当前位置:首页 » 操作系统 » 矢量跟踪算法

矢量跟踪算法

发布时间: 2022-12-26 08:12:21

Ⅰ 一般图形voronoi图的自动生成算法怎么做

你好,
基本内容:
本考试大纲适用于福州大学地图学与地理信息系统专业、地图制图学与地理信息工程专业的硕士研究生入学考试。具体内容包括地理信息系统的基本知识、空间数据库、空间数据采集、空间数据处理、空间查询与空间分析、空间数据输出和地理信息系统应用七个方面。要求考生准确地理解地理信息系统涉及的基本概念,识记其中的主要概念;系统地掌握地理空间数据的采集、存储、处理、查询、分析、输出和应用的基本内容,了解地理信息系统的相关技术和方法;具有综合运用地理信息系统分析和解决问题的能力。
一 考试内容
(一)地理信息系统的基本知识
1.地理信息系统的基本概念
2.地理信息系统的组成
3.地理信息系统的功能
4.地理信息系统的发展
(二)空间数据库
1.地理对象及其表达
2.地图投影
3.空间数据模型(或空间数据结构)
4.数据库与数据库管理系统
(三)空间数据采集
1.地理信息系统的数据源
2.空间数据采集的方式与过程
3.空间数据的质量
4.空间数据标准
(四)空间数据处理
1.图形编辑与拓扑生成
2.空间数据的拼接和裁剪
3.空间数据的坐标变换
4.空间数据的压缩
5.空间数据的转换
6.空间插值
(五)空间查询和空间分析
1.空间查询
2.空间量算与统计
3.数字高程模型
4.泰森多边形
5.叠置分析
6.缓冲区分析
7.网络分析
(六)空间数据输出
1.空间数据的标度与可视化
2.数字地图设计与输出
3.电子地图
4.虚拟现实
(七)地理信息系统应用
1.地理信息系统产业
2.“3S”集成
3.WebGIS
二、考试要求
(一)地理信息系统的基本知识
1.地理信息系统的基本概念
a)深刻理解地理空间数据的特殊性和地理信息系统的含义
b)熟悉GIScience、Geomatics和GeoComputation的含义
c)了解地理信息系统的其他相关概念
2.地理信息系统的组成
a)理解工具型地理信息系统和实用型地理信息系统的差异
b)熟悉实用型地理信息系统的组成
c)了解工具型地理信息系统的模块结构
3.地理信息系统的功能
a)熟悉地理信息系统的基本功能
b)了解地理信息系统的应用功能
4.地理信息系统的发展
a)了解国内外地理信息系统的发展历程
b)熟悉地理信息系统的发展趋势和目前的热点研究领域
(二)空间数据库
1.地理对象及其表达
a)理解地理实体和地理变量的差异
b)了解地理实体和地理变量的表达方式
2.地图投影
a)了解地图投影的含义
b)掌握高斯-克吕格投影
3.空间数据模型(或空间数据结构)
a) 深刻理解空间数据模型的含义
b)掌握矢量和栅格数据模型
c)了解三维数据模型、时空数据模型和面向对象的数据模型
4.数据库与数据库管理系统
a)理解数据库与数据库管理系统的含义
b)熟悉关系数据库管理系统
c)理解空间数据存取的特殊性
d)掌握利用关系数据库管理系统存贮地理空间数据的方法
e)理解空间数据库与非空间数据库的差异
(三)空间数据采集
1.地理信息系统的数据源
了解地理信息系统的各种数据源和不同数据类型的差异
2.空间数据采集的方式与过程
掌握空间数据采集的方式与过程
3.空间数据的质量
a)了解空间数据质量的内容
b)了解空间数据的误差来源
c)熟悉空间数据的质量评价方法
4.空间数据标准
a)了解空间数据交换标准与交换格式
b)掌握元数据的概念和内容
c)了解空间数据互操作的含义
(四)空间数据处理
1.图形编辑与拓扑生成
a)掌握图形编辑的方法和过程
b)理解拓扑关系自动生成的原理
2.空间数据的拼接和裁剪
熟悉空间数据的拼接和裁剪
3.空间数据的坐标变换
了解空间数据的坐标变换
4.空间数据的压缩
掌握矢量和栅格数据压缩的方法
5.空间数据的转换
a)掌握矢量和栅格数据转换的方法和步骤
b)了解空间数据的格式转换
6.空间插值
掌握空间插值的基本原理和主要方法
(五)空间查询和空间分析
1.空间查询
了解基本的空间查询方法
2.空间量算与统计
a)掌握距离、方向、长度、面积等基本测度值的计算方法
b)掌握数学期望、方差、标准差、极差、相关系数等统计量的计算方法
c)具有运用空间统计分析解决问题的能力
3.数字高程模型
a)理解数字高程模型、数字地形模型的概念
b)掌握建立数字高程模型的方法
c)掌握坡度、坡向的计算方法
4.泰森多边形
a)准确理解泰森多边形(Voronoi图)和Delaunay三角网的含义
b)掌握生成泰森多边形的方法
5.叠置分析
a)理解叠置分析的含义
b)了解运用叠置分析的条件
c)熟悉叠置分析的类型和目的
6.缓冲区分析
a)理解缓冲区分析的含义
b)熟悉缓冲区的类型
c)掌握生成缓冲区的方法
7.网络分析
a)理解图、树、最小生成树的概念
b)掌握最短路径算法
c)了解构造最小生成树的思路
(六)空间数据输出
1.空间数据的标度与可视化
a)了解空间数据的标度
b)熟悉空间数据的基本可视化方案
2.数字地图设计与输出
了解数字地图设计与输出的基本流程
3.电子地图
a)掌握数字地图和电子地图的概念
b)了解电子地图的基本特征
4.虚拟现实
a)熟悉虚拟现实的概念和基本类型
b)了解虚拟现实的意义
c)了解虚拟现实的应用
(七)地理信息系统应用
1.地理信息系统产业
a)了解地理信息系统的主要应用领域
b)熟悉地理信息系统产业的主要业务和产品
c)了解地理信息系统的开发方法和开发过程
d)了解中国地理信息系统产业的发展现状及存在的问题
e)具有运用地理信息系统解决实际问题的能力
2.“3S”集成
a)了解“3S”集成的含义
b)熟悉“3S”集成的方式
c)了解“3S”集成的应用领域
3.WebGIS
a)掌握WebGIS的概念
b)了解WebGIS的特点和意义

参考书目(须与专业目录一致)(包括作者、书目、出版社、出版时间、版次):

胡鹏,黄杏元,华一新.地理信息系统教程.武汉大学出版社,2002年,第一版。(建议考生适当参考其他地理信息系统教材和着作)

http://yjsy.fzu.e.cn/pu_list.asp?newid=15847&classid=819
希望能帮到你。

Ⅱ 从微信提现到银行卡需要多长时间

微信提现到银行卡时,当天16:00之前提现,当前23:59分之前到账;当天16:00之后提现,次日23:59分之前到账。微信提现步骤如下:
1、打开微信,点击【钱包】;

2、点击钱包下的【零钱】;

3、点击零钱下的【提现】;

4、输入提现金额;

