数据库的构架
⑴ 数据库按数据的组织方式来分可以分为哪三种模型
1、层次模型:
①有且只有一个结点没有双亲结点(这个结点叫根结点)。
②除根结点外的其他结点有且只有一个双亲结点。
层次模型中的记录只能组织成树的集合而不能是任意图的集合。在层次模型中,记录的组织不再是一张杂乱无章的图,而是一棵"倒长"的树。
2、网状模型 :
①允许一个以上的结点没有双亲结点。
②一个结点可以有多个双亲结点。
网状模型中的数据用记录的集合来表示,数据间的联系用链接(可看作指针)来表示。数据库中的记录可被组织成任意图的集合。
3、关系模型:
关系模型用表的集合来表示数据和数据间的联系。
每个表有多个列,每列有唯一的列名。
在关系模型中,无论是从客观事物中抽象出的实体,还是实体之间的联系,都用单一的结构类型
(1)数据库的构架扩展阅读
1、无条件查询
例:找出所有学生的的选课情况
SELECT st_no,su_no
FROM score
例:找出所有学生的情况
SELECT*
FROM student
“*”为通配符,表示查找FROM中所指出关系的所有属性的值。
2、条件查询
条件查询即带有WHERE子句的查询,所要查询的对象必须满足WHERE子句给出的条件。
例:找出任何一门课成绩在70以上的学生情况、课号及分数
SELECT UNIQUE student.st_class,student.st_no,student.st_name,student.st_sex,student.st_age,score.su_no,score.score
FROM student,score
WHERE score.score>=70 AND score.stno=student,st_no
这里使用UNIQUE是不从查询结果集中去掉重复行,如果使用DISTINCT则会去掉重复行。另外逻辑运算符的优先顺序为NOT→AND→OR。
例:找出课程号为c02的,考试成绩不及格的学生
SELECT st_no
FROM score
WHERE su_no=‘c02’AND score<60
3、排序查询
排序查询是指将查询结果按指定属性的升序(ASC)或降序(DESC)排列,由ORDER BY子句指明。
例:查找不及格的课程,并将结果按课程号从大到小排列
SELECT UNIQUE su_no
FROM score
WHERE score<60
ORDER BY su_no DESC
4、嵌套查询
嵌套查询是指WHERE子句中又包含SELECT子句,它用于较复杂的跨多个基本表查询的情况。
例:查找课程编号为c03且课程成绩在80分以上的学生的学号、姓名
SELECT st_no,st_name
FROM student
WHERE stno IN (SELECT st_no
FROM score
WHERE su_no=‘c03’ AND score>80 )
这里需要明确的是:当查询涉及多个基本表时用嵌套查询逐次求解层次分明,具有结构程序设计特点。在嵌套查询中,IN是常用到的谓词。若用户能确切知道内层查询返回的是单值,那么也可用算术比较运算符表示用户的要求。
5、计算查询
计算查询是指通过系统提供的特定函数(聚合函数)在语句中的直接使用而获得某些只有经过计算才能得到的结果。常用的函数有:
COUNT(*) 计算元组的个数
COUNT(列名) 对某一列中的值计算个数
SUM(列名) 求某一列值的总和(此列值是数值型)
AVG(列名) 求某一列值的平均值(此列值是数值型)
MAX(列名) 求某一列值中的最大值
MIN(列名) 求某一列值中的最小值
例:求男学生的总人数和平均年龄
SELECT COUNT(*),AVG(st_age)
FROM student
WHERE st_sex=‘男’
例:统计选修了课程的学生的人数
SELECT COUNT(DISTINCT st_no)
FROM score
注意:这里一定要加入DISTINCT,因为有的学生可能选修了多门课程,但统计时只能按1人统计,所以要使用DISTINCT进行过滤。
⑵ 数据库架构选型与落地,看这篇就够了
随着时间和业务的发展,数据库中的数据量增长是不可控的,库和表中的数据会越来越大,随之带来的是更高的 磁盘 、 IO 、 系统开销 ,甚至 性能 上的瓶颈,而单台服务器的 资源终究是有限 的。
因此在面对业务扩张过程中,应用程序对数据库系统的 健壮性 , 安全性 , 扩展性 提出了更高的要求。
以下,我从数据库架构、选型与落地来让大家入门。
数据库会面临什么样的挑战呢?
业务刚开始我们只用单机数据库就够了,但随着业务增长,数据规模和用户规模上升,这个时候数据库会面临IO瓶颈、存储瓶颈、可用性、安全性问题。
为了解决上述的各种问题,数据库衍生了出不同的架构来解决不同的场景需求。
将数据库的写操作和读操作分离,主库接收写请求,使用多个从库副本负责读请求,从库和主库同步更新数据保持数据一致性,从库可以水平扩展,用于面对读请求的增加。
这个模式也就是常说的读写分离,针对的是小规模数据,而且存在大量读操作的场景。
因为主从的数据是相同的,一旦主库宕机的时候,从库可以 切换为主库提供写入 ,所以这个架构也可以提高数据库系统的 安全性 和 可用性 ;
优点:
缺点:
在数据库遇到 IO瓶颈 过程中,如果IO集中在某一块的业务中,这个时候可以考虑的就是垂直分库,将热点业务拆分出去,避免由 热点业务 的 密集IO请求 影响了其他正常业务,所以垂直分库也叫 业务分库 。
优点:
缺点:
在数据库遇到存储瓶颈的时候,由于数据量过大造成索引性能下降。
这个时候可以考虑将数据做水平拆分,针对数据量巨大的单张表,按照某种规则,切分到多张表里面去。
但是这些表还是在同一个库中,所以库级别的数据库操作还是有IO瓶颈(单个服务器的IO有上限)。
所以水平分表主要还是针对 数据量较大 ,整体业务 请求量较低 的场景。
优点:
缺点:
四、分库分表
在数据库遇到存储瓶颈和IO瓶颈的时候,数据量过大造成索引性能下降,加上同一时间需要处理大规模的业务请求,这个时候单库的IO上限会限制处理效率。
所以需要将单张表的数据切分到多个服务器上去,每个服务器具有相应的库与表,只是表中数据集合不同。
分库分表能够有效地缓解单机和单库的 性能瓶颈和压力 ,突破IO、连接数、硬件资源等的瓶颈。
优点:
缺点:
注:分库还是分表核心关键是有没有IO瓶颈 。
分片方式都有什么呢?
