当前位置:首页 » 操作系统 » ls路由算法

ls路由算法

发布时间: 2022-12-17 02:18:25

Ⅰ 在思科学习中,LS IGP和DV是什么

我不知道你有没有学习过网络方面的一些基础知识,总之一步步来吧
首先,简单的先解释下DV和LS
1、DV是Distance Vector的缩写,就是指距离矢量路由协议
2、LS是Link State的缩写,就是指链路状态路由协议
这是按路由协议的路由协议算法,把路由协议做的一个分类
DV里比较有代表性的是:RIP,EIGRP(这个算高级DV协议,结合了LS协议的一些特点),BGP
LS里比较有代表性的是:OSPF,IS-IS

然后再说下IGP是什么
IGP是Interior Gateway Protocol的缩写,就是指内部网关协议
路由协议按照使用场景分成IGP和EGP(外部网关协议)
IGP包括了大部分的动态路由协议:RIP,EIGRP,OSPF,IS-IS,等等
EGP里目前最主流的就一种:BGP

这就是根据路由协议的各种特性去做不同层面上的分类,举个简单的例子,就像人,可以按照性别分类:男人和女人,也可以按照性格去分类:内向的人和外向的人

如果你要更深入了解,到底DV协议和LS协议有什么区别,它们各自是如何计算路径,那不是一句两句可以讲的清楚的,需要你去细致的学习和反复敲实验才会有所收获

而IGP和EGP相对比较好理解,IGP主要用于一个园区网(或AS)的内部路由互相学习和收敛
而EGP用于负责连接多个园区网,承载大数量的路由条目

为了说的不这么书面化,所以,以上都是我自己组织语言回答的(而不是摘抄)可能有不严谨的地方,多多包涵

Ⅱ internet中的路由算法的应用和发展

路由算法可以根据多个特性来加以区分。首先,算法设计者的特定目标影响了该路由协议的操作;其次,存在着多种路由算法,每种算法对网络和路由器资源的影响都不同;最后,路由算法使用多种metric,影响到最佳路径的计算。
路由算法通常具有下列设计目标的一个或多个:

优化

简单、低耗

健壮、稳定

快速聚合

灵活性

优化指路由算法选择最佳路径的能力,根据metric的值和权值来计算。例如有一种路由算法可能使用跳数和延迟,但可能延迟的权值要大些。当然,路由协议必须严格定义计算metric的算法。

路由算法也可以设计得尽量简单。换句话说,路由协议必须高效地提供其功能,尽量减少软件和应用的开销。当实现路由算法的软件必须运行在物理资源有限的计算机上时高效尤其重要。

路由算法必须健壮,即在出现不正常或不可预见事件的情况下必须仍能正常处理,例如硬件故障、高负载和不正确的实现。因为路由器位于网络的连接点,当它们失效时会产生重大的问题。最好的路由算法通常是那些经过了时间考验,证实在各种网络条件下都很稳定的算法。

此外,路由算法必须能快速聚合,聚合是所有路由器对最佳路径达成一致的过程。当某网络事件使路径断掉或不可用时,路由器通过网络分发路由更新信息,促使最佳路径的重新计算,最终使所有路由器达成一致。聚合很慢的路由算法可能会产生路由环或网路中断。
各路由算法的区别点包括:

静态与动态

单路径与多路径

平坦与分层

主机智能与路由器智能

域内与域间

链接状态与距离向量

(1)静态与动态

静态路由算法很难算得上是算法,只不过是开始路由前由网管建立的表映射。这些映射自身并不改变,除非网管去改动。使用静态路由的算法较容易设计,在网络通信可预测及简单的网络中工作得很好。

由于静态路由系统不能对网络改变做出反映,通常被认为不适用于现在的大型、易变的网络。九十年代主要的路由算法都是动态路由算法,通过分析收到的路由更新信息来适应网络环境的改变。如果信息表示网络发生了变化,路由软件就重新计算路由并发出新的路由更新信息。这些信息渗入网络,促使路由器重新计算并对路由表做相应的改变。

动态路由算法可以在适当的地方以静态路由作为补充。例如,最后可选路由(router of last resort),作为所有不可路由分组的去路,保证了所有的数据至少有方法处理。

(2)单路径与多路径

一些复杂的路由协议支持到同一目的的多条路径。与单路径算法不同,这些多路径算法允许数据在多条线路上复用。多路径算法的优点很明显:它们可以提供更好的吞吐量和可靠性。

(3)平坦与分层
一些路由协议在平坦的空间里运作,其它的则有路由的层次。在平坦的路由系统中,每个路由器与其它所有路由器是对等的;在分层次的路由系统中,一些路由器构成了路由主干,数据从非主干路由器流向主干路由器,然后在主干上传输直到它们到达目标所在区域,在这里,它们从最后的主干路由器通过一个或多个非主干路由器到达终点。

路由系统通常设计有逻辑节点组,称为域、自治系统或区间。在分层的系统中,一些路由器可以与其它域中的路由器通信,其它的则只能与域内的路由器通信。在很大的网络中,可能还存在其它级别,最高级的路由器构成了路由主干。

分层路由的主要优点是它模拟了多数公司的结构,从而能很好地支持其通信。多数的网络通信发生在小组中(域)。因为域内路由器只需要知道本域内的其它路由器,它们的路由算法可以简化,根据所使用的路由算法,路由更新的通信量可以相应地减少。

(4)主机智能与路由器智能

一些路由算法假定源结点来决定整个路径,这通常称为源路由。在源路由系统中,路由器只作为存贮转发设备,无意识地把分组发向下一跳。其它路由算法假定主机对路径一无所知,在这些算法中,路由器基于自己的计算决定通过网络的路径。前一种系统中,主机具有决定路由的智能,后者则为路由器具有此能力。

主机智能和路由器智能的折衷实际是最佳路由与额外开销的平衡。主机智能系统通常能选择更佳的路径,因为它们在发送数据前探索了所有可能的路径,然后基于特定系统对“优化”的定义来选择最佳路径。然而确定所有路径的行为通常需要很多的探索通信量和很长的时间。

