linuxc共享内存
① linux下c的两个进程如何实现通信一个进程给另一个进程发送消息,另一个接受并显示出来。求大神啊
linux中的进程通信分为三个部分:低级通信,管道通信和进程间通信IPC(inter process communication)。linux的低级通信主要用来传递进程的控制信号——文件锁和软中断信号机制。linux的进程间通信IPC有三个部分——①信号量,②共享内存和③消息队列。以下是我编写的linux进程通信的C语言实现代码。操作系统为redhat9.0,编辑器为vi,编译器采用gcc。下面所有实现代码均已经通过测试,运行无误。
一.低级通信--信号通信
signal.c
#include <signal.h>
#include <stdio.h>
#include <unistd.h>
/*捕捉到信号sig之后,执行预先预定的动作函数*/
void sig_alarm(int sig)
{
printf("---the signal received is %d. /n", sig);
signal(SIGINT, SIG_DFL); //SIGINT终端中断信号,SIG_DFL:恢复默认行为,SIN_IGN:忽略信号
}
int main()
{
signal(SIGINT, sig_alarm);//捕捉终端中断信号
while(1)
{
printf("waiting here!/n");
sleep(1);
}
return 0;
}
二.管道通信
pipe.c
#include <stdio.h>
#define BUFFER_SIZE 30
int main()
{
int x;
int fd[2];
char buf[BUFFER_SIZE];
char s[BUFFER_SIZE];
pipe(fd);//创建管道
while((x=fork())==-1);//创建管道失败时,进入循环
/*进入子进程,子进程向管道中写入一个字符串*/
if(x==0)
{
sprintf(buf,"This is an example of pipe!/n");
write(fd[1],buf,BUFFER_SIZE);
exit(0);
}
/*进入父进程,父进程从管道的另一端读出刚才写入的字符串*/
else
{
wait(0);//等待子进程结束
read(fd[0],s,BUFFER_SIZE);//读出字符串,并将其储存在char s[]中
printf("%s",s);//打印字符串
}
return 0;
}
三.进程间通信——IPC
①信号量通信
sem.c
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
/*联合体变量*/
union semun
{
int val; //信号量初始值
struct semid_ds *buf;
unsigned short int *array;
struct seminfo *__buf;
};
/*函数声明,信号量定义*/
static int set_semvalue(void); //设置信号量
static void del_semvalue(void);//删除信号量
static int semaphore_p(void); //执行P操作
static int semaphore_v(void); //执行V操作
static int sem_id; //信号量标识符
int main(int argc, char *argv[])
{
int i;
int pause_time;
char op_char = 'O';
srand((unsigned int)getpid());
sem_id = semget((key_t)1234, 1, 0666 | IPC_CREAT);//创建一个信号量,IPC_CREAT表示创建一个新的信号量
/*如果有参数,设置信号量,修改字符*/
if (argc > 1)
{
if (!set_semvalue())
{
fprintf(stderr, "Failed to initialize semaphore/n");
exit(EXIT_FAILURE);
}
op_char = 'X';
sleep(5);
}
for(i = 0; i < 10; i++)
{
/*执行P操作*/
if (!semaphore_p())
exit(EXIT_FAILURE);
printf("%c", op_char);
fflush(stdout);
pause_time = rand() % 3;
sleep(pause_time);
printf("%c", op_char);
fflush(stdout);
/*执行V操作*/
if (!semaphore_v())
exit(EXIT_FAILURE);
pause_time = rand() % 2;
sleep(pause_time);
}
printf("/n%d - finished/n", getpid());
if (argc > 1)
{
sleep(10);
del_semvalue(); //删除信号量
}
exit(EXIT_SUCCESS);
}
/*设置信号量*/
static int set_semvalue(void)
{
union semun sem_union;
sem_union.val = 1;
if (semctl(sem_id, 0, SETVAL, sem_union) == -1)
return(0);
return(1);
}
/*删除信号量*/
static void del_semvalue(void)
{
union semun sem_union;
if (semctl(sem_id, 0, IPC_RMID, sem_union) == -1)
fprintf(stderr, "Failed to delete semaphore/n");
}
/*执行P操作*/
static int semaphore_p(void)
{
struct sembuf sem_b;
sem_b.sem_num = 0;
sem_b.sem_op = -1; /* P() */
sem_b.sem_flg = SEM_UNDO;
if (semop(sem_id, &sem_b, 1) == -1)
{
fprintf(stderr, "semaphore_p failed/n");
return(0);
}
return(1);
}
/*执行V操作*/
static int semaphore_v(void)
{
struct sembuf sem_b;
sem_b.sem_num = 0;
sem_b.sem_op = 1; /* V() */
sem_b.sem_flg = SEM_UNDO;