RANGE(范围分片)
将业务表中的某个 关键字段排序 后,按照顺序从0到10000一个表,10001到20000一个表。最常见的就是 按照时间切分 (月表、年表)。
比如将6个月前,甚至一年前的数据切出去放到另外的一张表,因为随着时间流逝,这些表的数据被查询的概率变小,银行的交易记录多数是采用这种方式。
优点:
缺点:
HASH(哈希分片)
将订单作为主表,然后将其相关的业务表作为附表,取用户id然后 hash取模 ,分配到不同的数据表或者数据库上。
优点:
缺点:
讲到这里,我们已经知道数据库有哪些架构,解决的是哪些问题,因此, 我们在日常设计中需要根据数据的特点,数据的倾向性,数据的安全性等来选择不同的架构 。
那么,我们应该如何选择数据库架构呢?
虽然把上面的架构全部组合在一起可以形成一个强大的高可用,高负载的数据库系统,但是架构选择合适才是最重要的。
混合架构虽然能够解决所有的场景的问题,但是也会面临更多的挑战,你以为的完美架构,背后其实有着更多的坑。
1、对事务支持
分库分表后(无论是垂直还是水平拆分),就成了分布式事务了,如果依赖数据库本身的分布式事务管理功能去执行事务,将付出高昂的性能代价(XA事务);如果由应用程序去协助控制,形成程序逻辑上的事务,又会造成编程方面的负担(TCC、SAGA)。
2、多库结果集合并 (group by,order by)
由于数据分布于不同的数据库中,无法直接对其做分页、分组、排序等操作,一般应对这种多库结果集合并的查询业务都需要采用数据清洗、同步等其他手段处理(TIDB、KUDU等)。
3、数据延迟
主从架构下的多副本机制和水平分库后的聚合库都会存在主数据和副本数据之间的延迟问题。
4、跨库join
分库分表后表之间的关联操作将受到限制,我们无法join位于不同分库的表(垂直),也无法join分表粒度不同的表(水平), 结果原本一次查询就能够完成的业务,可能需要多次查询才能完成。
5、分片扩容
水平分片之后,一旦需要做扩容时。需要将对应的数据做一次迁移,成本代价都极高的。
6、ID生成
分库分表后由于数据库独立,原有的基于数据库自增ID将无法再使用,这个时候需要采用其他外部的ID生成方案。
一、应用层依赖类(JDBC)
这类分库分表中间件的特点就是和应用强耦合,需要应用显示依赖相应的jar包(以java为例),比如知名的TDDL、当当开源的 sharding-jdbc 、蘑菇街的TSharding等。
此类中间件的基本思路就是重新实现JDBC的API,通过重新实现 DataSource 、 PrepareStatement 等操作数据库的接口,让应用层在 基本 不改变业务代码的情况下透明地实现分库分表的能力。
中间件给上层应用提供熟悉的JDBC API,内部通过 sql解析 、 sql重写 、 sql路由 等一系列的准备工作获取真正可执行的sql,然后底层再按照传统的方法(比如数据库连接池)获取物理连接来执行sql,最后把数据 结果合并 处理成ResultSet返回给应用层。
优点
缺点
二、中间层代理类(Proxy)
这类分库分表中间件的核心原理是在应用和数据库的连接之间搭起一个 代理层 ,上层应用以 标准的MySQL协议 来连接代理层,然后代理层负责 转发请求 到底层的MySQL物理实例,这种方式对应用只有一个要求,就是只要用MySQL协议来通信即可。
所以用MySQL Navicat这种纯的客户端都可以直接连接你的分布式数据库,自然也天然 支持所有的编程语言 。
在技术实现上除了和应用层依赖类中间件基本相似外,代理类的分库分表产品必须实现标准的MySQL协议,某种意义上讲数据库代理层转发的就是MySQL协议请求,就像Nginx转发的是Http协议请求。
比较有代表性的产品有开创性质的Amoeba、阿里开源的Cobar、社区发展比较好的 Mycat (基于Cobar开发)等。
优点
缺点
JDBC方案 :无中心化架构,兼容市面上大多数关系型数据库,适用于开发高性能的轻量级 OLTP 应用(面向前台)。
Proxy方案 :提供静态入口以及异构语言的支持,适用于 OLAP 应用(面向后台)以及对分片数据库进行管理和运维的场景。
混合方案 :在大型复杂系统中存在面向C端用户的前台应用,也有面向企业分析的后台应用,这个时候就可以采用混合模式。
JDBC 采用无中心化架构,适用于 Java 开发的高性能的轻量级 OLTP 应用;Proxy 提供静态入口以及异构语言的支持,适用于 OLAP 应用以及对分片数据库进行管理和运维的场景。
ShardingSphere是一套开源的分布式数据库中间件解决方案组成的生态圈,它由 Sharding-JDBC 、 Sharding-Proxy 和 Sharding-Sidecar (计划中)这3款相互独立的产品组成,他们均提供标准化的数据分片、分布式事务和数据库治理功能,可适用于如Java同构、异构语言、容器、云原生等各种多样化的应用场景。
ShardingSphere提供的核心功能:
Sharding-Proxy
定位为透明化的 数据库代理端 ,提供封装了 数据库二进制协议的服务端版本 ,用于完成对 异构语言的支持 。
目前已提供MySQL版本,它可以使用 任何兼容MySQL协议的访问客户端 (如:MySQL Command Client, MySQL Workbench, Navicat等)操作数据,对DBA更加友好。
向 应用程序完全透明 ,可直接当做MySQL使用。
适用于任何兼容MySQL协议的客户端。
Sharding-JDBC
定位为 轻量级Java框架 ,在Java的JDBC层提供的额外服务。 它使用客户端直连数据库,以jar包形式提供服务,无需额外部署和依赖,可理解为 增强版的JDBC驱动,完全兼容JDBC和各种ORM框架 。
以电商SaaS系统为例,前台应用采用Sharding-JDBC,根据业务场景的差异主要分为三种方案。
分库(用户)
问题解析:头部企业日活高并发高,单独分库避免干扰其他企业用户,用户数据的增长缓慢可以不分表。
拆分维度:企业ID分库
拆分策略:头部企业单独库、非头部企业一个库
分库分表(订单)
问题解析:订单数据增长速度较快,在分库之余需要分表。
拆分维度:企业ID分库、用户ID分表
拆分策略:头部企业单独库、非头部企业一个库,分库之后用户ID取模拆分表
单库分表(附件)
问题解析:附件数据特点是并发量不大,只需要解决数据增长问题,所以单库IO足以支撑的情况下分表即可。