5、输入支付密码验证身份,验证通过则提现成功。

Ⅲ 无人驾驶(三)行人跟踪算法

姓名:王梦妮

学号:20021210873

学院:电子工程学院

【嵌牛导读】本文主要介绍了无人驾驶中所需的行人跟踪算法

【嵌牛鼻子】无人驾驶 环境感知 计算机视觉 卡尔曼滤波 粒子滤波 均值漂移

【嵌牛提问】无人驾驶中所用到的行人跟踪算法有哪些

【嵌牛正文】

行人跟踪一直是视觉领域的一个难点,实际应用环境复杂、遮挡以及行人姿态变化等外界因素都影响着行人跟踪算法的研究。行人跟踪算法模型主要分为生成模型和判别模型。

(一)生成式模型

生成式模型是一种通过在线学习行人目标特征,建立行人跟踪模型,然后使用模型来搜索误差最小的目标区域,从而完成对行人的跟踪。这种算法在构建模型只考虑了行人本身的特征,忽略了背景信息,没有做到有效利用图像中的全部信息。其中比较经典的算法主要有卡尔曼滤波,粒子滤波,mean-shift等。

(1)卡尔曼滤波算法

卡尔曼滤波算法是一种通过对行人构建状态方程和观测方程为基础,计算最小均方误差来实现跟踪的最优线性递归滤波算法,通过递归行人的运动状态来预测行人轨迹的变化。

首先设定初始参数,读取视频序列。然后进行背景估计,产生初始化背景图像。然后依次读取视频序列,利用Kahnan滤波算法,根据上一帧估计的背景和当前帧数据得到当前帧的前景目标。然后对前景目标进行连通计算,检测出运动目标的轨迹。经典的卡尔曼滤波算法.只能对线性运动的行人实现跟踪,之后学者改进了卡尔曼滤波算法,能够实现对非线性运动的行人进行跟踪,计算量小,能实现实时跟踪,但是跟踪效果不理想。

(2)粒子滤波

    粒子滤波的核心就是贝叶斯推理和重要性采样。粒子滤波可用于非线性非高斯模型,这是由于贝叶斯推理采用蒙特卡洛法,以某个时间点事件出现的频率表示其概率。通过一组粒子对整个模型的后验概率分布进行近似的表示,通过这个表示来估计整个非线性非高斯系统的状态。重要性采用就是通过粒子的置信度来赋予不同的权重,置信度高的粒子,赋予较大的权重,通过权重的分布形式表示相似程度。

(3)均值漂移(mean-shift)

    Mean-shift算法属于核密度估计法。不必知道先验概率,密度函数值由采样点的特征空间计算。通过计算当前帧目标区域的像素特征值概率来描述目标模型,并对候选区域进行统一描述,使用相似的函数表示目标模型与候选模板之间的相似度,然后选择在具有相似函数值最大的候选模型中,您将获得关于目标模型的均值漂移向量,该向量表示目标从当前位置移动到下一个位置的向量。通过连续迭代地计算均值偏移矢量,行人跟踪算法将最终收敛到行人的实际位置,从而实现行人跟踪。

(二) 判别式模型

判别模型与生成模型不同,行人跟踪被视为二分类问题。提取图像中的行人和背景信息,并用于训练分类器。通过分类将行人从图像背景中分离出来,以获取行人的当前位置。以行人区域为正样本,背景区域为负样本,通过机器学习算法对正样本和负样本进行训练,训练后的分类器用于在下一帧中找到相似度最高的区域,以完成行人轨迹更新。判别式模型不像生成式模型仅仅利用了行人的信息,还利用了背景信息,因此判别式模型的跟踪效果普遍优于生成式模型。

(1)基于相关滤波的跟踪算法

      核相关滤波(KCF)算法是基于相关滤波的经典跟踪算法,具有优良的跟踪效果和跟踪速度。这是由于其采用了循环移位的方式来进行样本生产,用生成的样本来训练分类器,通过高斯核函数来计算当前帧行人与下一帧中所有候选目标之间的相似概率图,找到相似概率图最大的那个候选目标,就得到了行人的新位置。KCF算法为了提高跟踪精度,使用HOG特征对行人进行描述,同时结合了离散傅里叶变换来降低计算量。

(2)基于深度学习的跟踪算法

    近年来,深度学习在图像和语音方面取得了较大的成果,因此有许多科研人员将深度学习与行人跟踪相结合,取得了比传统跟踪算法更好的性能。DLT就是一个基于深度学习的行人跟踪算法,利用深度模型自动编码器通过离线训练的方式,在大规模行人数据集上得到一个行人模型,然后在线对行人进行跟踪来微调模型。首先通过粒子滤波获取候选行人目标,然后利用自动编码器进行预测,最终得到行人的预测位置即最大输出值的候选行人目标位置。2015年提出的MDNet算法采用了分域训练的方式。对于每个类别,一个单独的全连接层用于分类,并且全连接层前面的所有层都是共享,用于特征提取。2017年提出的HCFT算法使用深度学习对大量标定数据进行训练,得到强有力的特征表达模型,结合基于相关滤波的跟踪算法,用于解决在线进行跟踪过程中行人样本少、网络训练不充分的问题。此外,通过深度学习提取特征,利用数据关联的方法来实现跟踪的算法,其中最为着名的就JPDAF与MHT这两种方法。

Ⅳ 求在进行多雷达精确定位时的一种定位算法.

在实际情况中,往往使用更多雷达进行精确定位。在采用多基雷达进行飞行目标空中定位测量,主要为一发(T或T/R)多收(R)的多基系统,为集中式结构,
系统配置为一个主站(发射/接收)和三个分站(接收),主站与分站之间通过信号同步网络实现在时域、频域、空域上的严格同步。空间同步采用数字波束形成(DBF)技术,工作于脉冲追赶方式或同时多波束方式,各站将所测得的目标数据通过数据传输网络传输到中处理机,进行点迹相关、定位与跟踪处理。观测模式为主站(T/R)发射雷达信号,并能测量目标距离
!或方位角
,分站
测量距离差
方位角
或者其中之一的观测量。在此种观测模式下,目标的空间定位面为回转双曲面。因此我们设计了多基雷达目标定位算法。具体算法为:

为在笛卡儿坐标下某一地面站
的站址坐标,j=0,1,2,3.
为空中飞行目标的位置矢量,
.
为飞行目标至地面站
的距离,j=0,1,2,3.
为主目标斜距观测量与分站至目标斜距观测量之差值。
,其中
为主站与某一分站接收雷达反射信号的到达时间差i=1,2,3.
显然,测量的斜距差
是空中飞行目标位置矢量
的函数,有
fj(r)=s0-sj-pj=0
(3)
sj=[(x-xj)^2+(y-yj)^2+(z-zj)^2]^1/2
要获得空中目标三维位置矢量
,利用每一时刻测得的3个
值,
可得到如(3)式所示的三个独立方程,用矩阵表达式为
,其中,f(r)=[f1(r)
f2(r)
f3(r)]^T
.
要从上述非线性测量方程中获得精确的空间目标位置估计值,一个比较通用的方法是作泰勒级数展开,先给出一个飞行目标的初始估值
作为一个参考点,然后将测量函数

处作泰勒展开并进行线性化处理,有f
(r)=f|r0+G|r0*(r-r0)
(4)
式中,G是雅克比矩阵,定义为
.由(3)式和(4)式又可获得空间目标位置矢量新的估计值
r=r0-G^-1*f|r0
(5)
然后,再将求出的估计值
作为新的初值,重复上述过程,又可获得在
处的空中目标位置矢量估计
,这样重复对目标位置进行迭代计,直到使估计值均方误差满足要求的精度。在上述过程中,由于采用了泰勒级数展开,存在一个线性化模型误差。在实际解算时,也可以根据测量位置精度要求设置泰勒级数展开的阶数,从而使得模型化误差小得可以忽略。

Ⅳ 控制工程论文选题参考

控制工程论文选题参考

控制工程是处理自动控制系统各种工程实现问题的综合性工程技术。下面,我为大家分享控制工程论文选题,希望对大家有所帮助!