if (semop(sem_id, &sem_b, 1) == -1)
{
fprintf(stderr, "semaphore_v failed/n");
return(0);
}
return(1);
}
②消息队列通信
send.c
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#define MAX_TEXT 512
/*用于消息收发的结构体--my_msg_type:消息类型,some_text:消息正文*/
struct my_msg_st
{
long int my_msg_type;
char some_text[MAX_TEXT];
};
int main()
{
int running = 1;//程序运行标识符
struct my_msg_st some_data;
int msgid;//消息队列标识符
char buffer[BUFSIZ];
/*创建与接受者相同的消息队列*/
msgid = msgget((key_t)1234, 0666 | IPC_CREAT);
if (msgid == -1)
{
fprintf(stderr, "msgget failed with error: %d/n", errno);
exit(EXIT_FAILURE);
}
/*向消息队列中发送消息*/
while(running)
{
printf("Enter some text: ");
fgets(buffer, BUFSIZ, stdin);
some_data.my_msg_type = 1;
strcpy(some_data.some_text, buffer);
if (msgsnd(msgid, (void *)&some_data, MAX_TEXT, 0) == -1)
{
fprintf(stderr, "msgsnd failed/n");
exit(EXIT_FAILURE);
}
if (strncmp(buffer, "end", 3) == 0)
{
running = 0;
}
}
exit(EXIT_SUCCESS);
}
receive.c
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
/*用于消息收发的结构体--my_msg_type:消息类型,some_text:消息正文*/
struct my_msg_st
{
long int my_msg_type;
char some_text[BUFSIZ];
};
int main()
{
int running = 1;//程序运行标识符
int msgid; //消息队列标识符
struct my_msg_st some_data;
long int msg_to_receive = 0;//接收消息的类型--0表示msgid队列上的第一个消息
/*创建消息队列*/
msgid = msgget((key_t)1234, 0666 | IPC_CREAT);
if (msgid == -1)
{
fprintf(stderr, "msgget failed with error: %d/n", errno);
exit(EXIT_FAILURE);
}
/*接收消息*/
while(running)
{
if (msgrcv(msgid, (void *)&some_data, BUFSIZ,msg_to_receive, 0) == -1)
{
fprintf(stderr, "msgrcv failed with error: %d/n", errno);
exit(EXIT_FAILURE);
}
printf("You wrote: %s", some_data.some_text);
if (strncmp(some_data.some_text, "end", 3) == 0)
{
running = 0;
}
}
/*删除消息队列*/
if (msgctl(msgid, IPC_RMID, 0) == -1)
{
fprintf(stderr, "msgctl(IPC_RMID) failed/n");
exit(EXIT_FAILURE);
}
exit(EXIT_SUCCESS);
}
③共享内存通信
share.h
#define TEXT_SZ 2048 //申请共享内存大小
struct shared_use_st
{
int written_by_you; //written_by_you为1时表示有数据写入,为0时表示数据已经被消费者提走
char some_text[TEXT_SZ];
};
procer.c
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include "share.h"
int main()
{
int running = 1; //程序运行标志位
void *shared_memory = (void *)0;
struct shared_use_st *shared_stuff;
char buffer[BUFSIZ];
int shmid; //共享内存标识符
/*创建共享内存*/
shmid = shmget((key_t)1234, sizeof(struct shared_use_st), 0666 | IPC_CREAT);
if (shmid == -1)
{
fprintf(stderr, "shmget failed/n");
exit(EXIT_FAILURE);
}
/*将共享内存连接到一个进程的地址空间中*/
shared_memory = shmat(shmid, (void *)0, 0);//指向共享内存第一个字节的指针
if (shared_memory == (void *)-1)
{
fprintf(stderr, "shmat failed/n");
exit(EXIT_FAILURE);
}
printf("Memory attached at %X/n", (int)shared_memory);
shared_stuff = (struct shared_use_st *)shared_memory;
/*生产者写入数据*/
while(running)
{
while(shared_stuff->written_by_you == 1)
{
sleep(1);
printf("waiting for client.../n");
}
printf("Enter some text: ");
fgets(buffer, BUFSIZ, stdin);
strncpy(shared_stuff->some_text, buffer, TEXT_SZ);
shared_stuff->written_by_you = 1;