拆分维度:用户ID分表
拆分策略:用户ID取模分表
问题一:分布式事务
分布式事务过于复杂也是分布式系统最难处理的问题,由于篇幅有限,后续会开篇专讲这一块内容。
问题二:分布式ID
问题三:跨片查询
举个例子,以用户id分片之后,需要根据企业id查询企业所有用户信息。
sharding针对跨片查询也是能够支持的,本质上sharding的跨片查询是采用同时查询多个分片的数据,然后聚合结果返回,这个方式对资源耗费比较大,特别是对数据库连接资源的消耗。
假设分4个数据库,8个表,则sharding会同时发出32个SQL去查询。一下子消耗掉了32个连接;
特别是针对单库分表的情况要注意,假设单库分64个表,则要消耗64个连接。如果我们部署了2个节点,这个时候两个节点同时查询的话,就会遇到数据库连接数上限问题(mysql默认100连接数)
问题四:分片扩容
随着数据增长,每个片区的数据也会达到瓶颈,这个时候需要将原有的分片数量进行增加。由于增加了片区,原先的hash规则也跟着变化,造成了需要将旧数据做迁移。
假设原先1个亿的数据,hash分64个表,现在增长到50亿的数据,需要扩容到128个表,一旦扩容就需要将这50亿的数据做一次迁移,迁移成本是无法想象的。
问题五:一致性哈希
首先,求出每个 服务器的hash值 ,将其配置到一个 0~2^n 的圆环上 (n通常取32)
其次,用同样的方法求出待 存储对象的主键 hash值 ,也将其配置到这个圆环上。
然后,从数据映射到的位置开始顺时针查找,将数据分布到找到的第一个服务器节点上。
一致性hash的优点在于加入和删除节点时只会影响到在哈希环中相邻的节点,而对其他节点没有影响。
所以使用一致性哈希在集群扩容过程中可以减少数据的迁移。
好了,这次分享到这里,我们日常的实践可能只会用到其中一种方案,但它不是数据库架构的全貌,打开技术视野,才能更好地把存储工具利用起来。
老规矩,一键三连,日入两千,点赞在看,年薪百万!
本文作者:Jensen
7年Java老兵,小米主题设计师,手机输入法设计师,ProcessOn特邀讲师。
曾涉猎航空、电信、IoT、垂直电商产品研发,现就职于某知名电商企业。
技术公众号 【架构师修行录】 号主,专注于分享日常架构、技术、职场干货,Java Goals:架构师。
交个朋友,一起成长!
⑶ 请问数据库有哪些种类呢
数据库共有3种类型,为关系数据库、非关系型数据库和键值数据库。
1、关系数据库
MySQL、MariaDB(MySQL的代替品,英文维基网络从MySQL转向MariaDB)、Percona Server(MySQL的代替品·)、PostgreSQL、Microsoft Access、Microsoft SQL Server、Google Fusion Tables、FileMaker、Oracle数据库、Sybase、dBASE、Clipper、FoxPro、foshub。
几乎所有的数据库管理系统都配备了一个开放式数据库连接(ODBC)驱动程序,令各个数据库之间得以互相集成。
2、非关系型数据库(NoSQL)
BigTable(Google)、Cassandra、MongoDB、CouchDB。
3、键值(key-value)数据库
Apache Cassandra(为Facebook所使用):高度可扩展、Dynamo、LevelDB(Google)。
(3)数据库的构架扩展阅读:
数据库模型:对象模型、层次模型(轻量级数据访问协议)、网状模型(大型数据储存)、关系模型、面向对象模型、半结构化模型、平面模型(表格模型,一般在形式上是一个二维数组。如表格模型数据Excel)。
数据库的架构可以大致区分为三个概括层次:内层、概念层和外层。
⑷ 2019数据架构选型必读:1月数据库产品技术解析
本期目录
DB-Engines数据库排行榜
新闻快讯
一、RDBMS家族
二、NoSQL家族
三、NewSQL家族
四、时间序列
五、大数据生态圈
六、国产数据库概览
七、云数据库
八、推出dbaplus Newsletter的想法
九、感谢名单
为方便阅读、重点呈现,本期Newsletter(2019年1月)将对各个板块的内容进行精简。需要阅读全文的同学可点击文末 【阅读原文】 或登录https://pan..com/s/13BgipbaHeMfvm0YPtiYviA
DB-Engines数据库排行榜
以下取自2019年1月的数据,具体信息可以参考http://db-engines.com/en/ranking/,数据仅供参考。
DB-Engines排名的数据依据5个不同的因素:
新闻快讯
1、2018年9月24日,微软公布了SQL Server2019预览版,SQL Server 2019将结合Spark创建统一数据平台。
2、2018年10月5日,ElasticSearch在美国纽约证券交易所上市。
3、亚马逊放弃甲骨文数据库软件,导致最大仓库之一在黄金时段宕机。受此消息影响,亚马逊盘前股价小幅跳水,跌超2%。
4、2018年10月31日,Percona发布了Percona Server 8.0 RC版本,发布对MongoDB 4.0的支持,发布对XtraBackup测试第二个版本。
5、2018年10月31日,Gartner陆续发布了2018年的数据库系列报告,包括《数据库魔力象限》、《数据库核心能力》以及《数据库推荐报告》。
今年的总上榜数据库产品达到了5家,分别来自:阿里云,华为,巨杉数据库,腾讯云,星环 科技 。其中阿里云和巨杉数据库已经连续两年入选。
6、2018年11月初,Neo4j宣布完成E轮8000万美元融资。11月15日,Neo4j宣布企业版彻底闭源:
7、2019年1月8日,阿里巴巴以1.033亿美元(9000万欧元)的价格收购了Apache Flink商业公司DataArtisans。
8、2019年1月11日早间消息,亚马逊宣布推出云数据库软件,亚马逊和MongoDB将会直接竞争。
RDBMS家族
Oracle 发布18.3版本
2018年7月,Oracle Database 18.3通用版开始提供下载。我们可以将Oracle Database 18c视为采用之前发布模式的Oracle Database 12c第2版的第一个补丁集。未来,客户将不再需要等待多年才能用上最新版Oracle数据库,而是每年都可以期待新数据库特性和增强。Database 19c将于2019年Q1率先在Oracle cloud上发布云版本。
