背包问题贪心算法代码
A. 求完全背包问题的代码(C语言或C++版)或算法
背包问题小结- []2006-07-28
做到背包问题觉得很有意思,写写看看。
完全背包问题可以用贪心算法。
代码如下:
program bag1;
const maxn=10;
var
goods:array[1..maxn,1..3] of integer;
s:array[1..maxn] of real;
i,j:integer;
m,n:integer;
y:integer;
x:real;
function max:integer;
var m:real;
i,j:integer;
begin
m:=0;
for i:=1 to n do
if (goods[i,3]=0) and (m max:=j;
end;
procere choose;
var i,j:integer;
begin
while y begin
if y begin
i:=max;
if m>=y+goods[i,1] then begin goods[i,3]:=1;x:=x+goods[i,2];y:=y+goods[i,1];end else
begin
x:=x+(m-y)*s[i];
y:=m;
end;
end;
end;
end;
begin
fillchar(goods,sizeof(goods),0);
assign(input,'b.txt');
reset(input);
readln(m,n);
for j:=1 to n do
read(goods[j,1]);
readln;
for j:=1 to n do
read(goods[j,2]);
for j:=1 to n do
s[j]:=goods[j,2]/goods[j,1];
close(input);
choose;
writeln(x:5:2);
end.
编得不是很好 ^-^ 献丑了。
我来说说0/1背包问题。
状态:当前物品n
算符:j=0(当前物品不放入背包) 或 j=1(当前物品放入背包)
这就很好说了,还是把yes函数一改,问题OK了。
代码如下:
program bag2;
const maxn=10;
var i:integer;
goods:array[1..maxn,1..3] of integer;{原始数据}
s:array[1..maxn] of integer;{当前的状态}
r:array[1..maxn] of integer;{当前的总质量}
m:integer;{背包容量}
max:integer;{物品个数}
procere try(n:integer);
var j:integer;
{function yes:boolean;
var k:integer;
t:integer;
mn:integer;
begin
mn:=0;
t:=goods[n,3];
goods[n,3]:=j;
for k:=1 to n do
if goods[k,3]=1 then inc(mn,goods[k,1]);
goods[n,3]:=t;
if mn>m then yes:=false else yes:=true;
end;}
begin
if n=max+1 then begin if x for i:=1 to max do s[i]:=goods[i,3]; {保存最优解}end
end else
begin
if r[n-1]>m then exit;{已超过背包总容量}
for j:=1 downto 0 do
begin
if j=1 then r[n]:=r[n-1]+goods[n,1];
if j=0 then r[n]:=r[n]-goods[n,1];
if {yes}r[n]<=m then begin goods[n,3]:=j;try(n+1);goods[n,3]:=0;end
end;
end;
end;
begin
assign(input,'b.txt');
reset(input);
readln(m,max);
for i:=1 to max do
read(goods[i,1]);
readln;
for i:=1 to max do
read(goods[i,2]);
close(input);
try(1);
for i:=1 to 7 do
write(s[i]:3);
writeln;
writeln(x);
end.