if (strncmp(buffer, "end", 3) == 0)
{
running = 0;
}
}
/*该函数用来将共享内存从当前进程中分离,仅使得当前进程不再能使用该共享内存*/
if (shmdt(shared_memory) == -1)
{
fprintf(stderr, "shmdt failed/n");
exit(EXIT_FAILURE);
}
printf("procer exit./n");
exit(EXIT_SUCCESS);
}
customer.c
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include "share.h"
int main()
{
int running = 1;//程序运行标志位
void *shared_memory = (void *)0;
struct shared_use_st *shared_stuff;
int shmid; //共享内存标识符
srand((unsigned int)getpid());
/*创建共享内存*/
shmid = shmget((key_t)1234, sizeof(struct shared_use_st), 0666 | IPC_CREAT);
if (shmid == -1)
{
fprintf(stderr, "shmget failed/n");
exit(EXIT_FAILURE);
}
/*将共享内存连接到一个进程的地址空间中*/
shared_memory = shmat(shmid, (void *)0, 0);//指向共享内存第一个字节的指针
if (shared_memory == (void *)-1)
{
fprintf(stderr, "shmat failed/n");
exit(EXIT_FAILURE);
}
printf("Memory attached at %X/n", (int)shared_memory);
shared_stuff = (struct shared_use_st *)shared_memory;
shared_stuff->written_by_you = 0;
/*消费者读取数据*/
while(running)
{
if (shared_stuff->written_by_you)
{
printf("You wrote: %s", shared_stuff->some_text);
sleep( rand() % 4 );
shared_stuff->written_by_you = 0;
if (strncmp(shared_stuff->some_text, "end", 3) == 0)
{
running = 0;
}
}
}
/*该函数用来将共享内存从当前进程中分离,仅使得当前进程不再能使用该共享内存*/
if (shmdt(shared_memory) == -1)
{
fprintf(stderr, "shmdt failed/n");
exit(EXIT_FAILURE);
}
/*将共享内存删除,所有进程均不能再访问该共享内存*/
if (shmctl(shmid, IPC_RMID, 0) == -1)
{
fprintf(stderr, "shmctl(IPC_RMID) failed/n");
exit(EXIT_FAILURE);
}
exit(EXIT_SUCCESS);
}
摘自:http://blog.csdn.net/piaojun_pj/article/details/5943736
② linux共享内存存在于进程空间的什么位置
共享内存方式:从物理内存里面拿出来一部分作为多个进程共享。 共享内存是进程间共享数据的一种最快的方法,一个进程向共享内存区域写入数据,共享这个内存的所有进程都可以立即看到其中内容。 共享内存实现步骤: 一、创建共享内存,使用shmget函数。 二、映射共享内存,将这段创建的共享内存映射到具体的进程空间去,使用shmat函数。 创建共享内存shmget: intshmget(key_t key, size_t size, int shmflg) 功能:得到一个共享内存标识符或创建一个共享内存对象并返回共享内存标识符。 key: 0(IPC_PRIVATE)会建立共享内存对象 size:大于0的整数,新建共享内存的大小,以字节为单位。只获取共享内存时,指定为0. shmflg: 0表示取共享内存标识符,如不存在则函数会报错; IPC_CREAT,如果内核中不存在键值与key相等的共享内存时,则创建一个共享内存;如果存在这样的共享内存则返回共享内存的标识符; IPC_CREATIPC_EXCL: 如果内核中不存在键值与key相等的共享内存,则新建一个消息队列;如果存在这样的共享内存则报错; 函数返回值:成功则返回内存的标识符;出错则返回-1,错误原因存在于error中 映射共享内存到调用进程的地址空间shmat: void*shmat(int shmid, const void *shmaddr, int shmflg) msqid:共享内存标识符 shmaddr:指定共享内存出现在进程内存地址的什么位置,直接指定为NULL让内核自己决定一个合适的地址位置。 shmflg: SHM_RDONLY 只读模式,其他为读写模式 函数返回值:成功则返回附加好的共享内存地址;出错返回-1,错误原因存在于error中 断开共享内存连接shmdt: intshmdt(const void *shmaddr) 功能:传入shmaddr,连接共享的内存起始地址;断开成功则返回0,出错则返回-1,错误原因存在于error中。 父子进程间通讯实例: #include #include #include #include #include #include int main(int argc, char **argv){ if(argc< 2){ //需要输入共享的数据 printf("pleaseinput the shared data.n"); exit(-1); } intshmid; shmid= shmget(0,1024,IPC_CREAT); if(shmid== -1){ // 申请共享内存失败 printf("createshare memory failed.n"); exit(-1); } if(fork()){ // 父进程之中 char*p_shmaddr; p_shmaddr= shmat(shmid, NULL, 0); // 映射到父进程之中的一个地址 memset(p_shmaddr,0, 1024); // 初始化共享内存 strcpy(p_shmaddr,argv[1]); // 拷贝共享数据到共享内存 wait(NULL); //等待子进程结束 exit(0); } else{ sleep(2); //等待父进程写入数据 char*c_shmaddr; c_shmaddr= shmat(shmid,NULL,0); // 映射到子进程之中一个地址,具体由kernel 指配 printf("theshare data is: %sn", c_shmaddr); //子进程输出共享的数据 exit(0); } }