Oracle Database 18c及19c部分关键功能:
1、性能
2、多租户,大量功能增强及改进,大幅节省成本和提高敏捷性
3、高可用
4、数据仓库和大数据
MySQL发布8.0.13版本
1、账户管理
经过配置,修改密码时,必须带上原密码。在之前的版本,用户登录之后,就可以修改自己的密码。这种方式存在一定安全风险。比如用户登录上数据库后,中途离开一段时间,那么非法用户可能会修改密码。由参数password_require_current控制。
2、配置
Innodb表必须有主键。在用户没有指定主键时,系统会生成一个默认的主键。但是在主从复制的场景下,默认的主键,会对丛库应用速度带来致命的影响。如果设置sql_require_primary_key,那么数据库会强制用户在创建表、修改表时,加上主键。
3、字段默认值
BLOB、TEXT、GEOMETRY和JSON字段可以指定默认值了。
4、优化器
1)Skip Scan
非前缀索引也可以用了。
之前的版本,任何没有带上f1字段的查询,都没法使用索引。在新的版本中,它可以忽略前面的字段,让这个查询使用到索引。其实现原理就是把(f1 = 1 AND f2 > 40) 和(f1 = 2 AND f2 > 40)的查询结果合并。
2)函数索引
之前版本只能基于某个列或者多个列加索引,但是不允许在上面做计算,如今这个限制消除了。
5、SQL语法
GROUP BY ASC和GROUP BY DESC语法已经被废弃,要想达到类似的效果,请使用GROUP BY ORDER BY ASC和GROUP BY ORDER BY DESC。
6、功能变化
1)设置用户变量,请使用SET语句
如下类型语句将要被废弃SELECT @var, @var:=@var+1。
2)新增innodb_fsync_threshold
该变量是控制文件刷新到磁盘的速率,防止磁盘在短时间内饱和。
3)新增会话级临时表空间
在以往的版本中,当执行SQL时,产生的临时表都在全局表空间ibtmp1中,及时执行结束,临时表被释放,空间不会被回收。新版本中,会为session从临时表空间池中分配一个临时表空间,当连接断开时,临时表空间的磁盘空间被回收。
4)在线切换Group Replication的状态
5)新增了group_replication_member_expel_timeout
之前,如果某个节点被怀疑有问题,在5秒检测期结束之后,那么就直接被驱逐出这个集群。即使该节点恢复正常时,也不会再被加入集群。那么,瞬时的故障,会把某些节点驱逐出集群。
group_replication_member_expel_timeout让管理员能更好的依据自身的场景,做出最合适的配置(建议配置时间小于一个小时)。
MariaDB 10.3版本功能展示
1、MariaDB 10.3支持update多表ORDER BY and LIMIT
1)update连表更新,limit语句
update t1 join t2 on t1.id=t2.id set t1.name='hechunyang' limit 3;
MySQL 8.0直接报错
MariaDB 10.3更新成功
2)update连表更新,ORDER BY and LIMIT语句
update t1 join t2 on t1.id=t2.id set t1.name='HEchunyang' order by t1.id DESC limit 3;
MySQL 8.0直接报错
MariaDB 10.3更新成功
参考:
https://jira.mariadb.org/browse/MDEV-13911
2、MariaDB10.3增补AliSQL补丁——安全执行Online DDL
Online DDL从名字上看很容易误导新手,以为不论什么情况,修改表结构都不会锁表,理想很丰满,现实很骨感,注意这个坑!
有以下两种情况执行DDL操作会锁表的,Waiting for table metadata lock(元数据表锁):
针对第二种情况,MariaDB10.3增补AliSQL补丁-DDL FAST FAIL,让其DDL操作快速失败。
例:
如果线上有某个慢SQL对该表进行操作,可以使用WAIT n(以秒为单位设置等待)或NOWAIT在语句中显式设置锁等待超时,在这种情况下,如果无法获取锁,语句将立即失败。 WAIT 0相当于NOWAIT。
参考:
https://jira.mariadb.org/browse/MDEV-11388
3、MariaDB Window Functions窗口函数分组取TOP N记录
窗口函数在MariaDB10.2版本里实现,其简化了复杂SQL的撰写,提高了可读性。
参考:
https://mariadb.com/kb/en/library/window-functions-overview/
Percona Server发布8.0 GA版本
2018年12月21日,Percona发布了Percona Server 8.0 GA版本。
在支持MySQL8.0社区的基础版上,Percona Server for MySQL 8.0版本中带来了许多新功能:
1、安全性和合规性
2、性能和可扩展性
3、可观察性和可用性
Percona Server for MySQL 8.0中将要被废用功能:
Percona Server for MySQL 8.0中删除的功能:
RocksDB发布V5.17.2版本
2018年10月24日,RocksDB发布V5.17.2版本。
RocksDB是Facebook在LevelDB基础上用C++写的高效内嵌式K/V存储引擎。相比LevelDB,RocksDB提供了Column-Family,TTL,Transaction,Merge等方面的支持。目前MyRocks,TiKV等底层的存储都是基于RocksDB来构建。
PostgreSQL发布11版本
2018年10月18日,PostgreSQL 11发布。
1、PostgreSQL 11的重大增强
2、PostgreSQL 插件动态
1)分布式插件citus发布 8.1
citus是PostgreSQL的一款sharding插件,目前国内苏宁、铁总、探探有较大量使用案例。