用yes 函数要从头到当前求已装入背包物品的总质量,时间效率不高。所以我们引入r[n]数组来记录当前背包总质量(很好用!)注意用r[n-1]>m来做剪枝,以再次提高时间效率。
DC跟我说可以用二进制解此类问题。我觉得很有创意,也说说。比如8个物品,每个物品有0/1两种状态所以我们从(00000000)(二进制 )到(11111111)(二进制)循环即可。然后在分离十进制数对应起来即可。但在实际的操作中发现效率比回溯还低,我想有两方面的原因:1、显而易见,不可能做剪枝。2、每一次结果都要从1到8求和十效率降低。不过这确实是一种很新颖的算法。
B. 背包问题——贪心算法
•贪心算法的特点是每个阶段所作的选择都是局部最优的,它期望通过所作的局部最优选择产生出一个全局最优解。
贪心与动态规划: 与动态规划不同的是,贪心是 鼠目寸光 ;动态规划是 统揽全局 。
–动态规划:每个阶段产生的都是全局最优解
•第i阶段的“全局”: 问题空间为(a1, … , ai)
•第i阶段的“全局最优解”:问题空间为 (a1, … , ai)时的最优解
–贪心:每个阶段产生的都是局部最优解
•第i阶段的“局部”:问题空间为按照贪心策略中的优先级排好序的第i个输入ai
•第i阶段的“局部最优解”: ai
•贪心选择性质:所求问题的全局最优解可以通过一系列局部最优的选择(即贪心选择)来达到。
–这是贪心算法与动态规划算法的主要区别。
•最优子结构性质:当原问题的最优解包含子问题的最优解时,称此问题具有最优子结构性质。
最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征
C. 0-1背包问题的多种解法代码(动态规划、贪心法、回溯法、分支限界法)
一.动态规划求解0-1背包问题
/************************************************************************/
/* 0-1背包问题:
/* 给定n种物品和一个背包
/* 物品i的重量为wi,其价值为vi
/* 背包的容量为c
/* 应如何选择装入背包的物品,使得装入背包中的物品
/* 的总价值最大?
/* 注:在选择装入背包的物品时,对物品i只有两种选择,
/* 即装入或不装入背包。不能将物品i装入多次,也
/* 不能只装入部分的物品i。
/*
/* 1. 0-1背包问题的形式化描述:
/* 给定c>0, wi>0, vi>0, 0<=i<=n,要求找到一个n元的
/* 0-1向量(x1, x2, ..., xn), 使得:
/* max sum_{i=1 to n} (vi*xi),且满足如下约束:
/* (1) sum_{i=1 to n} (wi*xi) <= c
/* (2) xi∈{0, 1}, 1<=i<=n
/*
/* 2. 0-1背包问题的求解
/* 0-1背包问题具有最优子结构性质和子问题重叠性质,适于
/* 采用动态规划方法求解
/*
/* 2.1 最优子结构性质
/* 设(y1,y2,...,yn)是给定0-1背包问题的一个最优解,则必有
/* 结论,(y2,y3,...,yn)是如下子问题的一个最优解:
/* max sum_{i=2 to n} (vi*xi)
/* (1) sum_{i=2 to n} (wi*xi) <= c - w1*y1
/* (2) xi∈{0, 1}, 2<=i<=n
/* 因为如若不然,则该子问题存在一个最优解(z2,z3,...,zn),
/* 而(y2,y3,...,yn)不是其最优解。那么有:
/* sum_{i=2 to n} (vi*zi) > sum_{i=2 to n} (vi*yi)
/* 且,w1*y1 + sum_{i=2 to n} (wi*zi) <= c
/* 进一步有:
/* v1*y1 + sum_{i=2 to n} (vi*zi) > sum_{i=1 to n} (vi*yi)
/* w1*y1 + sum_{i=2 to n} (wi*zi) <= c
/* 这说明:(y1,z2,z3,...zn)是所给0-1背包问题的更优解,那么
/* 说明(y1,y2,...,yn)不是问题的最优解,与前提矛盾,所以最优
/* 子结构性质成立。
/*
/* 2.2 子问题重叠性质
/* 设所给0-1背包问题的子问题 P(i,j)为:
/* max sum_{k=i to n} (vk*xk)
/* (1) sum_{k=i to n} (wk*xk) <= j
/* (2) xk∈{0, 1}, i<=k<=n
/* 问题P(i,j)是背包容量为j、可选物品为i,i+1,...,n时的子问题
/* 设m(i,j)是子问题P(i,j)的最优值,即最大总价值。则根据最优
/* 子结构性质,可以建立m(i,j)的递归式:
/* a. 递归初始 m(n,j)
/* //背包容量为j、可选物品只有n,若背包容量j大于物品n的
/* //重量,则直接装入;否则无法装入。
/* m(n,j) = vn, j>=wn
/* m(n,j) = 0, 0<=j<wn
/* b. 递归式 m(i,j)
/* //背包容量为j、可选物品为i,i+1,...,n
/* //如果背包容量j<wi,则根本装不进物品i,所以有:
/* m(i,j) = m(i+1,j), 0<=j<wi
/* //如果j>=wi,则在不装物品i和装入物品i之间做出选择
/* 不装物品i的最优值:m(i+1,j)
/* 装入物品i的最优值:m(i+1, j-wi) + vi
/* 所以:
/* m(i,j) = max {m(i+1,j), m(i+1, j-wi) + vi}, j>=wi
/*
/************************************************************************/
#define max(a,b) (((a) > (b)) ? (a) : (b))
#define min(a,b) (((a) < (b)) ? (a) : (b))
template <typename Type>
void Knapsack(Type* v, int *w, int c, int n, Type **m)
{
//递归初始条件
int jMax = min(w[n] - 1, c);
for (int j=0; j<=jMax; j++) {
m[n][j] = 0;
}
for (j=w[n]; j<=c; j++) {
m[n][j] = v[n];
}
//i从2到n-1,分别对j>=wi和0<=j<wi即使m(i,j)
for (int i=n-1; i>1; i--) {
jMax = min(w[i] - 1, c);
for (int j=0; j<=jMax; j++) {
m[i][j] = m[i+1][j];
}
for (j=w[i]; j<=c; j++) {
m[i][j] = max(m[i+1][j], m[i+1][j-w[i]]+v[i]);
}
}
m[1][c] = m[2][c];
if (c >= w[1]) {
m[1][c] = max(m[1][c], m[2][c-w[1]]+v[1]);
}
}
template <typename Type>
void TraceBack(Type **m, int *w, int c, int n, int* x)
{
for (int i=1; i<n; i++) {
if(m[i][c] == m[i+1][c]) x[i] = 0;
else {
x[i] = 1;
c -= w[i];
}
}
x[n] = (m[n][c])? 1:0;
}
int main(int argc, char* argv[])
{
int n = 5;
int w[6] = {-1, 2, 2, 6, 5, 4};
int v[6] = {-1, 6, 3, 5, 4, 6};
int c = 10;
int **ppm = new int*[n+1];
for (int i=0; i<n+1; i++) {
ppm[i] = new int[c+1];
}
int x[6];
Knapsack<int>(v, w, c, n, ppm);
TraceBack<int>(ppm, w, c, n, x);
return 0;
}
二.贪心算法求解0-1背包问题
1.贪心法的基本思路:
——从问题的某一个初始解出发逐步逼近给定的目标,以尽可能快的地求得更好的解。当达到某算法中的某一步不能再继续前进时,算法停止。
该算法存在问题:
1).不能保证求得的最后解是最佳的;
2).不能用来求最大或最小解问题;
3).只能求满足某些约束条件的可行解的范围。
实现该算法的过程:
从问题的某一初始解出发;
while 能朝给定总目标前进一步 do
求出可行解的一个解元素;
由所有解元素组合成问题的一个可行解;
2.例题分析
1).[背包问题]有一个背包,背包容量是M=150。有7个物品,物品可以分割成任意大小。
要求尽可能让装入背包中的物品总价值最大,但不能超过总容量。
物品 A B C D E F G
重量 35 30 60 50 40 10 25
价值 10 40 30 50 35 40 30
分析:
目标函数: ∑pi最大
约束条件是装入的物品总重量不超过背包容量:∑wi<=M( M=150)
(1)根据贪心的策略,每次挑选价值最大的物品装入背包,得到的结果是否最优?
(2)每次挑选所占空间最小的物品装入是否能得到最优解?