③ linux共享内存的示例程序
代码 5.1 中的程序展示了共享内存块的使用。
代码 5.1 (shm.c) 尝试共享内存
#include <stdio.h>
#include <sys/shm.h>
#include <sys/stat.h>
int main()
{
int segment_id;
char* shared_memory;
struct shmid_ds shmbuffer;
int segment_size;
const int shared_segment_size = 0x6400; /* 分配一个共享内存块 */
segment_id = shmget(IPC_PRIVATE, shared_segment_size, IPC_CREAT|IPC_EXCL|S_IRUSR|S_IWUSR ); /* 绑定到共享内存块 */
shared_memory = (char*)shmat(segment_id, 0, 0);
printf(shared memory attached at address %p
, shared_memory); /* 确定共享内存的大小 */
shmctl(segment_id, IPC_STAT, &shmbuffer);
segment_size = shmbuffer.shm_segsz;
printf(segment size: %d
, segment_size);
sprintf(shared_memory, Hello, world.); /* 在共享内存中写入一个字符串 */
shmdt(shared_memory); /* 脱离该共享内存块 */
shared_memory = (char*)shmat(segment_id, (void*) 0x500000, 0);/* 重新绑定该内存块 */
printf(shared memory reattached at address %p
, shared_memory);
printf(%s
, shared_memory); /* 输出共享内存中的字符串 */
shmdt(shared_memory); /* 脱离该共享内存块 */
shmctl(segment_id, IPC_RMID, 0);/* 释放这个共享内存块 */
return 0;
}
④ 怎么在linux下C语言中将结构体写入共享内存
随便怎么写啊,共享内存获取到不是给你一个内存地址,这里称之为des么,直接通过des地址访问啊,比如你要写2个结构体进去,第一个Memcpy写到des,第二个可以(Memcpy到des+结构体大小)的地址指向的内存上,
⑤ linux下的C语言开发(管道通信)
姓名:冯成 学号:19020100164 学院:丁香二号书院
转自:https://feixiaoxing.blog.csdn.net/article/details/7229483
【嵌牛导读】本文将介绍linux下的C语言开发中的管道通信
【嵌牛鼻子】linux C语言 管道通信
【嵌牛提问】linux下的C语言开发中的管道通信是什么?
Linux系统本身为进程间通信提供了很多的方式,比如说管道、共享内存、socket通信等。管道的使用十分简单,在创建了匿名管道之后,我们只需要从一个管道发送数据,再从另外一个管道接受数据即可。
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
int pipe_default[2];
int main()
{
pid_t pid;
char buffer[32];
memset(buffer, 0, 32);
if(pipe(pipe_default) < 0)
{
printf("Failed to create pipe!\n");
return 0;
}
if(0 == (pid = fork()))
{
close(pipe_default[1]);
sleep(5);
if(read(pipe_default[0], buffer, 32) > 0)
{
printf("Receive data from server, %s!\n", buffer);
}
close(pipe_default[0]);
}
else
{
close(pipe_default[0]);
if(-1 != write(pipe_default[1], "hello", strlen("hello")))
{
printf("Send data to client, hello!\n");
}
close(pipe_default[1]);
waitpid(pid, NULL, 0);
}
return 1;
}
下面我们就可以开始编译运行了,老规矩分成两步骤进行:(1)输入gcc pipe.c -o pipe;(2)然后输入./pipe,过一会儿你就可以看到下面的打印了。
[test@localhost pipe]$ ./pipe
Send data to client, hello!
Receive data from server, hello!
⑥ linux下C语言编程线程有什么好处呢
进程和线程都是由操作系统所体会的程序运行的基本单元,系统利用该基本单元实现系统对应用的并发性。进程和线程的区别在于:
线程的划分尺度小于进程,使得多线程程序的并发性搞。
另外,进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率。
线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。
从逻辑角度来看,多线程的意义在于一个应用程序中,有多个执行部分可以同时执行。但操作系统并没有将多个线程看做多个独立的应用,来实现进程的调度和管理以及资源分配。这就是进程和线程的重要区别。
进程(Process)是最初定义在Unix等多用户、多任务操作系统环境下用于表示应用程序在内存环境中基本执行单元的概念。以Unix操作系统为例,进程是Unix操作系统环境中的基本成分、是系统资源分配的基本单位。Unix操作系统中完成的几乎所有用户管理和资源分配等工作都是通过操作系统对应用程序进程的控制来实现的。
一般你运行一个应用程序,就生成了一个进程, 这个进程拥有自己的内存空间,
这个进程还可以内部生成多个线程, 这些线程之间共用一个进程的内存空存空间,所以线程之间共享内存是很容易做到的,多线程协作比多进程协作快一些,而且安全.
在windows跟unix上面,进程,线程的实现方法都是不一样的.