https://github.com/citusdata/citus
2)地理信息插件postgis发布2.5.1
PostGIS是专业的时空数据库插件,在测绘、航天、气象、地震、国土资源、地图等时空专业领域应用广泛。同时在互联网行业也得到了对GIS有性能、功能深度要求的客户青睐,比如共享出行、外卖等客户。
http://postgis.net/
3)时序插件timescale发布1.1.1
timescale是PostgreSQL的一款时序数据库插件,在IoT行业中有非常好的应用。github star数目前有5000多,是一个非常火爆的插件。
https://github.com/timescale/timescaledb
4)流计算插件 pipelinedb 正式插件化
Pipelinedb是PostgreSQL的一款流计算插件,使用这个创建可以对高速写入的数据进行实时根据定义的聚合规则进行聚合(支持概率计算),实时根据定义的规则触发事件(支持事件处理函数的自定义)。可用于IoT,监控,FEED实时计算等场景。
https://github.com/pipelinedb/pipelinedb
3、PostgreSQL衍生开源产品动态
1)agensgraph发布 2.0.0版本
agensgraph是兼容PostgreSQL、opencypher的专业图数据库,适合图式关系的管理。
https://github.com/bitnine-oss/agensgraph
2)gpdb发布5.15
gpdb是兼容PostgreSQL的mpp数据库,适合OLAP场景。近两年,gpdb一直在追赶PostgreSQL的社区版本,预计很快会追上10的PostgreSQL,在TP方面的性能也会得到显着提升。
https://github.com/greenplum-db/gpdb
3)antdb发布3.2
antdb是以Postgres-XC为基础开发的一款PostgreSQL sharding数据库,亚信主导开发,开源,目前主要服务于亚信自有客户。
https://github.com/ADBSQL/AntDB
4)迁移工具MTK发布52版本
MTK是EDB提供的可以将Oracle、PostgreSQL、MySQL、MSSQL、Sybase数据库迁移到PostgreSQL, PPAS的产品,迁移速度可以达到100万行/s以上。
https://github.com/digoal/blog/blob/master/201812/20181226_01.md
DB2发布 11.1.4.4版本
DB2最新发布Mod Pack 4 and Fix Pack 4,包含以下几方面的改动及增强:
1、性能
2、高可用
3、管理视图
4、应用开发方面
5、联邦功能
6、pureScale
NoSQL家族
Redis发布5.0.3版本
MongoDB升级更新MongoDB Mobile和MongoDB Stitch
2018年11月21日,MongoDB升级更新MongoDB Mobile和MongoDB Stitch,助力开发人员提升工作效率。
MongoDB 公司日前发布了多项新产品功能,旨在更好地帮助开发人员在世界各地管理数据。通过利用存储在移动设备和后台数据库的数据之间的实时、自动的同步特性,MongoDB Mobile通用版本助力开发人员构建更快捷、反应更迅速的应用程序。此前,这只能通过在移动应用内部安装一个可供选择或限定功能的数据库来实现。
MongoDB Mobile在为客户提供随处运行的自由度方面更进了一步。用户在iOS和安卓终端设备上可拥有MongoDB所有功能,将网络边界扩展到其物联网资产范畴。应用系统还可以使用MongoDB Stitch的软件开发包访问移动客户端或后台数据,帮助开发人员通过他们希望的任意方式查询移动终端数据和物联网数据,包括本地读写、本地JSON存储、索引和聚合。通过Stitch移动同步功能(现可提供beta版),用户可以自动对保存在本地的数据以及后台数据库的数据进行同步。
本期新秀:Cassandra发布3.11.3版本
2018年8月11日,Cassandra发布正式版3.11.3。
Apache Cassandra是一款开源分布式NoSQL数据库系统,使用了基于Google BigTable的数据模型,与面向行(row)的传统关系型数据库或键值存储key-value数据库不同,Cassandra使用的是宽列存储模型(Wide Column Stores)。与BigTable和其模仿者HBase不同,数据并不存储在分布式文件系统如GFS或HDFS中,而是直接存于本地。
Cassandra的系统架构与Amazon DynamoDB类似,是基于一致性哈希的完全P2P架构,每行数据通过哈希来决定应该存在哪个或哪些节点中。集群没有master的概念,所有节点都是同样的角色,彻底避免了整个系统的单点问题导致的不稳定性,集群间的状态同步通过Gossip协议来进行P2P的通信。
3.11.3版本的一些bug fix和改进:
NewSQL家族
TiDB 发布2.1.2版本
2018 年 12 月 22 日,TiDB 发布 2.1.2 版,TiDB-Ansible 相应发布 2.1.2 版本。该版本在 2.1.1 版的基础上,对系统兼容性、稳定性做出了改进。
TiDB 是一款定位于在线事务处理/在线分析处理( HTAP: Hybrid Transactional/Analytical Processing)的融合型数据库产品。除了底层的 RocksDB 存储引擎之外,分布式SQL层、分布式KV存储引擎(TiKV)完全自主设计和研发。
TiDB 完全开源,兼容MySQL协议和语法,可以简单理解为一个可以无限水平扩展的MySQL,并且提供分布式事务、跨节点 JOIN、吞吐和存储容量水平扩展、故障自恢复、高可用等优异的特性;对业务没有任何侵入性,简化开发,利于维护和平滑迁移。
TiDB:
PD:
TiKV:
Tools:
1)TiDB-Lightning
2)TiDB-Binlog
EsgynDB发布R2.5版本
2018年12月22日,EsgynDB R2.5版本正式发布。
作为企业级产品,EsgynDB 2.5向前迈进了一大步,它拥有以下功能和改进:
CockroachDB发布2.1版本
2018年10月30日,CockroachDB正式发布2.1版本,其新增特性如下:
新增企业级特性:
新增SQL特性:
新增内核特性:
Admin UI增强:
时间序列
本期新秀:TimescaleDB发布1.0版本
10月底,TimescaleDB 1.0宣布正式推出,官方表示该版本已可用于生产环境,支持完整SQL和扩展。
TimescaleDB是基于PostgreSQL数据库开发的一款时序数据库,以插件化的形式打包提供,随着PostgreSQL的版本升级而升级,不会因为另立分支带来麻烦。
TimescaleDB架构:
数据自动按时间和空间分片(chunk)
更新亮点:
https://github.com/timescale/timescaledb/releases/tag/1.0.0
大数据生态圈
Hadoop发布2.9.2版本
2018年11月中旬,Hadoop在2.9分支上发布了新的2.9.2版本,该版本进行了204个大大小小的变更,主要变更如下:
Greenplum 发布5.15版本
Greenplum最新的5.15版本中发布了流式数据加载工具。
该版本中的Greenplum Streem Server组件已经集成了Kafka流式加载功能,并通过了Confluent官方的集成认证,其支持的主要功能如下:
国产数据库概览
K-DB发布数据库一体机版
2018年11月7日,K-DB发布了数据库一体机版。该版本更新情况如下:
OceanBase迁移服务发布1.0版本
1月4日,OceanBase 正式发布OMS迁移服务1.0版本。
以下内容包含 OceanBase 迁移服务的重要特性和功能:
SequoiaDB发布3.0.1新版本
1、架构
1)完整计算存储分离架构,兼容MySQL协议、语法
计算存储分离体系以松耦合的方式将计算与存储层分别部署,通过标准接口或插件对各个模块和组件进行无缝替换,在计算层与存储层均可实现自由的弹性伸缩。
SequoiaDB巨杉数据库“计算-存储分离”架构详细示意
用户可以根据自身业务特征选择面向交易的SQL解析器(例如MySQL或PGSQL)或面向统计分析的执行引擎(例如SparkSQL)。众所周知,使用不同的SQL优化与执行方式,数据库的访问性能可能会存在上千上万倍的差距。计算存储分离的核心思想便是在数据存储层面进行一体化存储,在计算层面则利用每种执行引擎的特点针对不同业务场景进行选择和优化,用户可以在存储层进行逻辑与物理的隔离,将面向高频交易的前端业务与面向高吞吐量的统计分析使用不同的硬件进行存储,确保在多类型数据访问时互不干扰,以真正达到生产环境可用的多租户与HTAP能力。
2、其他更新信息
1)接口变更:
2)主要特性:
云数据库
本期新秀:腾讯发布数据库CynosDB,开启公测
1、News
1)腾讯云数据库MySQL2018年重大更新:
2)腾讯云数据库MongoDB2018年重大更新:
3)腾讯云数据库Redis/CKV+2018年重大更新:
4)腾讯云数据库CTSDB2018年重大更新:
2、Redis 4.0集群版商业化上线
2018年10月,腾讯云数据库Redis 4.0集群版完成邀测、公测、商业化三个迭代,在广州、上海、北京正式全量商业化上线。
产品特性:
使用场景:
官网文档:
https://cloud.tencent.com/document/proct/239/18336
3、腾讯自研数据库CynosDB发布,开启公测
2018年11月22日,腾讯云召开新一代自研数据库CynosDB发布会,业界第一款全面兼容市面上两大最主流的开源数据库MySQL和PostgreSQL的高性能企业级分布式云数据库。
本期新秀:京东云DRDS发布1.0版本
12月24日,京东云分布式关系型数据库DRDS正式发布1.0版本。
DRDS是京东云精心自研的数据库中间件产品,获得了2018年 ”可信云技术创新奖”。DRDS可实现海量数据下的自动分库分表,具有高性能,分布式,弹性升级,兼容MySQL等优点,适用于高并发、大规模数据的在线交易, 历史 数据查询,自动数据分片等业务场景,历经多次618,双十一的考验,已经在京东集团内大规模使用。
京东云DRDS产品有以下主要特性
1)自动分库分表
通过简单的定义即可自动实现分库分表,将数据实际存放在多个MySQL实例的数据库中,但呈现给应用程序的依旧是一张表,对业务透明,应用程序几乎无需改动,实现了对数据库存储和处理能力的水平扩展。
2)分布式架构
基于分布式架构的集群方案,多个对等节点同时对外提供服务,不但可有效规避服务的单点故障,而且更加容易扩展。
3)超强性能
具有极高的处理能力,双节点即可支持数万QPS,满足用户超大规模处理能力的需求。
4)兼容MySQL
兼容绝大部分MySQL语法,包括MySQL语法、数据类型、索引、常用函数、排序、关联等DDL,DML语句,使用成本低。
参考链接:
https://www.jdcloud.com/cn/procts/drds
RadonDB发布1.0.3版本
2018年12月26日,MyNewSQL领域的RadonDB云数据库发布1.0.3版本。
推出dbaplus Newsletter的想法
dbaplus Newsletter旨在向广大技术爱好者提供数据库行业的最新技术发展趋势,为社区的技术发展提供一个统一的发声平台。为此,我们策划了RDBMS、NoSQL、NewSQL、时间序列、大数据生态圈、国产数据库、云数据库等几个版块。
我们不以商业宣传为目的,不接受任何商业广告宣传,严格审查信息源的可信度和准确性,力争为大家提供一个纯净的技术学习环境,欢迎大家监督指正。
至于Newsletter发布的周期,目前计划是每三个月左右会做一次跟进, 下期计划时间是2019年4月14日~4月25日, 如果有相关的信息提供请发送至邮箱:[email protected]
感谢名单
最后要感谢那些提供宝贵信息和建议的专家朋友,排名不分先后。
往期回顾:
↓↓别忘了点这里下载 2019年1月 完整版Newsletter 哦~
⑸ 数据架构是什么
数据架构即数据库架构
数据库是相关数据的集合,一个数据库含有各种成分,包括表、记录、字段、索引等。
1.数据库(Database)
Visual Basic中使用的数据库是关系型数据库(Relational Database)。一个数据库由一个或一组数据表组成。每个数据库都以文件的形式存放在磁盘上,即对应于一个物理文件。不同的数据库,与物理文件对应的方式也不一样。对于dBASE,FoxPro和Paradox格式的数据库来说,一个数据表就是一个单独的数据库文件,而对于Microsoft Access、Btrieve格式的数据库来说,一个数据库文件可以含有多个数据表。