1、DC-DC开关变换器建模、仿真与补偿网络设计研究

2、Delta并联机器人的运动规划研究

3、GIS环境下的动态交通最优路径算法研究

4、GPS/SINS组合导航系统应用研究

5、GPS/SINS组合导航系统中误差及精度研究

6、3×20KW光伏并网发电系统的设计

7、3G移动通信系统的无线网络优化

8、Android系统数据 护关键技术研究

9、LED车灯功能控制研究

10、LNG接收站安全系统的设计

11、PLC工控系统设计及其在自来水控制中的应用

12、PLC及变频器控制的多电机驱动带式输送机的研究

13、RS232/PROFIBUS-DP从站接口设计与实现

14、ZigBee技术在智能家居系统中的应用研究

15、北斗卫星导航系统定位解算算法的研究

16、变电站巡检机器人磁导航系统设计与实现

17、变频器用高性能开关电源的设计

18、便携式心电监护仪的采集电路和底层驱动程序开发

19、并联型混合动力汽车再生制动控制策略研究

20、布袋式脉冲除尘器控制系统的设计与实现

21、步进电机快速定位方法研究

22、超临界600MW机组协调控制系统的研究

23、超长航时无人机持久组合导航系统设计

24、城市自来水厂自控系统的设计与实现

25、程序化交易算法模型的研究

26、船用起重机和波浪补偿控制系统设计研究

27、纯电动汽车锂电池组充电均衡技术的研究

28、大型飞机项目风险管理研究

29、单相光伏并网逆变器的研究

30、单相光伏离网逆变器研究

31、倒立摆系统的稳定控制研究

32、低功耗嵌入式实时人脸识别系统

33、地面移动机器人安全路径规划研究

34、地源热泵空调自动控制系统设计

35、电厂烟气脱硫脱硝控制系统的研究与应用

36、电除尘电气控制设计与实施

37、电动汽车动力电池管理系统的开发

38、电梯制造企业中供应链合理库存问题研究

39、电子鼻/舌系统设计及气-味信息融合技术应用

40、电子鼻与电子舌融合技术及其应用

41、动力电池主动均衡策略和SOC估计方法研究

42、动力锂电池组管理系统的研究与设计

43、对舰船设备冲击振动试验的分析

44、多功能智能家居系统的设计与实现

45、多媒体教学设备管理系统设计

46、多通道脑电信号采集系统设计及开发

47、房地产市场的多方博弈分析

48、分布式光纤温度传感系统的研究与设计

49、粉尘浓度测量技术研究

50、风电机组状态监测与故障智能诊断系统研究

51、风力发电机整机性能评估与载荷计算的研究

52、风力发电机组模拟实验平台的设计与实现

53、改进遗传算法和蚁群算法在电力系统问题中的应用研究

54、高动态下GPS矢量接收机跟踪算法与实现研究

55、高精度温箱温度控制系统设计

56、高速PCB电源完整性设计与分析

57、高校贫困生认定方法与资助体系的研究

58、高校实验室综合管理系统研究与设计

59、高校图书馆火灾自动报警与消防联动系统的设计

60、高校远程教育网络课程的设计与实现研究

61、高压高频变压器的研究与设计

62、工业控制系统脆弱性分析与建模研究

63、工业用六轴机械臂的建模与仿真

64、故障电弧的识别及防护方法的研究

65、光伏并网发电系统的MATLAB仿真研究

66、光伏并网逆变器的滤波与控制技术研究

67、光伏发电系统建模及功率控制方法研究

68、光伏发电系统效率提升的研究

69、光纤光栅温度传感器信号解调及其自动标定系统设计

70、锅炉控制及PLC应用

71、海外投资项目的风险评价及控制研究

72、焊接机器人伺服控制系统设计

73、换流变压器阀侧套管的电场分布及绝缘特性研究

74、换热器性能测试系统的设计与开发

75、火电厂输煤电气控制系统研究与设计

76、火灾报警系统的应用与集成

77、基于51单片机的电子汽车衡设计

78、基于AIS的船舶实时监控系统的研究与实现

79、基于Android的移动VoIP高清视频通话系统的设计与实现

80、基于Android的智能家居系统的设计与实现

81、基于ARM的物流包裹分拣机控制系统的设计

82、基于ARM和ZigBee的智能家居无线终端控制系统的设计

83、基于ARM与Zigbee技术的嵌入式智能家居系统设计

84、基于BP神经网络的销售预测研究

85、基于C8051F单片机的'USB数据采集卡设计

86、基于CAN总线的汽车仪表研究

87、基于CCD摄像头的智能小车系统研制

88、基于DCS的造纸自动化控制系统的设计与实现

89、基于DM365的智能视频监控系统研究

90、基于DSP+FPGA的视频图像处理

91、基于DSP大功率全数字开关电源系统研究

92、基于DSP的SVPWM逆变器的研究与实现

93、基于DSP的高频开关电源设计与实现

94、基于DSP的数字化舵机系统设计与实现

95、基于DSP的太阳跟踪控制系统研究

96、基于DSP的无人机飞控系统的设计

97、基于DSP和CPLD的伺服控制器设计

98、基于EtherCAT总线的焊接机器人控制系统研究

99、基于GPRS的电梯远程监控系统的设计

100、基于GPRS的智能充电桩数据管理系统的设计与实现


;

Ⅵ 粒子群优化算法

姓名:杨晶晶  学号:21011210420  学院:通信工程学院

【嵌牛导读】

传统的多目标优化方法是将多目标问题通过加权求和转化为单目标问题来处理的,而粒子算法主要是解决一些多目标优化问题的(例如机械零件的多目标设计优化),其优点是容易实现,精度高,收敛速度快。

【嵌牛鼻子】粒子群算法的概念、公式、调参以及与遗传算法的比较。

【嵌牛提问】什么是粒子群算法?它的计算流程是什么?与遗传算法相比呢?