(5)域内与域间

一些路由算法只在域内工作,其它的则既在域内也在域间工作。这两种算法的本质是不同的。其遵循的理由是优化的域内路由算法没有必要也成为优化的域间路由算法。
(6)链接状态与距离向量

链接状态算法(也叫做短路径优先算法)把路由信息散布到网络的每个节点,不过每个路由器只发送路由表中描述其自己链接状态的部分。距离向量算法(也叫做Bellman-Ford算法)中每个路由器发送路由表的全部或部分,但只发给其邻居。也就是说,链接状态算法到处发送较少的更新信息,而距离向量算法只向相邻的路由器发送较多的更新信息。

由于链接状态算法聚合得较快,它们相对于距离算法产生路由环的倾向较小。在另一方面,链接状态算法需要更多的CPU和内存资源,因此链接状态算法的实现和支持较昂贵。虽然有差异,这两种算法类型在多数环境中都可以工作得很好。

3、路由的metric

路由表中含有由交换软件用以选择最佳路径的信息。但是路由表是怎样建立的呢?它们包含信息的本质是什么?路由算法怎样根据这些信息决定哪条路径更好呢?

路由算法使用了许多不同的metric以确定最佳路径。复杂的路由算法可以基于多个metric选择路由,并把它们结合成一个复合的metric。常用的metric如下:

路径长度

可靠性

延迟

带宽

负载

通信代价

路径长度是最常用的路由metric。一些路由协议允许网管给每个网络链接人工赋以代价值,这种情况下,路由长度是所经过各个链接的代价总和。其它路由协议定义了跳数,即分组在从源到目的的路途中必须经过的网络产品,如路由器的个数。

可靠性,在路由算法中指网络链接的可依赖性(通常以位误率描述),有些网络链接可能比其它的失效更多,网路失效后,一些网络链接可能比其它的更易或更快修复。任何可靠性因素都可以在给可靠率赋值时计算在内,通常是由网管给网络链接赋以metric值。

路由延迟指分组从源通过网络到达目的所花时间。很多因素影响到延迟,包括中间的网络链接的带宽、经过的每个路由器的端口队列、所有中间网络链接的拥塞程度以及物理距离。因为延迟是多个重要变量的混合体,它是个比较常用且有效的metric。

http://tech.ddvip.com/2007-10/119152495935811.html
这里面有解释。。恩

Ⅲ 路由器常见的路由算法有那些

路由算法的区别点包括:静态与动态、单路径与多路径、平坦与分层、主机智能与路由器智能、域内与域间、链接状态与距离向量。
1.链接状态
2.距离向量
3.LS算法
4.Dijkstra算法

Ⅳ 路由算法的度量标准

路由算法使用了许多种不同的度量标准去决定最佳路径。复杂的路由算法可能采用多种度量来选择路由,通过一定的加权运算,将它们合并为单个的复合度量、再填入路由表中,作为寻径的标准。
通常所使用的度量有:路径长度、可靠性、时延、带宽、负载、通信成本等。 采用LS算法时,每个路由器必须遵循以下步骤:
1、确认在物理上与之相连的路由器并获得它们的IP地址。当一个路由器开始工作后,它首先向整个网络发送一个“HELLO”分组数据包。每个接收到数据包的路由器都将返回一条消息,其中包含它自身的IP地址。
2、测量相邻路由器的延时(或者其他重要的网络参数,比如平均流量)。为做到这一点,路由器向整个网络发送响应分组数据包。每个接收到数据包的路由器返回一个应答分组数据包。将路程往返时间除以2,路由器便可以计算出延时。(路程往返时间是网络当前延迟的量度,通过一个分组数据包从远程主机返回的时间来测量。)该时间包括了传输和处理两部分的时间——也就是将分组数据包发送到目的地的时间以及接收方处理分组数据包和应答的时间。
3、向网络中的其他路由器广播自己的信息,同时也接收其他路由器的信息。
在这一步中,所有的路由器共享它们的知识并且将自身的信息广播给其他每一个路由器。这样,每一个路由器都能够知道网络的结构以及状态。
4、使用一个合适的算法,确定网络中两个节点之间的最佳路由。
在这一步中,路由器选择通往每一个节点的最佳路由。它们使用一个算法来实现这一点,如Dijkstra最短路径算法。在这个算法中,一个路由器通过收集到的其他路由器的信息,建立一个网络图。这个图描述网络中的路由器的位置以及它们之间的链接关系。每个链接都有一个数字标注,称为权值或成本。这个数字是延时和平均流量的函数,有时它仅仅表示节点间的跃点数。例如,如果一个节点与目的地之间有两条链路,路由器将选择权值最低的链路。 Dijkstra算法执行下列步骤:1、路由器建立一张网络图,并且确定源节点和目的节点,在这个例子里我们设为V1和V2。然后路由器建立一个矩阵,称为“邻接矩阵”。在这个矩阵中,各矩阵元素表示权值。例如,[i, j]是节点Vi与Vj之间的链路权值。如果节点Vi与Vj之间没有链路直接相连,它们的权值设为“无穷大”。
2、路由器为网路中的每一个节点建立一组状态记录。此记录包括三个字段:
前序字段——表示当前节点之前的节点。
长度字段——表示从源节点到当前节点的权值之和。
标号字段——表示节点的状态。每个节点都处于一个状态模式:“永久”或“暂时”。
3、路由器初始化(所有节点的)状态记录集参数,将它们的长度设为“无穷大”,标号设为“暂时”。
4、路由器设置一个T节点。例如,如果设V1是源T节点,路由器将V1的标号更改为“永久”。当一个标号更改为“永久”后,它将不再改变。一个T节点仅仅是一个代理而已。
5、路由器更新与源T节点直接相连的所有暂时性节点的状态记录集。
6、路由器在所有的暂时性节点中选择距离V1的权值最低的节点。这个节点将是新的T节点。
7、如果这个节点不是V2(目的节点),路由器则返回到步骤5。
8、如果节点是V2,路由器则向前回溯,将它的前序节点从状态记录集中提取出来,如此循环,直到提取到V1为止。这个节点列表便是从V1到V2的最佳路由。 距离向量算法(也称为Bellman-Ford算法)则要求每个路由器发送其路由表全部或部分信息,但仅发送到邻近结点上。从本质上来说,链路状态算法将少量更新信息发送至网络各处,而距离向量算法发送大量更新信息至邻接路由器。 ——由于链路状态算法收敛更快,因此它在一定程度上比距离向量算法更不易产生路由循环。但另一方面,链路状态算法要求比距离向量算法有更强的CPU能力和更多的内存空间,因此链路状态算法将会在实现时显得更昂贵一些。