⑦ Linux C编程从初学到精通的目 录
第1部分 基础篇
第1章 Linux系统概述 1
1.1 什么是Linux 2
1.2 Linux系统特点及主要功能 2
1.2.1 Linux系统特点 3
1.2.2 Linux系统的主要功能 3
1.3 Linux的内核版本和发行版本 5
1.4 系统的安装 6
1.4.1 系统安装前的准备工作 6
1.4.2 从光盘安装Linux 6
1.4.3 从硬盘安装Linux 22
1.4.4 在虚拟机下安装Linux 22
1.5 Shell的使用 27
1.5.1 Shell简介 27
1.5.2 常见Shell的种类 28
1.5.3 Shell的简单使用 29
1.5.4 通配符 30
1.5.5 引号 31
1.5.6 注释符 33
1.6 Linux常用命令 33
1.6.1 与目录相关的命令 33
1.6.2 与文件相关的命令 34
1.6.3 与网络服务相关的命令 35
1.7 本章小结 35
实战演练 36
第2章 C语言编程基础 37
2.1 C语言的历史背景 38
2.2 C语言的特点 38
2.3 C语言的基本数据类型 39
2.3.1 整型 39
2.3.2 实型 40
2.3.3 字符型 41
2.4 运算符与表达式 43
2.4.1 算术运算符与算术表达式 43
2.4.2 赋值运算符与赋值表达式 44
2.4.3 逗号运算符与逗号表达式 45
2.5 C程序的3种基本结构 46
2.5.1 顺序结构 46
2.5.2 选择结构 47
2.5.3 循环结构 51
2.6 C语言中的数据输入与输出 54
2.6.1 字符输出函数putchar 54
2.6.2 字符输入函数getchar 54
2.6.3 格式输出函数printf 54
2.6.4 格式输入函数scanf 56
2.7 函数 57
2.7.1 函数的定义 57
2.7.2 函数的调用 58
2.7.3 变量的存储类别 59
2.8 数组 62
2.8.1 一维数组的定义和使用 63
2.8.2 二维数组的定义和使用 64
2.8.3 字符数组和字符串 65
2.8.4 常用字符串处理函数 66
2.9 指针 69
2.9.1 地址和指针 69
2.9.2 指针的定义和使用 70
2.9.3 数组与指针 71
2.9.4 字符串与指针 72
2.9.5 指向函数的指针 72
2.10 结构体和共用体 73
2.10.1 定义和引用结构体 73
2.10.2 结构体数组 74
2.10.3 指向结构体的指针 74
2.10.4 共用体 75
2.10.5 使用typedef定义类型 77
2.11 链表 77
2.11.1 链表概述 77
2.11.2 建立动态单向链表 78
2.11.3 单向链表的输出 80
2.11.4 对单向链表的删除操作 80
2.11.5 对单向链表的插入操作 81
2.11.6 循环链表 82
2.11.7 双向链表 82
2.12 位运算符和位运算 83
2.12.1 “按位与”运算符(&) 84
2.12.2 “按位或”运算符(|) 84
2.12.3 “取反”运算符(~) 84
2.12.4 “异或”运算符(^) 84
2.12.5 移位运算符(<<和>>) 85
2.12.6 位域 85
2.13 C语言预处理命令 86
2.13.1 宏定义 86
2.13.2 文件包含 87
2.13.3 条件编译 88
2.13.4 #error等其他常用预处理命令 89
2.14 本章小结 89
实战演练 89
第3章 vi与Emacs编辑器 91
3.1 vi的使用 92
3.1.1 启动与退出vi 92
3.1.2 vi的命令行模式 93
3.1.3 vi的插入模式 96
3.1.4 vi的底行模式 96
3.2 vi使用实例 97
3.3 Emacs的使用 100
3.3.1 启动与退出Emacs 101
3.3.2 Emacs下的基本操作 102
3.4 Emacs使用实例 107
3.5 本章小结 109
实战演练 109
第4章 gcc编译器与gdb调试器 110
4.1 gcc编译器简介 111
4.2 如何使用gcc 112
4.2.1 gcc编译初步 112
4.2.2 警告提示功能 114
4.2.3 优化gcc 116
4.2.4 连接库 119
4.2.5 同时编译多个源程序 120
4.2.6 管道 120
4.2.7 调试选项 121
4.3 gdb调试器 122
4.3.1 gdb简介 122
4.3.2 gdb常用命令 123
4.3.3 gdb调试初步 124
4.4 gdb的使用详解 126
4.4.1 调用gdb 127
4.4.2 使用断点 127
4.4.3 查看运行时数据 129
4.4.4 查看源程序 133
4.4.5 改变程序的执行 135
4.5 xxgdb调试器简介 138
4.6 本章小结 139
实战演练 139
第5章 make的使用和Makefile的编写 141
5.1 什么是make 142
5.1.1 make机制概述 142
5.1.2 make与Makefile的关系 144
5.2 Makefile的书写规则 147
5.2.1 Makefile的基本语法规则 148
5.2.2 在规则中使用通配符 149
5.2.3 伪目标 149
5.2.4 多目标 151
5.2.5 自动生成依赖性 151
5.3 Makefile的命令 152
5.4 变量 154
5.4.1 变量的基础 154
5.4.2 赋值变量 154
5.4.3 define关键字 156
5.4.4 override指示符 156
5.4.5 目标变量和模式变量 157
5.5 常用函数调用 158
5.5.1 字符串处理函数 158
5.5.2 文件名操作函数 162
5.5.3 循环函数 164
5.5.4 条件判断函数 165
5.5.5 其他常用函数 166
5.6 隐式规则 168
5.6.1 隐式规则举例 168
5.6.2 隐式规则中的变量 169
5.6.3 使用模式规则 170
5.7 本章小结 173
实战演练 173
第2部分 提高篇
第6章 文件I/O操作 174
6.1 Linux文件系统简介 175