【嵌牛正文】

1. 概念

        粒子群优化算法(PSO:Particle swarm optimization) 是一种进化计算技术(evolutionary computation),源于对鸟群捕食的行为研究。

        粒子群优化算法的基本思想:是通过群体中个体之间的协作和信息共享来寻找最优解。

        PSO的优势:在于简单容易实现并且没有许多参数的调节。目前已被广泛应用于函数优化、神经网络训练、模糊系统控制以及其他遗传算法的应用领域。

2. 算法

2.1 问题抽象

        鸟被抽象为没有质量和体积的微粒(点),并延伸到N维空间,粒子i在N维空间的位置表示为矢量Xi=(x1,x2,…,xN),飞行速度表示为矢量Vi=(v1,v2,…,vN)。每个粒子都有一个由目标函数决定的适应值(fitness value),并且知道自己到目前为止发现的最好位置(pbest)和现在的位置Xi。这个可以看作是粒子自己的飞行经验。除此之外,每个粒子还知道到目前为止整个群体中所有粒子发现的最好位置(gbest)(gbest是pbest中的最好值),这个可以看作是粒子同伴的经验。粒子就是通过自己的经验和同伴中最好的经验来决定下一步的运动。

2.2 更新规则

      PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次的迭代中,粒子通过跟踪两个“极值”(pbest,gbest)来更新自己。在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和位置。

      公式(1)的第一部分称为【记忆项】,表示上次速度大小和方向的影响;公式(1)的第二部分称为【自身认知项】,是从当前点指向粒子自身最好点的一个矢量,表示粒子的动作来源于自己经验的部分;公式(1)的第三部分称为【群体认知项】,是一个从当前点指向种群最好点的矢量,反映了粒子间的协同合作和知识共享。粒子就是通过自己的经验和同伴中最好的经验来决定下一步的运动。

      以上面两个公式为基础,形成了PSO的标准形式。

      公式(2)和 公式(3)被视为标准PSO算法。

2.3 标准PSO算法流程

    标准PSO算法的流程:

    1)初始化一群微粒(群体规模为N),包括随机位置和速度;

    2)评价每个微粒的适应度;

    3)对每个微粒,将其适应值与其经过的最好位置pbest作比较,如果较好,则将其作为当前的最好位置pbest;

    4)对每个微粒,将其适应值与其经过的最好位置gbest作比较,如果较好,则将其作为当前的最好位置gbest;

    5)根据公式(2)、(3)调整微粒速度和位置;

    6)未达到结束条件则转第2)步。

        迭代终止条件根据具体问题一般选为最大迭代次数Gk或(和)微粒群迄今为止搜索到的最优位置满足预定最小适应阈值。

      公式(2)和(3)中pbest和gbest分别表示微粒群的局部和全局最优位置。

    当C1=0时,则粒子没有了认知能力,变为只有社会的模型(social-only):

被称为全局PSO算法。粒子有扩展搜索空间的能力,具有较快的收敛速度,但由于缺少局部搜索,对于复杂问题

比标准PSO 更易陷入局部最优。

    当C2=0时,则粒子之间没有社会信息,模型变为只有认知(cognition-only)模型:

      被称为局部PSO算法。由于个体之间没有信息的交流,整个群体相当于多个粒子进行盲目的随机搜索,收敛速度慢,因而得到最优解的可能性小。

2.4 参数分析

        参数:群体规模N,惯性因子 ,学习因子c1和c2,最大速度Vmax,最大迭代次数Gk。

        群体规模N:一般取20~40,对较难或特定类别的问题可以取到100~200。

        最大速度Vmax:决定当前位置与最好位置之间的区域的分辨率(或精度)。如果太快,则粒子有可能越过极小点;如果太慢,则粒子不能在局部极小点之外进行足够的探索,会陷入到局部极值区域内。这种限制可以达到防止计算溢出、决定问题空间搜索的粒度的目的。

        权重因子:包括惯性因子和学习因子c1和c2。使粒子保持着运动惯性,使其具有扩展搜索空间的趋势,有能力探索新的区域。c1和c2代表将每个粒子推向pbest和gbest位置的统计加速项的权值。较低的值允许粒子在被拉回之前可以在目标区域外徘徊,较高的值导致粒子突然地冲向或越过目标区域。

        参数设置:

        1)如果令c1=c2=0,粒子将一直以当前速度的飞行,直到边界。很难找到最优解。

        2)如果=0,则速度只取决于当前位置和历史最好位置,速度本身没有记忆性。假设一个粒子处在全局最好位置,它将保持静止,其他粒子则飞向它的最好位置和全局最好位置的加权中心。粒子将收缩到当前全局最好位置。在加上第一部分后,粒子有扩展搜索空间的趋势,这也使得的作用表现为针对不同的搜索问题,调整算法的全局和局部搜索能力的平衡。较大时,具有较强的全局搜索能力;较小时,具有较强的局部搜索能力。

        3)通常设c1=c2=2。Suganthan的实验表明:c1和c2为常数时可以得到较好的解,但不一定必须等于2。Clerc引入收敛因子(constriction factor) K来保证收敛性。

      通常取为4.1,则K=0.729.实验表明,与使用惯性权重的PSO算法相比,使用收敛因子的PSO有更快的收敛速度。其实只要恰当的选取和c1、c2,两种算法是一样的。因此使用收敛因子的PSO可以看作使用惯性权重PSO的特例。

        恰当的选取算法的参数值可以改善算法的性能。

3. PSO与其它算法的比较

3.1 遗传算法和PSO的比较

  1)共性:

  (1)都属于仿生算法。

  (2)都属于全局优化方法。

  (3)都属于随机搜索算法。

  (4)都隐含并行性。

  (5)根据个体的适配信息进行搜索,因此不受函数约束条件的限制,如连续性、可导性等。

  (6)对高维复杂问题,往往会遇到早熟收敛和收敛 性能差的缺点,都无法保证收敛到最优点。

    2)差异:   

    (1)PSO有记忆,好的解的知识所有粒子都保 存,而GA(Genetic Algorithm),以前的知识随着种群的改变被改变。

    (2)PSO中的粒子仅仅通过当前搜索到最优点进行共享信息,所以很大程度上这是一种单共享项信息机制。而GA中,染色体之间相互共享信息,使得整个种群都向最优区域移动。

    (3)GA的编码技术和遗传操作比较简单,而PSO相对于GA,没有交叉和变异操作,粒子只是通过内部速度进行更新,因此原理更简单、参数更少、实现更容易。

    (4)应用于人工神经网络(ANN)

    GA可以用来研究NN的三个方面:网络连接权重、网络结构、学习算法。优势在于可处理传统方法不能处理的问题,例如不可导的节点传递函数或没有梯度信息。

    GA缺点:在某些问题上性能不是特别好;网络权重的编码和遗传算子的选择有时较麻烦。

    已有利用PSO来进行神经网络训练。研究表明PSO是一种很有潜力的神经网络算法。速度较快且有较好的结果。且没有遗传算法碰到的问题。

Ⅶ 矢量控制和V/F控制有何区别

一、性质不同

1、V/f控制:保证输出电压与控制频率成正比,使电机能保持一定的磁通量,避免弱磁和磁饱和现象的产生。

2、矢量控制:用变频器控制三相交流电动机的技术。通过调整变频器的输出频率、输出电压的大小和角度来控制电机的输出。

二、原理不同

1、V/f控制

V/f控制的原理是产生振荡频率的电路称为压控振荡器,它是一种变阻器电容器。在电压变化的情况下,电容的容量会发生变化,电容的变化会引起振荡频率的变化,产生频率转换。此控制频率用于控制输出电压的频率,使被控制电机的转速发生变化。