Ⅳ 《计算机网络-自顶向下方法》第四章-网络层 要点

网络层的作用:实现主机到主机的通信服务,将分组从一台发送主机移动到一台接收主机。

1、转发涉及分组在单一的路由器中从一条入链路到一条出链路的传送。
2、路由选择涉及一个网络的所有路由器,它们经路由选择协议共同交互,以决定分组从源到目的地结点所采用的路径。计算这些路径的算法称为路由选择算法。

每台路由器都有一张转发表,路由器通过检查到达分组首部字段的值来转发分组,然后使用该值在该路由器的转发表中索引查找。路由选择算法决定了插入路由器转发表中的值。

路由选择算法可能是集中式的,或者是分布式的。但在这两种情况下,都是路由器接收路由选择协议报文,该信息被用于配置其转发表。

网络层也能在两台主机之间提供无连接服务或连接服务。同在运输层的面向连接服务和无连接服务类似,连接服务需要握手步骤,无连接服务不需要握手。但它们之间也有差异:
1、 在网络层中,这些服务是由网络层向运输层提供的主机到主机的服务。在运输层中,这些服务则是运输层向应用层提供的进程到进程的服务。
2、 在网络层提供无连接服务的计算机网络称为数据报网络;在网络层提供连接服务的计算机网络称为虚电路网络。
3、 在运输层实现面向连接的服务与在网络层实现连接服务是根本不同的。运输层面向连接服务是在位于网络边缘的端系统中实现的;网络层连接服务除了在端系统中,也在位于网络核心的路由器中实现。(原因很简单:端系统和路由器都有网络层)

虚电路网络和数据报网络是计算机网络的两种基本类型。在作出转发决定时,它们使用了非常不同的信息。

IP地址有32比特,如果路由器转发表采用“蛮力实现”将对每个可能的目的地址有一个表项。因为有超过40亿个可能的地址,这种选择完全不可能(即使用二分查找也十分慢)。
我们转发表的表项可以设计为几个表项,每个表项匹配一定范围的目的地址,比如有四个表项

(你可能也会考虑到,IP地址有32比特,如果每个路由器设计为只有2个表项,那么也只需要有32个路由器就可以唯一确定这40亿个地址中的一个。)

最长前缀匹配规则,是在转发表中寻找最长的匹配项,并向与最长前缀匹配相关联的链路接口转发分组。这种规则是为了与因特网的编址规则相适应。

1、输入端口
“使用转发表查找输出端口”是输入端口最重要的操作(当然还有其他一些操作)。输入端口执行完这些所需的操作后,就把该分组发送进入交换结构。如果来自其他输入端口的分组当前正在使用交换结构,一个分组可能会在进入交换结构时被暂时阻塞,在输入端口处排队,并等待稍后被及时调度以通过交换结构。
2、交换结构
交换结构的三种实现方式

3、输出端口
分组调度程序 处理在输出端口中排队的分组
4、路由选择处理器

</br>

</br>

IP协议版本4,简称为IPv4;IP协议版本6,简称为IPv6。

如上图所示,网络层有三个主要的组件
1、IP协议
2、路由选择协议
3、ICMP协议 (Internet Control Message Protocol, 因特网控制报文协议)

</br>

不是所有链路层协议都能承载相同长度的网络层分组。有的协议能承载大数据报,而有的协议只能承载小分组。例如,以太网帧能够承载不超过1500字节的数据,而某些广域网链路的帧可承载不超过576字节的数据。

一个链路层帧能承载的最大数据量叫做最大传送单元(Maximun Transmission Unit, MTU)

所以链路层协议的MTU严格限制着IP数据报的长度。这也还不是主要的问题,问题在于发送方与目的地路径上的每段链路可能使用不同的链路层协议,且每种协议可能具有不同的MTU。

举个例子:假定从某条链路收到一个IP数据报,通过检查转发表确定出链路,并且该出链路的MTU比该IP数据报的长度要小。那么如何将这个过大的IP分组压缩进链路层帧的有效载荷字段呢?

解决办法是,将IP数据报中的数据分片成两个或更多个较小的IP数据报,用单独的链路层帧封装这些较小的IP数据报;然后向输出链路上发送这些帧。每个这些较小的数据报都被称为片(fragment)。

路由器完成分片任务。同时,为了使得网络内核保持简单,IPv4设计者把数据报的重组工作放到端系统中,而非放到网络路由器中。

前提:一个4000字节的数据报(20字节IP首部加上3980字节IP有效载荷)到达一台路由器,且必须被转发到一条MTU为1500字节的链路上。假定初始数据报贴上的标识号为777。

这意味着初始数据报中3980字节数据必须被分配到3个独立的片(其中的每个片也是一个IP数据报)

IP分片:

IP地址有32比特,分为网络号和主机号。
IP地址的网络部分(即网络号)被限制为长度为8、16或24比特,这是一种称为分类编址的编址方案。具有8、16和24比特子网地址的子网分别被称为A、B和C类网络。

但是它在支持数量迅速增加的具有小规模或中等规模子网的组织方面出现了问题。一个C类(/24)子网仅能容纳多大2^8 - 2 = 254台主机(2^8 = 256, 其中的两个地址预留用于特殊用途),这对许多组织来说太小了。然而一个B类(/16)子网可支持多达65534台主机,又太大了。这导致B类地址空间的迅速损耗以及所分配的地址空间的利用率低。

广播地址255.255.255.255。当一台主机发出一个目的地址为255.255.255.255的数据报时,该报文会交付给同一个网络中的所有主机。

某组织一旦获得了一块地址,它就可以为本组织内的主机与路由器接口逐个分配IP地址。既可手工配置IP地址,也可以使用动态主机配置协议(Dynamic Host Configuration Protocol, DHCP)自动配置。DHCP还允许一台主机得知其他信息,如它的子网掩码、它的第一跳路由器地址(常称为默认网关)与它的本地DNS服务器的地址。

