算法复杂度图
1. 算法的时间复杂度是指什么
就是对算法执行时所花时间的度量。一般为问题规模的函数。
计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的字符串的长度的函数。时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是渐近的,它考察当输入值大小趋近无穷时的情况。
算法复杂度分为时间复杂度和空间复杂度。其作用: 时间复杂度是指执行算法所需要的计算工作量;而空间复杂度是指执行这个算法所需要的内存空间。算法的复杂性体现在运行该算法时的计算机所需资源的多少上,计算机资源最重要的是时间和空间资源,因此复杂度分为时间和空间复杂度。
相关内容解释:
函数在数学上的定义:给定一个非空的数集A,对A施加对应法则f,记作f(A),得到另一数集B,也就是B=f(A)。那么这个关系式就叫函数关系式,简称函数。
简单来讲,对于两个变量x和y,如果每给定x的一个值,y都有唯一一个确定的值与其对应,那么我们就说y是x的函数。其中,x叫做自变量,y叫做因变量。
2. 算法空间复杂度具体怎么算
数据结构中算法空间复杂度计算方法:
一个算法的空间复杂度只考虑在运行过程中为局部变量分配的存储空间的大小,它包括为参数表中形参变量分配的存储空间和为在函数体中定义的局部变量分配的存储空间两个部分。
若一个算法为递归算法,其空间复杂度为递归所使用的堆栈空间的大小,它等于一次调用所分配的临时存储空间的大小乘以被调用的次数(即为递归调用的次数加1,这个1表示开始进行的一次非递归调用)。
空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度,记做S(n)=O(f(n))。
而一般的递归算法就要有O(n)的空间复杂度了,因为每次递归都要存储返回信息。一个算法的优劣主要从算法的执行时间和所需要占用的存储空间两个方面衡量。
3. 算法时间复杂度o(1)和o(2)的区别
O后面的括号中有一个函数,指明某个算法的耗时/耗空间与数据增长量之间的关系。其中的n代表输入数据的量。
时间复杂度为O(n),就代表数据量增大几倍,耗时也增大几倍。比如常见的遍历算法。所以O(2)相比于O(1)数据量会更多,同时需要执行的时间会更多。
一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),存在一个正常数c使得fn*c>=T(n)恒成立。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。
(3)算法复杂度图扩展阅读
时间复杂度O(n^2),就代表数据量增大n倍时,耗时增大n的平方倍,这是比线性更高的时间复杂度。比如冒泡排序,就是典型的O(n^2)的算法,对n个数排序,需要扫描n×n次。
比如O(logn),当数据增大n倍时,耗时增大logn倍(这里的log是以2为底的,比如,当数据增大256倍时,耗时只增大8倍,是比线性还要低的时间复杂度)。二分查找就是O(logn)的算法,每找一次排除一半的可能,256个数据中查找只要找8次就可以找到目标。
O(nlogn)同理,就是n乘以logn,当数据增大256倍时,耗时增大256*8=2048倍。这个复杂度高于线性低于平方。归并排序就是O(nlogn)的时间复杂度。
4. 算法复杂度
算法的复杂度是以什么来度量的?