2、矢量控制

矢量控制将根据程序中计算出的电流矢量向电机产生三相PWM电压。目的是控制电动机的三相电流。其中,电流、电压等物理量将在两个系统之间进行转换。一个是随速度和时间变化的三相系统,另一个是双轴非线性旋转坐标系统。


(7)矢量跟踪算法扩展阅读:

矢量控制的特点:

1、需要量测(或是估测)电机的速度或位置,为了估计电机的转速,需要电机的电阻和电感等参数。如果可以与各种不同的电机配合,则需要使用自动调谐程序来测量电机的参数。

2、通过调整控制的目标值,转矩和磁通量可以快速变化,通常在5-10毫秒内。

3、如果使用PI控制,则阶跃响应将超调。

4、功率晶体的开关频率(载波)通常是固定的。

5、扭矩精度与控制系统中使用的电机参数有关。因此,如果电机的温度发生变化,转子的电阻值就会增大,误差也会增大。

6、处理器效率要求高,电机控制算法应至少每毫秒执行一次。

Ⅷ 栅格数据和矢量数据的组织异同点

栅格数据和矢量数据的组织异同点:
1、栅格数据操作总的来说容易实现,矢量数据操作则比较复杂;
2、栅格结构是矢量结构在某种程度上的一种近似,对于同一地物达到于矢量数据相同的精度需要更大量的数据;
3、在坐标位置搜索、计算多边形形状面积等方面栅格结构更为有效,而且易于遥感相结合,易于信息共享;
4、矢量结构对于拓扑关系的搜索则更为高效,网络信息只有用矢量才能完全描述,而且精度较高。
简介:
一、栅格数据结构
基于栅格模型的数据结构简称栅格数据结构,是指将空间分割成有规则的网格,称为栅格单元,在各个栅格单元上给出出相应的属性值来表示地理实体的一种数据组织形式。
栅格数据结构表示的是二维表面上的要素的离散化数值,每个网格对应一种属性。 网格边长决定了栅格数据的精度。
二、矢量数据结构
矢量数据结构是利用欧几里得几何学中的点、线、面及其组合体来表示地理实体的空间分布的一种数据组合方式。

Ⅸ 目标跟踪检测算法(一)——传统方法

姓名:刘帆;学号:20021210609;学院:电子工程学院

https://blog.csdn.net/qq_34919792/article/details/89893214

【嵌牛导读】目标跟踪算法研究难点与挑战在于实际复杂的应用环境 、背景相似干扰、光照条件的变化、遮挡等外界因素以及目标姿态变化,外观变形,尺度变化、平面外旋转、平面内旋转、出视野、快速运动和运动模糊等。而且当目标跟踪算法投入实际应用时,不可避免的一个问题——实时性问题也是非常的重要。正是有了这些问题,才使得算法研究充满着难点和挑战。

【嵌牛鼻子】目标跟踪算法,传统算法

【嵌牛提问】利用目标跟踪检测算法要达到何目的?第一阶段的单目标追踪算法包括什么?具体步骤有哪些?它们有何特点?

【嵌牛正文】

第一阶段

目标跟踪分为两个部分,一个是对指定目标寻找可以跟踪的特征,常用的有颜色,轮廓,特征点,轨迹等,另一个是对目标特征进行跟踪。

1、静态背景

1)背景差: 对背景的光照变化、噪声干扰以及周期性运动等进行建模。通过当前帧减去背景图来捕获运动物体的过程。

2)帧差: 由于场景中的目标在运动,目标的影像在不同图像帧中的位置不同。该类算法对时间上连续的两帧或三帧图像进行差分运算,不同帧对应的像素点相减,判断灰度差的绝对值,当绝对值超过一定阈值时,即可判断为运动目标,从而实现目标的检测功能。

与二帧差分法不同的是,三帧差分法(交并运算)去除了重影现象,可以检测出较为完整的物体。帧间差分法的原理简单,计算量小,能够快速检测出场景中的运动目标。但帧间差分法检测的目标不完整,内部含有“空洞”,这是因为运动目标在相邻帧之间的位置变化缓慢,目标内部在不同帧图像中相重叠的部分很难检测出来。帧间差分法通常不单独用在目标检测中,往往与其它的检测算法结合使用。

3)Codebook

算法为图像中每一个像素点建立一个码本,每个码本可以包括多个码元(对应阈值范围),在学习阶段,对当前像素点进行匹配,如果该像素值在某个码元的学习阈值内,也就是说与之前出现过的某种历史情况偏离不大,则认为该像素点符合背景特征,需要更新对应点的学习阈值和检测阈值。

如果新来的像素值与每个码元都不匹配,则可能是由于动态背景导致,这种情况下,我们需要为其建立一个新的码元。每个像素点通过对应多个码元,来适应复杂的动态背景。

在应用时,每隔一段时间选择K帧通过更新算法建立CodeBook背景模型,并且删除超过一段时间未使用的码元。

4)GMM

混合高斯模型(Gaussian of Micture Models,GMM)是较常用的背景去除方法之一(其他的还有均值法、中值法、滑动平均滤波等)。

首先我们需要了解单核高斯滤波的算法步骤:

混合高斯建模GMM(Gaussian Mixture Model)作为单核高斯背景建模的扩展,是目前使用最广泛的一种方法,GMM将背景模型描述为多个分布,每个像素的R、G、B三个通道像素值的变化分别由一个混合高斯模型分布来刻画,符合其中一个分布模型的像素即为背景像素。作为最常用的一种背景建模方法,GMM有很多改进版本,比如利用纹理复杂度来更新差分阈值,通过像素变化的剧烈程度来动态调整学习率等。

5)ViBe(2011)

ViBe算法主要特点是随机背景更新策略,这和GMM有很大不同。其步骤和GMM类似。具体的思想就是为每个像素点存储了一个样本集,样本集中采样值就是该像素点过去的像素值和其邻居点的像素值,然后将每一个新的像素值和样本集进行比较来判断是否属于背景点。

其中pt(x)为新帧的像素值,R为设定值,p1、p2、p3….为样本集中的像素值,以pt(x)为圆心R为半径的圆被认为成一个集,当样本集与此集的交集大于设定的阈值#min时,可认为此为背景像素点(交集越大,表示新像素点与样本集越相关)。我们可以通过改变#min的值与R的值来改变模型的灵敏度。

Step1:初始化单帧图像中每个像素点的背景模型。假设每一个像素和其邻域像素的像素值在空域上有相似的分布。基于这种假设,每一个像素模型都可以用其邻域中的像素来表示。为了保证背景模型符合统计学规律,邻域的范围要足够大。当输入第一帧图像时,即t=0时,像素的背景模型。其中,NG(x,y)表示空域上相邻的像素值,f(xi,yi)表示当前点的像素值。在N次的初始化的过程中,NG(x,y)中的像素点(xi,yi)被选中的可能次数为L=1,2,3,…,N。