由于DHCP具有能将主机连接进一个网络相关方面的自动能力,它又被称为即插即用协议。

DHCP是客户-服务器协议。客户通常是新达到的主机,它要活的包括自身使用的IP地址在内的网络配置信息。在最简单的场合下,每个子网将具有一台DHCP服务器。如果在某子网中没有服务器,则需要一个DHCP中继代理(通常是一台路由器),这个代理知道用于该网络的DHCP服务器的地址。

DHCP协议工作的4个步骤:

网络地址转换(Network Address Translation, NAT)

ICMP通常被认为是IP的一部分,但从体系结构上将它是位于IP之上的,因为ICMP报文是承载在IP分组中的。即ICMP报文是作为IP有效载荷承载的,就像TCP与UDP报文段作为IP有效载荷被承载那样。

众所周知的ping程序发送一个ICMP类型8编码0的报文到指定主机。看到该回显请求,目的主机发回一个类型0编码0的ICMP回显回答。大多数TCP/IP实现直接在操作系统中支持ping服务器,即该服务器不是一个进程。

新型IPv6系统可做成向后兼容,即能发送、路由和接收IPv4数据报,要使得已部署的IPv4系统能够处理IPv6数据报,最直接的方式是采用一种双栈方法。

1、链路状态(Link State, LS)算法:属于全局式路由选择算法,这种算法必须知道网络中每条链路的费用。费用可理解为链路的物理长度、链路速度,或与该链路相关的金融上的费用。链路状态算法采用的是Dijkstra算法。

2、距离向量(Distance-Vector, DV)算法:属于迭代的、异步的和分布式的路由选择算法。
“迭代的”,是因为此过程一直要持续到邻居之间无更多信息要交换为止。
“异步的”,是因为它不要求所有结点相互之间步伐一致地操作。
“分布式的”,是因为每个结点都要从一个或多个直接相连邻居接收某些信息,执行计算,然后将其计算结果分发给邻居。
DV算法的方程:

其中,dx(y)表示从结点x到结点y的最低费用路径的费用,c(x, v)是结点x到结点v的费用,结点v指的是所有x的相连结点,所以x的所有相连结点都会用minv方程计算。

(N是结点(路由器)的集合,E是边(链路)的集合)

为了减少公共因特网的路由选择计算的复杂性以及方便企业管理网络,我们将路由器组织进自治系统。

在相同AS中的路由器全都运行同样的路由选择算法,且拥有彼此的信息。在一个自治系统内运行的路由选择算法叫做自治系统内部路由选择协议。

当然,将AS彼此互联是必需的,因此在一个AS内的一台或多台路由器将有另外的任务,即负责向在本AS之外的目的地转发分组。这些路由器被称为网关路由器。

分为自治系统内部的路由选择和自治系统间的路由选择

1、因特网中自治系统内部的路由选择:路由选择信息协议(Routing Information Protocol, RIP)
2、因特网中自治系统内部的路由选择:开放最短路优先(Open Shortest Path First, OSPF)
3、自治系统间的路由选择:边界网关协议(Broder Gateway Protocol, BGP)

为什么要使用不同的AS间和AS内部路由选择协议?

实现广播的方法
1、无控制洪泛。该方法要求源结点向它的所有邻居发送分组的副本。当某结点接收了一个广播分组时,它复制该分组并向它的所有邻居(除了从其接收该分组的那个邻居)转发之。
致命缺点: 广播风暴 ,如果图具有圈,那么每个广播分组的一个或多个分组副本将无休止地循环。
2、受控洪泛。用于避免广播风暴,关键在于正确选择何时洪泛分组,何时不洪泛分组。受控洪泛有两种方法:序号控制洪泛、反向路径转发(Reverse Path Forwarding, RPF)
3、生成树广播。虽然序号控制洪泛和RPF能避免广播风暴,但是它们不能完全避免冗余广播分组的传输。

多播:将分组从一个或多个发送方交付到一组接收方

每台主机有一个唯一的IP单播地址,该单播地址完全独立于它所参与的多播组的地址。

因特网网络层多播由两个互补组件组成:因特网组管理协议(Internet Group Management Protocol, IGMP)和多播路由选择协议

IGMP只有三种报文类型:membership_query报文,membership_report报文,leave_group报文。

与ICMP类似,IGMP报文也是承载在一个IP数据报中。

因特网中使用的多播路由选择
1、距离向量多播路由选择协议
2、协议无关的多播路由选择协议

Ⅵ 计算机网络知识点

一、计算机网络概述

1.1 计算机网络的分类

按照网络的作用范围:广域网(WAN)、城域网(MAN)、局域网(LAN);

按照网络使用者:公用网络、专用网络。

1.2 计算机网络的层次结构

TCP/IP四层模型与OSI体系结构对比:

1.3 层次结构设计的基本原则

各层之间是相互独立的;

每一层需要有足够的灵活性;

各层之间完全解耦。

1.4 计算机网络的性能指标

速率:bps=bit/s 时延:发送时延、传播时延、排队时延、处理时延 往返时间RTT:数据报文在端到端通信中的来回一次的时间。

二、物理层

物理层的作用:连接不同的物理设备,传输比特流。该层为上层协议提供了一个传输数据的可靠的物理媒体。简单的说,物理层确保原始的数据可在各种物理媒体上传输。

物理层设备:

中继器【Repeater,也叫放大器】:同一局域网的再生信号;两端口的网段必须同一协议;5-4-3规程:10BASE-5以太网中,最多串联4个中继器,5段中只能有3个连接主机;

集线器:同一局域网的再生、放大信号(多端口的中继器);半双工,不能隔离冲突域也不能隔离广播域。

信道的基本概念:信道是往一个方向传输信息的媒体,一条通信电路包含一个发送信道和一个接受信道。

单工通信信道:只能一个方向通信,没有反方向反馈的信道;

半双工通信信道:双方都可以发送和接受信息,但不能同时发送也不能同时接收;