2.数据表(Table)
简称表,由一组数据记录组成,数据库中的数据是以表为单位进行组织的。一个表是一组相关的按行排列的数据;每个表中都含有相同类型的信息。表实际上是一个二维表格,例如,一个班所有学生的考试成绩,可以存放在一个表中,表中的每一行对应一个学生,这一行包括学生的学号,姓名及各门课程成绩。
3.记录(Record)
表中的每一行称为一个记录,它由若干个字段组成。
4.字段(Field)
也称域。表中的每一列称为一个字段。每个字段都有相应的描述信息,如数据类型、数据宽度等。
5.索引(Index)
为了提高访问数据库的效率,可以对数据库使用索引。当数据库较大时,为了查找指定的记录,则使用索引和不使用索引的效率有很大差别。索引实际上是一种特殊类型的表,其中含有关键字段的值(由用户定义)和指向实际记录位置的指针,这些值和指针按照特定的顺序(也由用户定义)存储,从而可以以较快的速度查找到所需要的数据记录。
6.查询(Query)
一条SQL(结构化查询语言)命令,用来从一个或多个表中获取一组指定的记录,或者对某个表执行指定的操作。当从数据库中读取数据时,往往希望读出的数据符合某些条件,并且能按某个字段排序。使用SQL,可以使这一操作容易实现而且更加有效。SQL是非过程化语言(有人称为第四代语言),在用它查找指定的记录时,只需指出做什么,不必说明如何做。每个语句可以看作是一个查询(query),根据这个查询,可以得到需要的查询结果。
7.过滤器(Filter)
过滤器是数据库的一个组成部分,它把索引和排序结合起来,用来设置条件,然后根据给定的条件输出所需要的数据。
8.视图(view)
数据的视图指的是查找到(或者处理)的记录数和显示(或者进行处理)这些记录的顺序。在一般情况下,视图由过滤器和索引控制
⑹ 什么叫做数据库的“三层架构”
三层架构可以说是一种设置模式,他的作用只是让我们更加有效的利用资源,有利于以后的修改和查看,依次分为视图层,逻辑层,数据层;
试图层顾名思义就是我们所看到的,他的原代码并没有关于处理和连库等代码,只是简单的跳转页面,我们没有办法看到真正的代码;
逻辑层就是我们从页面层发回的问题等请求,从字面意思来看,你可以将他视为一个过渡层,只是连接是图层和数据层;进行一些连库,删除数据等操作了;从试图层跳转过来的问题在这里进行处理,并提交给数据层,再返回页面层共读者查看;
数据层就不用说了吧!这里存放着所有的数据也就是一个工程的大本营一样;
三层架构已经不仅仅属于.net了,他是一种设计形式,从某种意义上来说,所有的开发设计几乎都已经以三层架构为基础,三层架构及有效的处理问题,将数据和试图也有效的分开,这样防止耦合度过高,有利于处理和修改,(你不会是想将代码全部写在视图页面上,这样有一个小小的变动,我们就要翻看几十万句代码,从中找出,那我要替你的眼睛抱不平了)当你将程序做好后,从这台机子移动到另一台机子时,大大减少了出错的问题;
通俗一点就是,这样看上去很有层次感,我们查看时,可以减少时间的浪费,也不用在代码堆里翻来覆去找不到北
⑺ AntDB数据库是分布式架构吗具备哪些优势呢
亚信科技数据库产品AntDB基于自研的分布式架构,具备如下一些特性和优势:
1)内核架构、底层存储和查询处理均面向分布式数据管理需求;
2)支持hash/range分片算法,自动化数据分布与管理,数据自动负载均衡;
3)数据访问对应用程序的开发友好、简单、透明;
4)数据的增删改查等操作߅是通过数据库本身的SQL层去执行分布式事务的管理,保障分布式事务的完整性和ACID特性。
⑻ 数据库系统中的几种架构及处理方式
主从式结构
是指一个主机带多个终端的多用户结构。在这种结构中,数据库系统,包括:应用程序、DBMS、数据,都集中存放在主机上.所有处理任务都由主机来完成,各个用户通过主机的终端并发地存取数据库,共享数据资源.
主从式结构的优点是简单,数据易于管理与维护。缺点是当终端用户数目增加到一定程度后,主机的任务会过分繁重,形成瓶颈,从而使系统性能大幅度下降。另外当主机出现故障时,整个系统都不能使用,因此系统的可靠性不高。
集中式架构
是一种远程桌面控制技术,使用此技术,远程用户能够使用任何类型的终端系统,通过任何类型的网络连接,使用远程服务器上的应用程序。用户甚至能够使用同一个终端系统访问甚至远程多个不同平台、不同网络协议服务器上的多个应用,这些应用被集成在一个访问界面中,操作简便。
C/S架构
(Client/Server或客户/服务器模式):Client和Server常常分别处在相距很远的两台计算机上,Client程序的任务是将用户的要求提交给Server程序,再将Server程序返回的结果以特定的形式显示给用户;Server程序的任务是接收客户程序提出的服务请求,进行相应的处理,再将结果返回给客户程序。
C/S (Client/Server)结构,即大家熟知的客户机和服务器结构。它是软件系统体系结构,通过它可以充分利用两端硬件环境的优势,将任务合理分配到Client端和Server端来实现,降低了系统的通讯开销。目前大多数应用软件系统都是Client/Server形式的两层结构,由于现在的软件应用系统正在向分布式的Web应用发展,Web和Client/Server 应用都可以进行同样的业务处理,应用不同的模块共享逻辑组件;因此,内部的和外部的用户都可以访问新的和现有的应用系统,通过现有应用系统中的逻辑可以扩展出新的应用系统。这也就是目前应用系统的发展方向。
传统的C/S体系结构虽然采用的是开放模式,但这只是系统开发一级的开放性,在特定的应用中无论是Client端还是Server端都还需要特定的软件支持。由于没能提供用户真正期望的开放环境,C/S结构的软件需要针对不同的操作系统系统开发不同版本的软件, 加之产品的更新换代十分快,已经很难适应百台电脑以上局域网用户同时使用。而且代价高, 效率低。
C/S结构的优点
C/S结构的优点是能充分发挥客户端PC的处理能力,很多工作可以在客户端处理后再提交给服务器。对应的优点就是客户端响应速度快。缺点主要有以下几个:
只适用于局域网。而随着互联网的飞速发展,移动办公和分布式办公越来越普及,这需要我们的系统具有扩展性。这种方式远程访问需要专门的技术,同时要对系统进行专门的设计来处理分布式的数据。