Step2:对后续的图像序列进行前景目标分割操作。当t=k时,像素点(x,y)的背景模型为BKm(x,y),像素值为fk(x,y)。按照下面判断该像素值是否为前景。这里上标r是随机选的;T是预先设置好的阈值。当fk(x,y)满足符合背景#N次时,我们认为像素点fk(x,y)为背景,否则为前景。

Step3:ViBe算法的更新在时间和空间上都具有随机性。每一个背景点有1/ φ的概率去更新自己的模型样本值,同时也有1/ φ的概率去更新它的邻居点的模型样本值。更新邻居的样本值利用了像素值的空间传播特性,背景模型逐渐向外扩散,这也有利于Ghost区域的更快的识别。同时当前景点计数达到临界值时将其变为背景,并有1/ φ的概率去更新自己的模型样本值(为了减少缓慢移动物体的影响和摄像机的抖动)。

可以有如下总结,ViBe中的每一个像素点在更新的时候都有一个时间和空间上随机影响的范围,这个范围很小,大概3x3的样子,这个是考虑到摄像头抖动时会有坐标的轻微来回变化,这样虽然由于ViBe的判别方式仍认为是背景点,但是也会对后面的判别产生影响,为了保证空间的连续性,随机更新减少了这个影响。而在样本值保留在样本集中的概率随着时间的增大而变小,这就保证了像素模型在时间上面的延续特性。

6)光流

光流是由物体或相机的运动引起的图像对象在两个连续帧之间的视在运动模式。它是2D矢量场,其中每个矢量是一个位移矢量,显示点从第一帧到第二帧的移动。

光流实际上是一种特征点跟踪方法,其计算的为向量,基于三点假设:

1、场景中目标的像素在帧间运动时亮度(像素值或其衍生值)不发生变化;2、帧间位移不能太大;3、同一表面上的邻近点都在做相同的运动;

光流跟踪过程:1)对一个连续视频帧序列进行处理;2)对每一帧进行前景目标检测;3)对某一帧出现的前景目标,找出具有代表性的特征点(Harris角点);4)对于前后帧做像素值比较,寻找上一帧在当前帧中的最佳位置,从而得到前景目标在当前帧中的位置信息;5)重复上述步骤,即可实现目标跟踪

2、运动场(分为相机固定,但是视角变化和相机是运动的)

1)运动建模(如视觉里程计运动模型、速度运动模型等)

运动学是对进行刚性位移的相机进行构型,一般通过6个变量来描述,3个直角坐标,3个欧拉角(横滚、俯仰、偏航)。

Ⅰ、对相机的运动建模

由于这个不是我们本次所要讨论的重点,但是在《概率机器人》一书中提出了很多很好的方法,相机的运动需要对图像内的像素做位移矩阵和旋转矩阵的坐标换算。除了对相机建立传统的速度运动模型外,也可以用视觉里程计等通关过置信度的更新来得到概率最大位置。

Ⅱ、对于跟踪目标的运动建模

该方法需要提前通过先验知识知道所跟踪的目标对象是什么,比如车辆、行人、人脸等。通过对要跟踪的目标进行建模,然后再利用该模型来进行实际的跟踪。该方法必须提前知道要跟踪的目标对象是什么,然后再去跟踪指定的目标,这是它的局限性,因而其推广性相对比较差。(比如已知跟踪的物体是羽毛球,那很容易通过前几帧的取点,来建立整个羽毛球运动的抛物线模型)

2)核心搜索算法(常见的预测算法有Kalman(卡尔曼)滤波、扩展卡尔曼滤波、粒子滤波)

Ⅰ、Kalman 滤波

Kalman滤波器是通过前一状态预测当前状态,并使用当前观测状态进行校正,从而保证输出状态平稳变化,可有效抵抗观测误差。因此在运动目标跟踪中也被广泛使用。

在视频处理的运动目标跟踪里,每个目标的状态可表示为(x,y,w,h),x和y表示目标位置,w和h表示目标宽高。一般地认为目标的宽高是不变的,而其运动速度是匀速,那么目标的状态向量就应该扩展为(x,y,w,h,dx,dy),其中dx和dy是目标当前时刻的速度。通过kalman滤波器来估计每个时刻目标状态的大致过程为:

对视频进行运动目标检测,通过简单匹配方法来给出目标的第一个和第二个状态,从第三个状态开始,就先使用kalman滤波器预测出当前状态,再用当前帧图像的检测结果作为观测值输入给kalman滤波器,得到的校正结果就被认为是目标在当前帧的真实状态。(其中,Zt为测量值,为预测值,ut为控制量,Kt为增益。)

Ⅱ、扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)

由于卡尔曼滤波的假设为线性问题,无法直接用在非线性问题上,EKF和UKF解决了这个问题(这个线性问题体现在用测量量来计算预测量的过程中)。EKF是通过构建线性函数g(x),与非线性函数相切,并对每一时刻所求得的g(x)做KF,如下图所示。

UKF与EKF去求解雅可比矩阵拟合线性方程的方法不同,通过对那个先验分布中的采集点,来线性化随机变量的非线性函数。与EKF所用的方法不同,UKF产生的高斯分布和实际高斯分布更加接近,其引起的近似误差也更小。

Ⅲ、粒子滤波

1、初始状态:基于粒子滤波的目标追踪方法是一种生成式跟踪方法,所以要有一个初始化的阶段。对于第一帧图像,人工标定出待检测的目标,对该目标区域提出特征;

2、搜索阶段:现在已经知道了目标的特征,然后就在目标的周围撒点(particle), 如:a)均匀的撒点;b)按高斯分布撒点,就是近的地方撒得多,远的地方撒的少。论文里使用的是后一种方法。每一个粒子都计算所在区域内的颜色直方图,如初始化提取特征一样,然后对所有的相似度进行归一化。文中相似性使用的是巴氏距离;

3、重采样:根据粒子权重对粒子进行筛选,筛选过程中,既要大量保留权重大的粒子,又要有一小部分权重小的粒子;

4、状态转移:将重采样后的粒子带入状态转移方程得到新的预测粒子;

5、测量及更新:对目标点特征化,并计算各个粒子和目标间的巴氏距离,更新粒子的权重;

6、决策阶段:每个粒子都获得一个和目标的相似度,相似度越高,目标在该范围出现的可能性越高,将保留的所有粒子通过相似度加权后的结果作为目标可能的位置。

3)Meanshift算法

MeanShift算法属于核密度估计法,它不需要任何先验知识而完全依靠特征空间中样本点的计算其密度函数值。对于一组采样数据,直方图法通常把数据的值域分成若干相等的区间,数据按区间分成若干组,每组数据的个数与总参数个数的比率就是每个单元的概率值;核密度估计法的原理相似于直方图法,只是多了一个用于平滑数据的核函数。采用核函数估计法,在采样充分的情况下,能够渐进地收敛于任意的密度函数,即可以对服从任何分布的数据进行密度估计。

Meanshift算法步骤

1、通过对初始点(或者上一帧的目标点)为圆心,绘制一个半径为R的圆心,寻找特征和该点相似的点所构成的向量;

2、所有向量相加,可以获得一个向量叠加,这个向量指向特征点多的方向;