全双工通信信道:双方都可以同时发送和接收。

三、数据链路层

3.1 数据链路层概述

数据链路层在物理层提供的服务的基础上向网络层提供服务,其最基本的服务是将源自网络层来的数据可靠地传输到相邻节点的目标机网络层。数据链路层在不可靠的物理介质上提供可靠的传输。

该层的作用包括: 物理地址寻址、数据的成帧、流量控制、数据的检错、重发 等。

有关数据链路层的重要知识点:

数据链路层为网络层提供可靠的数据传输;

基本数据单位为帧;

主要的协议:以太网协议;

两个重要设备名称:网桥和交换机。

封装成帧:“帧”是 数据链路层 数据的基本单位:

透明传输:“透明”是指即使控制字符在帧数据中,但是要当做不存在去处理。即在控制字符前加上转义字符ESC。

3.2 数据链路层的差错监测

差错检测:奇偶校验码、循环冗余校验码CRC

奇偶校验码–局限性:当出错两位时,检测不到错误。

循环冗余检验码:根据传输或保存的数据而产生固定位数校验码。

3.3 最大传输单元MTU

最大传输单元MTU(Maximum Transmission Unit),数据链路层的数据帧不是无限大的,数据帧长度受MTU限制.

路径MTU:由链路中MTU的最小值决定。

3.4 以太网协议详解

MAC地址:每一个设备都拥有唯一的MAC地址,共48位,使用十六进制表示。

以太网协议:是一种使用广泛的局域网技术,是一种应用于数据链路层的协议,使用以太网可以完成相邻设备的数据帧传输:

局域网分类:

Ethernet以太网IEEE802.3:

以太网第一个广泛部署的高速局域网

以太网数据速率快

以太网硬件价格便宜,网络造价成本低

以太网帧结构:

类型:标识上层协议(2字节)

目的地址和源地址:MAC地址(每个6字节)

数据:封装的上层协议的分组(46~1500字节)

CRC:循环冗余码(4字节)

以太网最短帧:以太网帧最短64字节;以太网帧除了数据部分18字节;数据最短46字节;

MAC地址(物理地址、局域网地址)

MAC地址长度为6字节,48位;

MAC地址具有唯一性,每个网络适配器对应一个MAC地址;

通常采用十六进制表示法,每个字节表示一个十六进制数,用 - 或 : 连接起来;

MAC广播地址:FF-FF-FF-FF-FF-FF。

四、网络层

网络层的目的是实现两个端系统之间的数据透明传送,具体功能包括寻址和路由选择、连接的建立、保持和终止等。数据交换技术是报文交换(基本上被分组所替代):采用储存转发方式,数据交换单位是报文。

网络层中涉及众多的协议,其中包括最重要的协议,也是TCP/IP的核心协议——IP协议。IP协议非常简单,仅仅提供不可靠、无连接的传送服务。IP协议的主要功能有:无连接数据报传输、数据报路由选择和差错控制。

与IP协议配套使用实现其功能的还有地址解析协议ARP、逆地址解析协议RARP、因特网报文协议ICMP、因特网组管理协议IGMP。具体的协议我们会在接下来的部分进行总结,有关网络层的重点为:

1、网络层负责对子网间的数据包进行路由选择。此外,网络层还可以实现拥塞控制、网际互连等功能;

2、基本数据单位为IP数据报;

3、包含的主要协议:

IP协议(Internet Protocol,因特网互联协议);

ICMP协议(Internet Control Message Protocol,因特网控制报文协议);

ARP协议(Address Resolution Protocol,地址解析协议);

RARP协议(Reverse Address Resolution Protocol,逆地址解析协议)。

4、重要的设备:路由器。

路由器相关协议

4.1 IP协议详解

IP网际协议是 Internet 网络层最核心的协议。虚拟互联网络的产生:实际的计算机网络错综复杂;物理设备通过使用IP协议,屏蔽了物理网络之间的差异;当网络中主机使用IP协议连接时,无需关注网络细节,于是形成了虚拟网络。

IP协议使得复杂的实际网络变为一个虚拟互联的网络;并且解决了在虚拟网络中数据报传输路径的问题。

其中,版本指IP协议的版本,占4位,如IPv4和IPv6;首部位长度表示IP首部长度,占4位,最大数值位15;总长度表示IP数据报总长度,占16位,最大数值位65535;TTL表示IP数据报文在网络中的寿命,占8位;协议表明IP数据所携带的具体数据是什么协议的,如TCP、UDP。

4.2 IP协议的转发流程

4.3 IP地址的子网划分

A类(8网络号+24主机号)、B类(16网络号+16主机号)、C类(24网络号+8主机号)可以用于标识网络中的主机或路由器,D类地址作为组广播地址,E类是地址保留。

4.4 网络地址转换NAT技术

用于多个主机通过一个公有IP访问访问互联网的私有网络中,减缓了IP地址的消耗,但是增加了网络通信的复杂度。

NAT 工作原理:

从内网出去的IP数据报,将其IP地址替换为NAT服务器拥有的合法的公共IP地址,并将替换关系记录到NAT转换表中;

从公共互联网返回的IP数据报,依据其目的的IP地址检索NAT转换表,并利用检索到的内部私有IP地址替换目的IP地址,然后将IP数据报转发到内部网络。

4.5 ARP协议与RARP协议

地址解析协议 ARP(Address Resolution Protocol):为网卡(网络适配器)的IP地址到对应的硬件地址提供动态映射。可以把网络层32位地址转化为数据链路层MAC48位地址。

ARP 是即插即用的,一个ARP表是自动建立的,不需要系统管理员来配置。

RARP(Reverse Address Resolution Protocol)协议指逆地址解析协议,可以把数据链路层MAC48位地址转化为网络层32位地址。

4.6 ICMP协议详解

网际控制报文协议(Internet Control Message Protocol),可以报告错误信息或者异常情况,ICMP报文封装在IP数据报当中。

ICMP协议的应用:

Ping应用:网络故障的排查;