6.1.1 Linux的文件系统结构 175
6.1.2 文件类型 176
6.1.3 文件访问权限 179
6.2 基于文件描述符的I/O操作 179
6.2.1 文件描述符 180
6.2.2 标准输入、标准输出和标准出错 180
6.2.3 文件重定向 181
6.2.4 文件的创建、打开与关闭 182
6.2.5 文件的定位 186
6.2.6 文件的读写 188
6.3 文件的属性操作 192
6.3.1 改变文件访问权限 192
6.3.2 改变文件所有者 193
6.3.3 重命名 193
6.3.4 修改文件长度 194
6.4 文件的其他操作 195
6.4.1 stat、fstat和lstat函数 195
6.4.2 p和p2函数 196
6.4.3 fcntl函数 197
6.4.4 sync和fsync函数 197
6.5 特殊文件的操作 198
6.5.1 目录文件的操作 198
6.5.2 链接文件的操作 201
6.5.3 管道文件的操作 204
6.5.4 设备文件 204
6.6 本章小结 205
实战演练 205
第7章 基于流的I/O操作 206
7.1 流与缓存 207
7.1.1 流和FILE对象 207
7.1.2 标准输入、标准输出和标准出错 207
7.1.3 缓存 207
7.1.4 对缓存的操作 210
7.2 流的打开与关闭 212
7.2.1 流的打开 212
7.2.2 流的关闭 214
7.2.3 流关闭前的工作 216
7.3 流的读写 216
7.3.1 基于字符的I/O 217
7.3.2 基于行的I/O 220
7.3.3 直接I/O 222
7.3.4 格式化I/O 224
7.4 本章小结 226
实战演练 227
第8章 进程控制 228
8.1 进程的基本概念 229
8.1.1 Linux进程简介 229
8.1.2 进程与作业 230
8.1.3 进程标识 230
8.2 进程控制的相关函数 232
8.2.1 fork和vfork函数 232
8.2.2 exec函数 237
8.2.3 exit和_exit函数 242
8.2.4 wait和waitpid函数 245
8.2.5 进程的一生 251
8.2.6 用户ID和组ID 251
8.2.7 system函数 253
8.3 多个进程间的关系 255
8.3.1 进程组 255
8.3.2 会话期 256
8.3.3 控制终端 257
8.4 本章小结 259
实战演练 259
第9章 信号 260
9.1 Linux信号简介 261
9.1.1 信号的基本概念 261
9.1.2 信号处理机制 265
9.2 信号操作的相关函数 267
9.2.1 信号的处理 267
9.2.2 信号的发送 274
9.2.3 信号的阻塞 282
9.2.4 计时器与信号 284
9.3 本章小结 286
实战演练 287
第10章 进程间通信 288
10.1 进程间通信简介 289
10.2 管道 290
10.2.1 管道的概念 290
10.2.2 管道的创建与关闭 291
10.2.3 管道的读写 292
10.3 命名管道 297
10.3.1 命名管道的概念 297
10.3.2 命名管道的创建 297
10.3.3 命名管道的读写 299
10.4 消息队列 303
10.4.1 消息队列的概念 303
10.4.2 消息队列的创建与打开 305
10.4.3 消息队列的读写 306
10.4.4 获得或设置消息队列属性 308
10.5 共享内存 312
10.5.1 共享内存的概念 312
10.5.2 共享内存的相关操作 313
10.6 信号量 318
10.6.1 信号量的概念 319
10.6.2 信号量集的相关操作 320
10.7 本章小结 325
实战演练 326
第11章 网络编程 327
11.1 网络编程的基础知识 328
11.1.1 计算机网络体系结构 328
11.1.2 传输控制协议TCP 333
11.1.3 用户数据报协议UDP 335
11.1.4 客户机/服务器模式 336
11.2 套接口编程基础 336
11.2.1 什么是套接口 337
11.2.2 端口号的概念 338
11.2.3 套接口的数据结构 338
11.2.4 基本函数 340
11.3 TCP套接口编程 343
11.3.1 TCP套接口通信工作流程 343
11.3.2 TCP套接口Client/Server程序实例 356
11.4 UDP套接口编程 360
11.4.1 UDP套接口通信工作流程 360
11.4.2 UDP套接口Client/Server程序实例 362
11.5 原始套接口编程 365
11.5.1 原始套接口的创建 365
11.5.2 原始套接口程序实例 365
11.6 本章小结 376
实战演练 376
第12章 Linux图形界面编程 377
12.1 Linux下的图形界面编程简介 378
12.1.1 Qt简介 378
12.1.2 GTK+简介 378
12.2 界面基本元件 381
12.2.1 一个简单的例子 381
12.2.2 窗口 383
12.2.3 标签 385
12.2.4 按钮 386
12.2.5 文本框 387
12.3 界面布局元件 389
12.3.1 表格 390
12.3.2 框 393
12.3.3 窗格 395
12.4 其他常用元件 398
12.4.1 进度条、微调按钮、组合框 398
12.4.2 单选按钮、复选按钮 402
12.4.3 下拉菜单 404
12.5 信号与回调函数 406
12.6 本章小结 409
实战演练 409
第3部分 实战篇
第13章 设计Linux下的计算器 411
13.1 软件功能分析 412
13.2 程序模块的划分 413
13.3 软件的具体实现 415
13.3.1 头文件 415
13.3.2 十六进制界面显示函数 416
13.3.3 十进制界面显示函数 417
13.3.4 八进制界面显示函数 418
13.3.5 二进制界面显示函数 419
13.3.6 进制间转换函数 420
13.3.7 信号处理模块 423
13.3.8 主函数 432