3、取步骤二的向量终点为初始点重复步骤一、二,直到得到的向量小于一定的阈值,也就是说明当前位置是特征点密度最密集的地方,停止迭代,认为该点为当前帧的目标点;

4)Camshift算法

Camshift算法是MeanShift算法的改进,称为连续自适应的MeanShift算法。Camshift 是由Meanshift 推导而来 Meanshift主要是用在单张影像上,但是独立一张影像分析对追踪而言并无意义,Camshift 就是利用MeanShift的方法,对影像串行进行分析。

1、首先在影像串行中选择目标区域。

2、计算此区域的颜色直方图(特征提取)。

3、用MeanShift算法来收敛欲追踪的区域。

4、通过目标点的位置和向量信息计算新的窗口大小,并标示之。

5、以此为参数重复步骤三、四。

Camshift 关键就在于当目标的大小发生改变的时候,此算法可以自适应调整目标区域继续跟踪。

3、小结

第一阶段的单目标追踪算法基本上都是传统方法,计算量小,在嵌入式等设备中落地较多,opencv中也预留了大量的接口。通过上面的两节的介绍,我们不难发现,目标检测算法的步骤分为两部分,一部分是对指定目标寻找可以跟踪的特征,常用的有颜色,轮廓,特征点,轨迹等,另一部分是对目标特征进行跟踪,如上文所提及的方法。所以目标检测方法的发展,也可总结为两个方面,一个是如何去获得更加具有区分性的可跟踪的稳定特征,另一个是如何建立帧与帧之间的数据关联,保证跟踪目标是正确的。

随着以概率为基础的卡尔曼滤波、粒子滤波或是以Meanshift为代表向量叠加方法在目标检测的运用,使得目标检测不再需要假设自身的一个状态为静止的,而是可以是运动的,更加符合复杂场景中的目标跟踪。

Ⅹ 矢量化及MAPGIS相关技术

秦爽 李进化

(河南省地质博物馆,郑州450016)

摘要 地质图件的矢量化,是解决地质图件数字化瓶颈难题的必然途径,随着计算机与信息技术的迅速发展,数字化成图方式已被广泛应用,基于数字化地质图的机助编绘势在必行。本文从扫描矢量化的实际出发,从MAPGIS的基础准备到具体操作等环节进行了分析,并结合了本人工作实践,得出利用MAPGIS矢量化图像的几点体会。

关键词 扫描;矢量化;栅格图像;矢量图形;MAPGIS;编辑;数字化

对于原有地质资料进行矢量化管理已成为趋势。对图件数字化不外乎两种方法,一种是利用数字化仪进行数字化,误差来源定向误差,采集误差等,这种方法在20世纪80、90年代曾流行一时,但由于投资较大,误差较高,很少有人再使用;另一种方法是将图件扫描成栅格图像,并利用光栅矢量混合编辑软件如MAPGIS、GTX、AutoCAD Overlay等来转变成矢量数字图形。

1 扫描矢量化的基本概念

(1)数字化。数字化是指把图形、文字等模拟信息转换成为计算机能够识别、处理、贮存的数字信息的过程。

(2)矢量化。矢量化是指把栅格数据转换成矢量数据的过程。

(3)光栅化。光栅化是指把矢量数据转换成栅格数据的过程。

(4)栅格图像。也称光栅图像,是指在空间和亮度上都已经离散化了的图像。我们可以把一幅栅格图像考虑为一个矩阵,矩阵中的任一元素对应于图像中的一个点,而相应的值对应于该点的灰度级,数字矩阵中的元素叫做像素。数字图像与马赛克拼图相似,是由一系列像素组成的矩形图案,如果所有的像素有且仅有两个灰度级(黑或白),则称其为二值图像,即位图;否者称其为灰度图像或彩色图像。

(5)矢量图形。在介绍矢量图形之前,我们首先阐述矢量对象的概念。矢量对象是以矢量的形式,即用方向和大小来综合表示目标的形式描述的对象。例如画面上的一段直线,一个矩形,一个点,一个圆,一个填充的封闭区域等。矢量图形文件就是由这些矢量对象组合而成的描述性文件。矢量图形则是计算机软件通过一定算法,将矢量对象的描述信息在显示终端上重绘的结果。

纸质地图经扫描仪扫描后,初步保存为栅格图像(常见的格式有TIFF、BMP、PCX、JPEG等)。栅格图像在地理应用领域有着这样的缺陷:首先,栅格图像文件对图像的每一像素点(不管前景或背景像素)都要保存,所以其存储量特别大。另外,我们不能对图像上的任一对象(曲线、文字或符号)进行属性修改、拷贝、移动及删除等图形编辑操作,更不能进行拓扑求解,只能对某个矩形区域内的所有像素同时进行图像编辑操作。此外,当图像进行放大或缩小显示时,图像信息会发生失真,特别是放大时图像目标的边界会发生阶梯效应,正如点阵汉字放大显示发生阶梯效应的原理一样。

而矢量图形则不同。在矢量图形中每个目标均为单个矢量单位(点、线、面)或多个矢量单位的结合体。基于这样的数据结构,我们便可以很方便地在地图上编辑各个地物,将地物归类,以及求解各地物之间的空间关系。并有利于地图的浏览、输出。矢量化则是利用数字图像处理算法,将源图上的各种栅格阵列识别为矢量对象,最后以一定格式保存的过程。矢量图形在工业、制图业、土地利用部门等行业都有广泛的应用。在这些领域的许多成功软件都基于矢量图形,或离不开矢量图形的参与,如MAPGIS、AutoCAD、ARC/INFO、Corel Draw、GeoStar等等。

随着计算机科学、地理学、制图学、遥感与摄影测量学、图形图像技术以及数据库技术的不断发展,地理信息系统已成为一种功能强大、性能完善的计算机系统,广泛应用于规划、土地、测绘、建设、环保、军事等诸多部门,成为政府部门进行科学管理和快速决策时不可或缺的工具。而各具特点的 GIS和制图应用软件也给社会用户提供更大的选择性。MAP GIS作为较早发展起来的国产 GIS软件,国内拥有一定数量的用户。

由中国地质大学开发的MAP GIS是一个具有国际先进水平的地理信息系统,它分为“图形处理”、“库管理”、“空间分析”、“图像处理”及“实用服务”5大部分,共计21个子系统。使用时,用户根据自己的不同需要,随机选择各个子系统。

2 MAPGIS 扫描矢量化输入

扫描矢量化,通过扫描仪输入扫描图像,然后通过矢量追踪,确定实体的空间位置。对于高质量的原资料,扫描是一种省时、高效的数据输入方式。MAPGIS扫描矢量化的主要功能有:

图像格式转换功能——系统可接受扫描仪输入的TIFF栅格数据格式,并将其转换为MAPGIS系统的标准RBM格式。

矢量跟踪导向功能——可对整个图形进行全方位游览,任意缩放,自动调整矢量化时的窗口位置,以保证矢量化的导向光标始终处在屏幕中央。在多灰度级图像上跟踪线划时,保证跟踪中心线。