Traceroute应用:可以探测IP数据报在网络中走过的路径。

4.7网络层的路由概述

关于路由算法的要求:正确的完整的、在计算上应该尽可能是简单的、可以适应网络中的变化、稳定的公平的。

自治系统AS: 指处于一个管理机构下的网络设备群,AS内部网络自治管理,对外提供一个或多个出入口,其中自治系统内部的路由协议为内部网关协议,如RIP、OSPF等;自治系统外部的路由协议为外部网关协议,如BGP。

静态路由: 人工配置,难度和复杂度高;

动态路由:

链路状态路由选择算法LS:向所有隔壁路由发送信息收敛快;全局式路由选择算法,每个路由器计算路由时,需构建整个网络拓扑图;利用Dijkstra算法求源端到目的端网络的最短路径;Dijkstra(迪杰斯特拉)算法

距离-向量路由选择算法DV:向所有隔壁路由发送信息收敛慢、会存在回路;基础是Bellman-Ford方程(简称B-F方程);

4.8 内部网关路由协议之RIP协议

路由信息协议 RIP(Routing Information Protocol)【应用层】,基于距离-向量的路由选择算法,较小的AS(自治系统),适合小型网络;RIP报文,封装进UDP数据报。

RIP协议特性:

RIP在度量路径时采用的是跳数(每个路由器维护自身到其他每个路由器的距离记录);

RIP的费用定义在源路由器和目的子网之间;

RIP被限制的网络直径不超过15跳;

和隔壁交换所有的信息,30主动一次(广播)。

4.9 内部网关路由协议之OSPF协议

开放最短路径优先协议 OSPF(Open Shortest Path First)【网络层】,基于链路状态的路由选择算法(即Dijkstra算法),较大规模的AS ,适合大型网络,直接封装在IP数据报传输。

OSPF协议优点:

安全;

支持多条相同费用路径;

支持区别化费用度量;

支持单播路由和多播路由;

分层路由。

RIP与OSPF的对比(路由算法决定其性质):

4.10外部网关路由协议之BGP协议

BGP(Border Gateway Protocol)边际网关协议【应用层】:是运行在AS之间的一种协议,寻找一条好路由:首次交换全部信息,以后只交换变化的部分,BGP封装进TCP报文段.

五、传输层

第一个端到端,即主机到主机的层次。传输层负责将上层数据分段并提供端到端的、可靠的或不可靠的传输。此外,传输层还要处理端到端的差错控制和流量控制问题。

传输层的任务是根据通信子网的特性,最佳的利用网络资源,为两个端系统的会话层之间,提供建立、维护和取消传输连接的功能,负责端到端的可靠数据传输。在这一层,信息传送的协议数据单元称为段或报文。

网络层只是根据网络地址将源结点发出的数据包传送到目的结点,而传输层则负责将数据可靠地传送到相应的端口。

有关网络层的重点:

传输层负责将上层数据分段并提供端到端的、可靠的或不可靠的传输以及端到端的差错控制和流量控制问题;

包含的主要协议:TCP协议(Transmission Control Protocol,传输控制协议)、UDP协议(User Datagram Protocol,用户数据报协议);

重要设备:网关。

5.1 UDP协议详解

UDP(User Datagram Protocol: 用户数据报协议),是一个非常简单的协议。

UDP协议的特点:

UDP是无连接协议;

UDP不能保证可靠的交付数据;

UDP是面向报文传输的;

UDP没有拥塞控制;

UDP首部开销很小。

UDP数据报结构:

首部:8B,四字段/2B【源端口 | 目的端口 | UDP长度 | 校验和】 数据字段:应用数据

5.2 TCP协议详解

TCP(Transmission Control Protocol: 传输控制协议),是计算机网络中非常复杂的一个协议。

TCP协议的功能:

对应用层报文进行分段和重组;

面向应用层实现复用与分解;

实现端到端的流量控制;

拥塞控制;

传输层寻址;

对收到的报文进行差错检测(首部和数据部分都检错);

实现进程间的端到端可靠数据传输控制。

TCP协议的特点:

TCP是面向连接的协议;

TCP是面向字节流的协议;

TCP的一个连接有两端,即点对点通信;

TCP提供可靠的传输服务;

TCP协议提供全双工通信(每条TCP连接只能一对一);

5.2.1 TCP报文段结构:

最大报文段长度:报文段中封装的应用层数据的最大长度。

TCP首部:

序号字段:TCP的序号是对每个应用层数据的每个字节进行编号

确认序号字段:期望从对方接收数据的字节序号,即该序号对应的字节尚未收到。用ack_seq标识;

TCP段的首部长度最短是20B ,最长为60字节。但是长度必须为4B的整数倍

TCP标记的作用:

5.3 可靠传输的基本原理

基本原理:

不可靠传输信道在数据传输中可能发生的情况:比特差错、乱序、重传、丢失

基于不可靠信道实现可靠数据传输采取的措施:

差错检测:利用编码实现数据包传输过程中的比特差错检测 确认:接收方向发送方反馈接收状态 重传:发送方重新发送接收方没有正确接收的数据 序号:确保数据按序提交 计时器:解决数据丢失问题;

停止等待协议:是最简单的可靠传输协议,但是该协议对信道的利用率不高。

连续ARQ(Automatic Repeat reQuest:自动重传请求)协议:滑动窗口+累计确认,大幅提高了信道的利用率。

5.3.1TCP协议的可靠传输

基于连续ARQ协议,在某些情况下,重传的效率并不高,会重复传输部分已经成功接收的字节。

5.3.2 TCP协议的流量控制

流量控制:让发送方发送速率不要太快,TCP协议使用滑动窗口实现流量控制。

5.4 TCP协议的拥塞控制

拥塞控制与流量控制的区别:流量控制考虑点对点的通信量的控制,而拥塞控制考虑整个网络,是全局性的考虑。拥塞控制的方法:慢启动算法+拥塞避免算法。

慢开始和拥塞避免:

【慢开始】拥塞窗口从1指数增长;

到达阈值时进入【拥塞避免】,变成+1增长;

【超时】,阈值变为当前cwnd的一半(不能<2);

再从【慢开始】,拥塞窗口从1指数增长。

快重传和快恢复:

发送方连续收到3个冗余ACK,执行【快重传】,不必等计时器超时;

执行【快恢复】,阈值变为当前cwnd的一半(不能<2),并从此新的ssthresh点进入【拥塞避免】。

5.5 TCP连接的三次握手(重要)

TCP三次握手使用指令:

面试常客:为什么需要三次握手?