13.4 软件使用效果演示 438
13.5 本章小结 439
第14章 Linux平台下聊天软件的设计 440
14.1 软件功能概述 441
14.1.1 服务器端功能需求 441
14.1.2 客户端功能需求 442
14.1.3 错误处理需求 442
14.2 Glade集成开发工具简介 443
14.3 软件功能模块划分 444
14.3.1 服务器功能模块划分 444
14.3.2 客户端功能模块划分 445
14.3.3 消息标识的定义 445
14.3.4 消息结构体的设计 446
14.4 服务器程序的具体实现 447
14.4.1 服务器消息处理流程 447
14.4.2 服务器主要函数和变量 448
14.4.3 服务器消息处理模块的设计与实现 449
14.4.4 服务器数据存储的方法 450
14.4.5 用户注册流程 450
14.5 客户端程序的具体实现 451
14.5.1 客户端操作流程 451
14.5.2 客户端发送和接收消息流程 451
14.5.3 客户端主要函数和变量 452
14.5.4 客户端功能模块的设计与实现 453
14.6 聊天软件使用效果演示 455
14.7 本章小结 459
第15章 Linux远程管理工具的设计 460
15.1 软件功能概述 461
15.1.1 Webmin简介 461
15.1.2 软件总体设计 461
15.2 服务器端程序设计 463
15.2.1 服务器端工作流程 463
15.2.2 系统用户管理操作 464
15.2.3 系统用户组的管理操作 466
15.2.4 系统服务启动管理 468
15.2.5 DNS管理操作 469
15.2.6 Apache服务管理操作 471
15.2.7 FTP服务管理操作 474
15.3 客户端程序 475
15.3.1 连接界面 475
15.3.2 主界面 477
15.4 本章小结 479
第16章 Linux下简易防火墙软件的设计 480
16.1 Netfilter基础 481
16.1.1 什么是Netfilter 481
16.1.2 Netfilter的HOOK机制 482
16.1.3 HOOK的调用 485
16.1.4 HOOK的实现 486
16.1.5 IPTables简介 488
16.1.6 Netfilter可以实现的控制功能 489
16.2 软件设计概述 491
16.2.1 软件整体框架 491
16.2.2 管理端的设计 492
16.2.3 控制端的设计 493
16.3 用Netfilter设计控制端功能模块 495
16.3.1 ICMP管理控制模块 495
16.3.2 FTP管理控制模块 497
16.3.3 HTTP管理控制模块 499
16.3.4 模块的编译、加载与卸载 499
16.4 软件功能测试 501
16.5 本章小结 503
第17章 基于Linux的嵌入式家庭网关远程交互操作平台的设计 504
17.1 嵌入式技术简介 505
17.1.1 嵌入式系统的概念 505
17.1.2 嵌入式操作系统 506
17.1.3 嵌入式处理器 507
17.2 家庭网关的概念及其网络体系结构 509
17.2.1 智能家庭网络的概念 509
17.2.2 家庭网关的远程交互操作技术简介 510
17.2.3 嵌入式家庭网关的网络体系结构 510
17.3 嵌入式家庭网关的开发平台 511
17.3.1 S3C2410微处理器简介 511
17.3.2 交叉编译环境的建立 513
17.4 远程交互平台的设计 515
17.4.1 应用软件的开发模式 515
17.4.2 嵌入式Web服务器 516
17.4.3 通用网关接口CGI 519
17.5 Linux下软件模块的具体实现 520
17.5.1 登录验证模块 521
17.5.2 串口通信模块 521
17.5.3 中央空调控制模块 522
17.5.4 智能水表数据采集模块 528
17.5.5 试验结果 528
17.6 本章小结 529
⑧ linux查看共享内存命令
共享内存查看
使用ipcs命令,不加如何参数时,会把共享内存、信号量、消息队列的信息都打印出来,如果只想显示共享内存信息,使用如下命令:
[root@localhost ~]# ipcs -m
------ Shared Memory Segments --------
key shmid owner perms bytes nattch status
0x00000000 1867776 root 600 393216 2 dest
0x00000000 1900545 root 600 393216 2 dest
0x00030021 1703938 zc 666 131104 1
0x0003802e 1736707 zc 666 131104 1
0x00030004 1769476 zc 666 131104 1
0x00038002 1802245 zc 666 131104 1
0x00000000 1933318 root 600 393216 2 dest
0x00000000 1966087 root 600 393216 2 dest
0x00000000 1998856 root 600 393216 2 dest
0x00000000 2031625 root 600 393216 2 dest
0x00000000 2064394 root 600 393216 2 dest
0x0014350c 2261003 cs 666 33554432 2
0x00000000 2129932 root 600 393216 2 dest
0x00000000 2162701 root 600 393216 2 dest
0x00143511 395837454 root 666 1048576 1
其中:
第一列就是共享内存的key;
第二列是共享内存的编号shmid;
第三列就是创建的用户owner;
第四列就是权限perms;
第五列为创建的大小bytes;
第六列为连接到共享内存的进程数nattach;
