要能匹配到报文DIP即可,如配置一跳其它接口的defualt。
2). strongswan是一款用的比较多的ipsec开源软件,协商完成后可以看到其创建了220 table,经常有人问里面的路由有啥用、为什么有时有有时无。这里做个测试记录: 1、220中貌似只有在tunnel模式且感兴趣流是本机发起(本机配置感兴趣流IP地址)的时候才会配置感兴趣流相关的路由,路由指定了source;2、不配置也没有关系,如1)中所说,只要存在感兴趣流的路由即可,只不过ping的时候需要指定source,否者可能匹配不到感兴趣流。所以感觉220这个表一是为了保证

ipsec封装发送流程:
xfrm4_output-->xfrm4_output_finish-->xfrm_output-->xfrm_output2-->xfrm_output_resume-->xfrm_output_one
xfrm4_output 函数先过POSTROUTING点,在封装之前可以先做SNAT。后面则调用xfrm_output_resume-->xfrm_output_one 做IPSEC封装最终走普通路由走IP发送。

贴一些网上的几张数据结构图
1、安全路由

2、策略相关协议处理结构

3、状态相关协议处理结构

热点内容
2d游戏按键精灵脚本教程 发布:2025-05-15 14:10:15 浏览:278
服务器上的邮件如何销毁 发布:2025-05-15 14:02:49 浏览:137
饥荒安卓版如何解除手柄模式 发布:2025-05-15 14:02:05 浏览:112
算法强化班 发布:2025-05-15 14:02:04 浏览:345
c语言编译后图片 发布:2025-05-15 13:51:57 浏览:792
没有被调用的函数会参与编译吗 发布:2025-05-15 13:42:51 浏览:260
在计算机中ftp的中文 发布:2025-05-15 13:41:07 浏览:1000
国网校招要网签密码和账号干什么 发布:2025-05-15 13:40:25 浏览:179
java分 发布:2025-05-15 13:34:36 浏览:846
如何下载卡巴斯基安卓版 发布:2025-05-15 13:34:36 浏览:480