第一次握手:客户发送请求,此时服务器知道客户能发;

第二次握手:服务器发送确认,此时客户知道服务器能发能收;

第三次握手:客户发送确认,此时服务器知道客户能收。

建立连接(三次握手):

第一次: 客户向服务器发送连接请求段,建立连接请求控制段(SYN=1),表示传输的报文段的第一个数据字节的序列号是x,此序列号代表整个报文段的序号(seq=x);客户端进入 SYN_SEND (同步发送状态);

第二次: 服务器发回确认报文段,同意建立新连接的确认段(SYN=1),确认序号字段有效(ACK=1),服务器告诉客户端报文段序号是y(seq=y),表示服务器已经收到客户端序号为x的报文段,准备接受客户端序列号为x+1的报文段(ack_seq=x+1);服务器由LISTEN进入SYN_RCVD (同步收到状态);

第三次: 客户对服务器的同一连接进行确认.确认序号字段有效(ACK=1),客户此次的报文段的序列号是x+1(seq=x+1),客户期望接受服务器序列号为y+1的报文段(ack_seq=y+1);当客户发送ack时,客户端进入ESTABLISHED 状态;当服务收到客户发送的ack后,也进入ESTABLISHED状态;第三次握手可携带数据;

5.6 TCP连接的四次挥手(重要)

释放连接(四次挥手)

第一次: 客户向服务器发送释放连接报文段,发送端数据发送完毕,请求释放连接(FIN=1),传输的第一个数据字节的序号是x(seq=x);客户端状态由ESTABLISHED进入FIN_WAIT_1(终止等待1状态);

第二次: 服务器向客户发送确认段,确认字号段有效(ACK=1),服务器传输的数据序号是y(seq=y),服务器期望接收客户数据序号为x+1(ack_seq=x+1);服务器状态由ESTABLISHED进入CLOSE_WAIT(关闭等待);客户端收到ACK段后,由FIN_WAIT_1进入FIN_WAIT_2;

第三次: 服务器向客户发送释放连接报文段,请求释放连接(FIN=1),确认字号段有效(ACK=1),表示服务器期望接收客户数据序号为x+1(ack_seq=x+1);表示自己传输的第一个字节序号是y+1(seq=y+1);服务器状态由CLOSE_WAIT 进入 LAST_ACK (最后确认状态);

第四次: 客户向服务器发送确认段,确认字号段有效(ACK=1),表示客户传输的数据序号是x+1(seq=x+1),表示客户期望接收服务器数据序号为y+1+1(ack_seq=y+1+1);客户端状态由FIN_WAIT_2进入TIME_WAIT,等待2MSL时间,进入CLOSED状态;服务器在收到最后一次ACK后,由LAST_ACK进入CLOSED;

为什么需要等待2MSL?

最后一个报文没有确认;

确保发送方的ACK可以到达接收方;

2MSL时间内没有收到,则接收方会重发;

确保当前连接的所有报文都已经过期。

六、应用层

为操作系统或网络应用程序提供访问网络服务的接口。应用层重点:

数据传输基本单位为报文;

包含的主要协议:FTP(文件传送协议)、Telnet(远程登录协议)、DNS(域名解析协议)、SMTP(邮件传送协议),POP3协议(邮局协议),HTTP协议(Hyper Text Transfer Protocol)。

6.1 DNS详解

DNS(Domain Name System:域名系统)【C/S,UDP,端口53】:解决IP地址复杂难以记忆的问题,存储并完成自己所管辖范围内主机的 域名 到 IP 地址的映射。

域名解析的顺序:

【1】浏览器缓存

【2】找本机的hosts文件,

【3】路由缓存,

【4】找DNS服务器(本地域名、顶级域名、根域名)->迭代解析、递归查询。

IP—>DNS服务—>便于记忆的域名

域名由点、字母和数字组成,分为顶级域(com,cn,net,gov,org)、二级域(,taobao,qq,alibaba)、三级域(www)(12-2-0852)

6.2 DHCP协议详解

DHCP(Dynamic Configuration Protocol:动态主机设置协议):是一个局域网协议,是应用UDP协议的应用层协议。作用:为临时接入局域网的用户自动分配IP地址。

6.3 HTTP协议详解

文件传输协议(FTP):控制连接(端口21):传输控制信息(连接、传输请求),以7位ASCII码的格式。整个会话期间一直打开。

HTTP(HyperText Transfer Protocol:超文本传输协议)【TCP,端口80】:是可靠的数据传输协议,浏览器向服务器发收报文前,先建立TCP连接,HTTP使用TCP连接方式(HTTP自身无连接)。

HTTP请求报文方式:

GET:请求指定的页面信息,并返回实体主体;

POST:向指定资源提交数据进行处理请求;

DELETE:请求服务器删除指定的页面;

HEAD:请求读取URL标识的信息的首部,只返回报文头;

OPETION:请求一些选项的信息;

PUT:在指明的URL下存储一个文档。

6.3.1 HTTP工作的结构

6.3.2 HTTPS协议详解

HTTPS(Secure)是安全的HTTP协议,端口号443。基于HTTP协议,通过SSL或TLS提供加密处理数据、验证对方身份以及数据完整性保护

原文地址:https://blog.csdn.net/Royalic/article/details/119985591

Ⅶ 路由算法的类型有

静态路由算法

1.Dijkstra算法(最短路径算法)

Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN,CLOSE表的方式,这里均采用永久和临时标号的方式。注意该算法要求图中不存在负权回路。

Dijkstra算法执行步骤如下:

步骤一:路由器建立一张网络图,并且确定源节点和目的节点,在这个例子里我们设为V1和V2。然后路由器建立一个矩阵,称为“邻接矩阵”。在这个矩阵中,各矩阵元素表示权值。例如,[i,j]是节点Vi与Vj之间的链路权值。如果节点Vi与Vj之间没有链路直接相连,它们的权值设为“无穷大”。