客户端需要安装专用的客户端软件。首先涉及到安装的工作量,其次任何一台电脑出问题,如病毒、硬件损坏,都需要进行安装或维护。特别是有很多分部或专卖店的情况,不是工作量的问题,而是路程的问题。还有,系统软件升级时,每一台客户机需要重新安装,其维护和升级成本非常高。
对客户端的操作系统一般也会有限制。可能适应于Win98, 但不能用于win2000或Windows XP。或者不适用于微软新的操作系统等等,更不用说Linux、Unix等。
⑼ 什么是架构,SQL中的架构有哪些
架构(Schema)是一组数据库对象的集合,它被单个负责人(可以是用户或角色)所拥有并构成唯一命名空间。你可以将架构看成是对象的容器。
在 SQL Server 2000 中,用户(User)和架构是隐含关联的,即每个用户拥有与其同名的架构。因此要删除一个用户,必须先删除或修改这个用户所拥有的所有数据库对象。
在 SQL Server 2005 中,架构和创建它的数据库用户不再关联,完全限定名(fully-qualified name)现在包含4个部分:server.database.schema.object
1. 体系结构(Architecture)
体系结构亦可称为架构,所谓软件架构,根据Perry 和Wolfe之定义:Software Architecture = {Elements,Forms, Rationale / Constraint },也就是软件主架构 = {组件元素,元素互助合作之模式,基础要求与限制}。Philippe Kruchten采用上面的定义,并说明主架构之设计就是:将各组件元素以某些理想的合作模式组织起来,以达成系统的基本功能和限制。体系结构又分为多种样式,如Pipes and Filters等。
2. 框架(Framework)
框架亦可称为应用架构,框架的一般定义就是:在特定领域基于体系结构的可重用的设计。也可以认为框架是体系结构在特定领域下的应用。框架比较出名的例子就是MVC。
3. 库(Library)
库应该是可重用的、相互协作的资源的集合,供开发人员进行重复调用。它与框架的主要区别在于运行时与程序的调用关系。库是被程序调用,而框架则调用程序。比较好的库有JDK。
4. 设计模式(Design Pattern)
设计模式大家应该很熟悉,尤其四人帮所写的书更是家喻户晓。“四人帮”将模式描述为“在一定的环境中解决某一问题的方案”。这三个事物 — 问题、解决方案和环境 — 是模式的基本要素。给模式一个名称,考虑使用模式将产生的结果和提供一个或多个示例,对于说明模式也都是有用的。
5. 平台(PlatForm)
由多种系统构成,其中也可以包含硬件部分。
对于以上的概念有一个比较清楚的认识之后,就可以在软件的开发过程中进行应用。理论和实践是缺一不可的,相辅相成的。没有理论的指导,实践就缺乏基础;没有实践的证明,理论就缺乏依据,因此我一直认为:对于当代的程序员,在有一定的实践基础后,必须学习更深的理论知识。无论你是从那方面先开始学习的。
在软件的开发过程中,从许多过程实践和方法中,大致可以提炼出五大步骤:需求、分析、设计、编码、测试。而体系结构是软件的骨架,是最重要的基础。体系结构是涉及到每一步骤中。一般在获取需要的同时,就应该开始分析软件的体系结构。体系结构现在一般是各个大的功能模块组合成,然后描述各个部分的关系。
我一般认为框架是体系结构中每个模块中更细小的结构。如需要表示web技术,就会用到MVC框架,而web功能只是整个软件体系中的一个功能模块。每个框架可以有许多个实例,如用java实现的MVC框架structs。
而在框架之下就是设计模式,设计模式一般是应用中框架之中的,也可以说是对框架的补充。因为框架只是提供了一个环境,需要我们我里面填入更多的东西。无论是否应用了设计模式,你都可以实现软件的功能,而正确应用了设计模式,是我们对前人软件的设计或实现方法的一种继承,从而让你的软件更软。
体系结构是可以从不同视角来进行分析的,所以软件体系结构的设计可以按照不同的视角来进行的。按4+1 views的论述,那是四种views:逻辑、开发、过程、物理和场景。因此体系结构是逐渐细化的,你不可能开始就拿出一个完美的体系结构,而只能根据开发过程逐渐对体系结构进行细化。
打个比方:如果我们准备建一个房子,那房子如果按功能来分:墙壁、地板、照明等,它是按那种样式来组成的,房子是四方的还是圆形的等,这样就组成了房子的体系结构。在体系结构之下,我们可以把框架应用在每个模块中,例如墙壁,我们准备应用什么框架。墙壁可以包括:窗户、门等。窗户和门的组成的就是一种框架。而窗户是什么形状的或者是大还是小,是要为了实现屋内的亮度的,因此挑选什么样的窗户就是设计模式。
⑽ 什么叫数据架构呢
数据中心是使用复杂的网络、计算和存储系统来提供对应用程序和数据的共享访问的设施。行业标准的存在有助于设计、构建和维护数据中心设施和基础设施,以确保数据的安全性和可用性。
数据中心架构组件
计算、存储和网络是数据中心中使用的三种主要组件类型。然而,在现代数据中心中,这些组件只是冰山一角。从表面上看,支持基础设施对于企业数据中心实现服务水平协议的能力至关重要。
数据中心计算
数据中心的生成器是服务器。在边缘计算模型中,用于在服务器上运行应用程序的处理和内存可能是虚拟化的、物理的、分布在容器之间或分布在远程节点之间。通用cpu可能不是解决人工智能(AI)和机器学习(ML)问题的最佳选择,所以数据中心必须使用最适合这项任务的处理器。
数据中心存储
出于自身的目的和客户的需要,数据中心保存着大量的机密数据。减少的存储介质成本增加了数据备份可用的存储量,无论是本地、远程还是两者兼有。由于非易失性存储介质的进步,数据访问时间越来越快。此外,就像其他软件定义的东西一样,软件定义的存储技术在管理数据中心存储系统时提高了人员的生产力。
数据中心网络
布线、交换机、路由器和防火墙都是数据中心网络设备的例子,这些设备将服务器彼此连接起来,也将服务器与外界连接起来。如果设计和组织得当,它们可以在不牺牲效率的情况下处理大量的流量。典型的三层网络拓扑结构包括数据中心边缘的核心交换机(该交换机将数据中心与Internet连接)和中间聚合层(该聚合层将核心层与接入层结合起来,该接入层承载着服务器)。由于超大规模网络安全和软件定义的网络等创新,现设数据中心网络提供云级的移动性和可伸缩性。