第七列是共享内存的状态status。其中显示“dest”表示共享内存段已经被删除,但是还有用户在使用它,当该段内存的mode字段设置为SHM_DEST时就会显示“dest”。当用户调用shmctl的IPC_RMID时,内存先查看多少个进程与这个内存关联着,如果关联数为0,就会销毁这段共享内存,否者设置这段内存的mod的mode位为SHM_DEST,如果所有进程都不用则删除这段共享内存。
⑨ linux下共享内存允许的连接数有限制吗
对于64位进程,同一进程可连接最多268435456个共享内存段;
对于32位进程,同一进程可连接最多11个共享内存段,除非使用扩展的shmat;
上述限制对于64位应用不会带来麻烦,因为可供连接的数量已经足够大了;但对于32位应用,却很容易带来意外的问题,因为最大的连接数量只有11个。
下面的例程test02.c演示了这个问题,为了精简代码,它反复连接的是同一个共享内存对象;实际上,无论所连接的共享内存对象是否相同,该限制制约的是连接次数:
#include <stdio.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#define MAX_ATTACH_NUM 15
void main(int argc, char* argv[])
{
key_t mem_key;
long mem_id;
void* mem_addr[MAX_ATTACH_NUM];
int i;
if ( ( mem_key = ftok("/tmp/mykeyfile", 1) ) == (key_t)(-1) ) {
printf("Failed to generate shared memory access key, ERRNO=%d\n",
errno);
goto MOD_EXIT;
}
if ( ( mem_id = shmget(mem_key, 256, IPC_CREAT) ) == (-1) ) {
printf("Failed to obtain shared memory ID, ERRNO=%d\n", errno);
goto MOD_EXIT;
}
for ( i=1; i<=MAX_ATTACH_NUM; i++ ) {
if ( ( mem_addr[i] = (void *)shmat(mem_id, 0, 0) ) == (void *)(-1) )
printf("Failed to attach shared memory, times [%02d], errno:%d\n", i,
errno);
else
printf("Successfully attached shared memory, times [%02d]\n", i);
}
MOD_EXIT:
shmctl(mem_id, IPC_RMID, NULL);
}
⑩ linux下的C编程 帮我看看这程序错误
/* http://..com/question/15331136.html */
/* 程序在gcc4.03 ubuntu dapper下编译运行通过 */
/* ahlongxp[at]gmail[dot].com */
#include <sys/types.h>
#include <stdio.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/stat.h>//S_IRUSER等常量
#include <string.h>//memcpy,strlen
int main (int argc,char **argv)
{
int shm_id;
key_t key;
int size;
char *shm_addr,data[64];
if (argc<2)
{
printf("usage:%s command\n",argv[0]);
return -1;
}
size=sizeof (char) * 64;
key = ftok("myshm",0);
shm_id = shmget (key,size,IPC_CREAT|S_IRUSR|S_IWUSR);
if (shm_id==-1)
{
perror("failed to create/get shm");
return -1;
}
switch (argv[1][0])
{
case 'c':
printf ("the shm_id is %d\n",shm_id);
break;
case 'r':
shm_addr = (char*)shmat(shm_id,0,0);
printf ("the shm_id is %d\n",shm_id);
printf ("%s\n",shm_addr);
if(shmdt((void *)shm_addr) == -1)
perror(" detach error ");
break;
case 'w':
shm_addr = (char*)shmat (shm_id,0,0);
memcpy((void*)shm_addr,(void*)argv[2],strlen(argv[2]));
printf("%s\n",data);
if(shmdt((void*)shm_addr) == -1)
perror(" detach error ");
break;
case 'd':
shmctl(shm_id,IPC_RMID,0);
break;
default : printf("error\n");
}
return 0;
}
不管是建立还是访问,操作步骤是一样的。你在写的时候没有获得shm_id,所以无论如何也不会成功的。
我的试验结果是,需要root权限才能建立或读取共享内存。
参考资料:
http://www.gbunix.com/htmldata/2006_07/14/20/article_1339_1.html
http://www.chinaunix.net/jh/4/719393.html
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=/apis/ipcshmgt.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=/apis/ipcshmdt.htm