步骤二:路由器为网路中的每一个节点建立一组状态记录。此记录包括三个字段:

前序字段———表示当前节点之前的节点。

长度字段———表示从源节点到当前节点的权值之和。

标号字段———表示节点的状态。每个节点都处于一个状态模式:“永久”或“暂时”。

步骤三:路由器初始化(所有节点的)状态记录集参数,将它们的长度设为“无穷大”,标号设为“暂时”。

步骤四:路由器设置一个T节点。例如,如果设V1是源T节点,路由器将V1的标号更改为“永久”。当一个标号更改为“永久”后,它将不再改变。一个T节点仅仅是一个代理而已。

步骤五:路由器更新与源T节点直接相连的所有暂时性节点的状态记录集。

步骤六:路由器在所有的暂时性节点中选择距离V1的权值最低的节点。这个节点将是新的T节点。

步骤七:如果这个节点不是V2(目的节点),路由器则返回到步骤5。

步骤八:如果节点是V2,路由器则向前回溯,将它的前序节点从状态记录集中提取出来,如此循环,直到提取到V1为止。这个节点列表便是从V1到V2的最佳路由。

2.扩散法

事先不需要任何网络信息;路由器把收到的每一个分组,向除了该分组到来的线路外的所有输出线路发送。将来会有多个分组的副本到达目的地端,最先到达的,可能是走了“最优”的路径常见的扩散法是选择性扩散算法。

3.LS算法

采用LS算法时,每个路由器必须遵循以下步骤:

步骤一:确认在物理上与之相连的路由器并获得它们的IP地址。当一个路由器开始工作后,它首先向整个网络发送一个“HELLO”分组数据包。每个接收到数据包的路由器都将返回一条消息,其中包含它自身的IP地址。

步骤二:测量相邻路由器的延时(或者其他重要的网络参数,比如平均流量)。为做到这一点,路由器向整个网络发送响应分组数据包。每个接收到数据包的路由器返回一个应答分组数据包。将路程往返时间除以2,路由器便可以计算出延时。(路程往返时间是网络当前延迟的量度,通过一个分组数据包从远程主机返回的时间来测量。)该时间包括了传输和处理两部分的时间——也就是将分组数据包发送到目的地的时间以及接收方处理分组数据包和应答的时间。

步骤三:向网络中的其他路由器广播自己的信息,同时也接收其他路由器的信息。

在这一步中,所有的路由器共享它们的知识并且将自身的信息广播给其他每一个路由器。这样,每一个路由器都能够知道网络的结构以及状态。

步骤四:使用一个合适的算法,确定网络中两个节点之间的最佳路由。

Ⅷ 配置缺省路由

缺省路由:路由算法有动静之分,静态路由是一种特殊的路由,它是由管理员手工设定的。手工配置所有的路由虽然可以使网络正常运转,但是也会带来一些局限性。网络拓扑发生变化之后,静态路由不会自动改变,必须有网络管理员的介入。
缺省路由是静态路由的一种,也是由管理员设置的。在没有找到目标网络的路由表项时,路由器将信息发送到缺省路由器。而动态的算法,顾名思义,是由路由器自动计算出的路由,常说的RIP、OSPF等都是动态算法的典型代表。
另外,还可以将路由算法分为DV和LS两种。DV(Distance Vector,距离向量)算法将当前路由器的路由信息传送给相邻路由器,相邻路由器将这些信息加入自身的路由表。而LS(Link State,链路状态)算法将链路状态信息传给域内所有的路由器,接收路由器利用这些信息构建网络拓扑图,并利用图论中的最短路径优先算法决定路由。

Ⅸ 路由算法的分级路由

可以看到,在LS和DV算法中,每个路由器都需要保存其他路由器的一些信息。随着网络规模的扩大,网络中的路由器也将增加。因此,路由表的规模也将增大,从而使路由器不能有效地处理网络流量。使用分级路由可以解决这个问题。让使用DV算法来查找节点间的最佳路由。
在下述情形中,网络中的每个节点保存了一个有17个记录的路由表。在分级路由中,路由器被分成很多组,称为区域。每个路由器都只有自己所在区域路由器的信息,而没有其他区域路由器的信息。所以在其路由表中,路由器只需要存储其他每个区域的一条记录。在这个例子中,我们将网络分为5个区域。
如果A想发送分组数据包到在区域2中的一个路由器(D、E、F或G),它就将分组数据包先发送到B,依此类推。可以看到,在这种类型的路由中,可以对路由表进行概括,因此网络效率提高了。上面的例子描述了一个两级的分级路由。同样我们也可以采用三级或者四级的分级路由。
在一个三级的分级路由中,网络被分为很多簇。每个簇由很多个区域组成,每个区域包含很多个路由器。分级路由广泛应用于互联网路由中,并且使用了多种路由协议。

Ⅹ 6,路由选择有哪些算法

关于路由器如何收集网络的结构信息以及对之进行分析来确定最佳路由,有两种主要的路由算法:
总体式路由算法和分散式路由算法。采用分散式路由算法时,每个路由器只有与它直接相连的路由器的信息——而没有网络中的每个路由器的信息。这些算法也被称为dv(距离向量)算法。采用总体式路由算法时,每个路由器都拥有网络中所有其他路由器的全部信息以及网络的流量状态。这些算法也被称为ls(链路状态)算法。

热点内容
jquery获取上传文件 发布:2025-05-14 20:27:57 浏览:43
云web服务器搭建 发布:2025-05-14 20:25:36 浏览:525
汽修汽配源码 发布:2025-05-14 20:08:53 浏览:742
蜜蜂编程官网 发布:2025-05-14 19:59:28 浏览:57
优酷怎么给视频加密 发布:2025-05-14 19:31:34 浏览:635
梦三国2副本脚本 发布:2025-05-14 19:29:58 浏览:860
phpxmlhttp 发布:2025-05-14 19:29:58 浏览:434
Pua脚本 发布:2025-05-14 19:24:56 浏览:449
苹果像素低为什么比安卓好 发布:2025-05-14 19:13:23 浏览:461
安卓机微信怎么设置红包提醒 发布:2025-05-14 19:00:15 浏览:272