多种矢量化处理功能——系统提供了交互式手动、半自动、细化全自动和非细化全自动矢量化方式,同时提供了全图矢量化和窗口内矢量化功能,供用户选择。

自动识别功能——系统应用人工智能及模式识别的技术,在我国率先成功地实现灰度扫描地图矢量化和彩色扫描地图矢量化,克服了二值扫描地图矢量化的致命弱点,使之彩色地图可达全要素一次性矢量化。

编辑校正功能——系统提供了对矢量化后的图元(包括点图元和线图元),进行编辑、修改等功能,可随时进行任意大小比例的显示,便于校对;对汉字、图符等特殊图元,可直接调用系统库,根据给定的参数,自动输入生成。

3 MAPGIS 的基本概念

MAP GIS把地图数据根据基本形状分为三类:点数据,线数据和区数据(亦即面数据)。与之相对应,文件的基本类型也分为三类:点文件(∗.WT),线文件(∗.WL)和区文件(∗.WP)。只有包括所有地图数据的三类文件都叠加起来时,才构成一幅完整的地图。

3.1 点

点是地图数据中点状物的统称,是由一个控制点决定其位置的符号或注释。它不是一个简单的点,而是包括各种注释(英文、汉字、阿拉伯数字等)和专用符号(包括圆、弧、直线、五角星、亭子等各类符号)。它与线编辑中“线上加点”的点的概念不同,“线上加点”的点是坐标点。所有的点图元数据都保存在点文件中(∗.WT)。

3.2 线

线是地图中线状物的统称。MAP GIS将各种线型(如点划线、省界、国界、等高线、路、河堤)以线为单位作为线图元来编辑。所有的线图元数据都保存在线文件中(∗.WL)。

3.3 区

区通常也称面,它是由首尾相连的弧段组成封闭图形,并以颜色和花纹图案填充封闭图形所形成的一个区域。如湖泊、居民地等。所有的区图元数据都保存在区文件中(∗.WP)。

3.4 图层

在GIS的应用中,同一文件中有多种类型的地理要素。如一个线文件中可能包括等高线、公路、铁路、河流等多种类型的线。为了便于编辑和管理,一般情况下,可以把同一类型的地理要素放到同一图层,例如:将所有的铁路线都放到铁路图层,而把所有的等高线都存放到等高线图层,这样所有的图层都叠加起来就构成了一个完整的线文件。特殊情况下,一个图层也可存为一个单独的文件。

3.5 工程

一个工程由一个或一个以上的点文件、一个或一个以上的线文件和一个或一个以上的区文件组成。

3.6 编辑处理

数据输入计算机后,就要进入图形编辑、数据校正、图廓整饰、邻图接边、误差消除等项工作。由MAP GIS图形编辑子系统、拓扑结构编辑子系统、错误检查和数据校正等子系统来完成上述各项编辑处理任务。

3.7 颜色设计

颜色是地学图表现的一种重要要素,它直接影响地学图的表现力和图面效果。因此,地学图对颜色的要求是非常严格的。MAP GIS对地学图作了颜色的要求,在分析了地学图印刷特点的基础上,设计了一套灵活、方便、精确的颜色定义和色标系统。

3.8 图形输出

图形输出是MAP GIS系统中最后一道工序,通常是把显示所需的图形数据,经过分析、处理、编辑、用色、自检、误差消除等,在基本符合要求后,用彩色喷墨绘图仪输出彩色样图,对彩色样图进行校对和系统质量检查。

4 利用 MAPGIS 矢量化图像的几点体会

在MAP GIS软件使用过程中,制图单位经常会遇到这样或那样棘手的问题,针对这类问题,通过查阅MAP GIS参考手册并总结计算机制图工作经验,得出了以下利用MAP GIS绘制地质图件的几点体会,以供同行参考。

4.1 扫描数字化的图件,可以直接用于MAPGIS 矢量化

我们扫描图字化的图件,有黑白二值、灰度和彩色(RGB模式)三种格式,MAP GIS正好支持这三种格式的TIF光栅文件(∗.TIF),可以在PHOTOSHOP中打开此光栅文件,另存为TIF文件即可。

4.2 编辑

作为地质图编辑者来说,不仅应有相关的专业技术能力,而且还要有一定的野外工作经验,美术特长和认真负责的态度,按照国家标准、行业规范进行编辑处理。在图形输入之前,编辑者必须对原图进行全面阅读,了解图面内容,查看平面图、图切剖面、图例、文字、地质事件、模式图等是否合理和吻合。对地形图编辑时,必须增加补充现势性资料,如三角点、公路、铁路、河流、湖泊、水库、居民地及注记等。然后,对图件的各项内容先进行错误消除,按地学图制作要求,设计版面,按规范设置字体、字号、图面整饰、设色方案等,这些都与编辑者密切相关。

4.3 校对

校对是一项反复的系统工程,又是出版物的一个重要环节,一般需经过多次校对,才可能消除存在的错误,保证其质量。地质图虽然在MAP GIS系统下经过编辑和处理,往往还不能达到理想效果。那么,必须通过彩色喷墨绘图仪输出彩色样图(或素图),进行一校、二校及质量检查。在检查过程中发现的缺陷,应及时处理,使图件规范化、标准化,弥补编图者之不足,达到最佳效果。

值得注意的是:从彩色喷墨绘图仪输出的颜色和色标存在着一定的差异(水性颜色与油性油墨之间的差别),胶版纸和铜版纸纸质纤维、亮度的差别,只要按地质图用色标准确定色号,印刷成品的颜色和色标颜色基本是一致的。

5 结束语

在扫描数字化的基础上,对原有地质资料进行矢量化。MAP GIS作为一套优秀的地理信息系统软件,应用在很多行业中。我们可以通过MAP GIS的“输入编辑”模块,在地形图或其他扫描后的栅格图件上采集数据,矢量化,形成完整的点、线、面文件,结果或者出图打印,或者进行各种应用分析,这是我们的发展趋势。

参考文献

[1]秦爽,李进化.普查地图编制.北京:测绘出版社.1982.

[2]秦爽,李进化.计算机地图制图.北京:测绘出版社.1991.

[3]第四届全国地质档案资料学术研讨会文集.北京:海洋出版社.2004.

[4]杨公之主编.档案信息化建设实务.北京:中国档案出版社.2003.

[5]董国臣,郝国杰,陈达,等.GIS在1:5万榆关镇幅区域地质调查中的应用[J].中国区域地质,1998,17(4).

热点内容
c交互脚本 发布:2025-05-11 06:19:57 浏览:529
赤壁为什么连接不上服务器 发布:2025-05-11 06:14:49 浏览:772
linuxmysql源码包 发布:2025-05-11 06:07:39 浏览:621
密码提示默认是什么意思 发布:2025-05-11 06:06:52 浏览:635
python语言编程入门 发布:2025-05-11 06:06:49 浏览:800
安卓855手机哪个性能最好 发布:2025-05-11 06:01:49 浏览:144
xrv哪些配置带天窗 发布:2025-05-11 05:53:10 浏览:508
简述ftp服务器的功能 发布:2025-05-11 05:44:27 浏览:848
安卓手机摄像头连接云存储 发布:2025-05-11 05:10:52 浏览:35
瑞虎三都有哪些配置 发布:2025-05-11 05:05:08 浏览:951