算法的复杂度是以时间复杂度和空间复杂度来计算的。
①算法的时间复杂度
算法的时间复杂度是指执行算法所需要的计算工作量。简单地说,时间复杂度是以时间来衡量的。一般来说,如果算法运行的时间越长,时间复杂度也就越高。但是同一个算法,它的运行时间也受到硬件设备的限制,硬件设备越好,运行时间越短。所以在衡量时间复杂度的时候,我们根据算法的基本语句来求解。
值得注意的是:算法程序执行的具体时间和算法的时间复杂度并不是一致的。算法程序执行的具体时间受到所使用的计算机、程序设计语言以及算法实现过程中的许多细节的影响。而算法的时间复杂度与这些因素无关。
算法的计算工作量是用算法所执行的基本运算次数来度量的。算法所执行的基本运算次数与问题的规模有关,而算法所执行的基本运算次数是问题规模(通常用整数n表示)的函数。所谓问题规模就是问题的计算量的大小。
在具体分析一个算法的工作量时,在同一个问题规模下,算法所执行的基本运算次数还可能与特定的输入有关。即输入不同时,算法所执行的基本运算次数不同。
②算法的空间复杂度
算法的空间复杂度是指执行这个算法所需要的内存空间。简单地说,空间复杂度是算法在运行时临时占用内存空间大小的量度。
算法执行期间所需的存储空间包括3个部分:输入数据所占的存储空间;程序本身所占的存储空间;算法执行过程中所需要的额外空间。其中,额外空间包括算法程序执行过程中的工作单元,以及某种数据结构所需要的附加存储空间。
如果额外空间量相对于问题规模(即输入数据所占的存储空间)来说是常数,即额外空间量不随问题规模的变化而变化,则称该算法是原地工作的。
为了降低算法的空间复杂度,主要应减少输入所占的存储空间以及额外空间,通常采用压缩存储技术。
总结:
采用不同的存储结构,其数据处理的效率是不同的。因此,在进行数据处理时,选择合适的存储结构很重要。
5. 如何分析算法的复杂度
算法的复杂性
算法的复杂性是算法效率度量,是评价算法优劣的重要依据。一个算法的复杂性的高低体现在运行该算法所需要的计算机资源的多少上面,所需的资源越多,我们就说该算法的复杂性越高;反之,所需的资源越低,则该算法的复杂性越低。
计算机的资源,最重要的是时间和空间(即存储器)资源。因而,算法的复杂性有时间复杂性和空间复杂性之分。
不言而喻,对于任意给定的问题,设计出复杂性尽可能低的算法是我们在设计算法时追求的一个重要目标;另一方面,当给定的问题已有多种算法时,选择其中复杂性最低者,是我们在选用算法适应遵循的一个重要准则。因此,算法的复杂性分析对算法的设计或选用有着重要的指导意义和实用价值。
简言之,在算法学习过程中,我们必须首先学会对算法的分析,以确定或判断算法的优劣。
1.时间复杂性:
例1:设一程序段如下(为讨论方便,每行前加一行号)
(1) for i:=1 to n do
(2) for j:=1 to n do
(3) x:=x+1
......
试问在程序运行中各步执行的次数各为多少?
解答:
行号 次数(频度)
(1) n+1
(2) n*(n+1)
(3) n*n
可见,这段程序总的执行次数是:f(n)=2n2+2n+1。在这里,n可以表示问题的规模,当n趋向无穷大时,如果 f(n)的值很小,则算法优。作为初学者,我们可以用f(n)的数量级O来粗略地判断算法的时间复杂性,如上例中的时间复杂性可粗略地表示为T(n)=O(n2)。
6. 算法复杂度的复杂度分析
通常一个算法的复杂度是由其输入量决定的,随着输入的增加,不同算法的复杂度增长速度如右图所示:
为了降低算法复杂度,应当同时考虑到输入量,设计较好的算法。
7. prim算法 复杂度
普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点,且其所有边的权值之和亦为最小。该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克发现;并在1957年由美国计算机科学家罗伯特·普里姆独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。因此,在某些场合,普里姆算法又被称为DJP算法、亚尔尼克算法或普里姆-亚尔尼克算法。
算法简单描述
1).输入:一个加权连通图,其中顶点集合为V,边集合为E;
2).初始化:Vnew = {x},其中x为集合V中的任一节点(起始点),Enew = {},为空;
3).重复下列操作,直到Vnew = V:
a.在集合E中选取权值最小的边<u, v>,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一);
b.将v加入集合Vnew中,将<u, v>边加入集合Enew中;
4).输出:使用集合Vnew和Enew来描述所得到的最小生成树。
时间复杂度
这里记顶点数v,边数e
邻接矩阵:O(v2) 邻接表:O(elog2v)