(3)每次选取单位容量价值最大的物品,成为解本题的策略。
<程序代码:>(环境:c++)
#include<iostream.h>
#define max 100 //最多物品数
void sort (int n,float a[max],float b[max]) //按价值密度排序
{
int j,h,k;
float t1,t2,t3,c[max];
for(k=1;k<=n;k++)
c[k]=a[k]/b[k];
for(h=1;h<n;h++)
for(j=1;j<=n-h;j++)
if(c[j]<c[j+1])
{t1=a[j];a[j]=a[j+1];a[j+1]=t1;
t2=b[j];b[j]=b[j+1];b[j+1]=t2;
t3=c[j];c[j]=c[j+1];c[j+1]=t3;
}
}
void knapsack(int n,float limitw,float v[max],float w[max],int x[max])
{float c1; //c1为背包剩余可装载重量
int i;
sort(n,v,w); //物品按价值密度排序
c1=limitw;
for(i=1;i<=n;i++)
{
if(w[i]>c1)break;
x[i]=1; //x[i]为1时,物品i在解中
c1=c1-w[i];
}
}
void main()
{int n,i,x[max];
float v[max],w[max],totalv=0,totalw=0,limitw;
cout<<"请输入n和limitw:";
cin>>n >>limitw;
for(i=1;i<=n;i++)
x[i]=0; //物品选择情况表初始化为0
cout<<"请依次输入物品的价值:"<<endl;
for(i=1;i<=n;i++)
cin>>v[i];
cout<<endl;
cout<<"请依次输入物品的重量:"<<endl;
for(i=1;i<=n;i++)
cin>>w[i];
cout<<endl;
knapsack (n,limitw,v,w,x);
cout<<"the selection is:";
for(i=1;i<=n;i++)
{
cout<<x[i];
if(x[i]==1)
totalw=totalw+w[i];
}
cout<<endl;
cout<<"背包的总重量为:"<<totalw<<endl; //背包所装载总重量
cout<<"背包的总价值为:"<<totalv<<endl; //背包的总价值
}
三.回溯算法求解0-1背包问题
1.0-l背包问题是子集选取问题。
一般情况下,0-1背包问题是NP难题。0-1背包
问题的解空间可用子集树表示。解0-1背包问题的回溯法与装载问题的回溯法十分类
似。在搜索解空间树时,只要其左儿子结点是一个可行结点,搜索就进入其左子树。当
右子树有可能包含最优解时才进入右子树搜索。否则将右子树剪去。设r是当前剩余
物品价值总和;cp是当前价值;bestp是当前最优价值。当cp+r≤bestp时,可剪去右
子树。计算右子树中解的上界的更好方法是将剩余物品依其单位重量价值排序,然后
依次装入物品,直至装不下时,再装入该物品的一部分而装满背包。由此得到的价值是
右子树中解的上界。
2.解决办法思路:
为了便于计算上界,可先将物品依其单位重量价值从大到小排序,此后只要顺序考
察各物品即可。在实现时,由bound计算当前结点处的上界。在搜索解空间树时,只要其左儿子节点是一个可行结点,搜索就进入左子树,在右子树中有可能包含最优解是才进入右子树搜索。否则将右子树剪去。
回溯法是一个既带有系统性又带有跳跃性的的搜索算法。它在包含问题的所有解的解空间树中,按照深度优先的策略,从根结点出发搜索解空间树。算法搜索至解空间树的任一结点时,总是先判断该结点是否肯定不包含问题的解。如果肯定不包含,则跳过对以该结点为根的子树的系统搜索,逐层向其祖先结点回溯。否则,进入该子树,继续按深度优先的策略进行搜索。回溯法在用来求问题的所有解时,要回溯到根,且根结点的所有子树都已被搜索遍才结束。而回溯法在用来求问题的任一解时,只要搜索到问题的一个解就可以结束。这种以深度优先的方式系统地搜索问题的解的算法称为回溯法,它适用于解一些组合数较大的问题。
2.算法框架:
a.问题的解空间:应用回溯法解问题时,首先应明确定义问题的解空间。问题的解空间应到少包含问题的一个(最优)解。
b.回溯法的基本思想:确定了解空间的组织结构后,回溯法就从开始结点(根结点)出发,以深度优先的方式搜索整个解空间。这个开始结点就成为一个活结点,同时也成为当前的扩展结点。在当前的扩展结点处,搜索向纵深方向移至一个新结点。这个新结点就成为一个新的活结点,并成为当前扩展结点。如果在当前的扩展结点处不能再向纵深方向移动,则当前扩展结点就成为死结点。换句话说,这个结点不再是一个活结点。此时,应往回移动(回溯)至最近的一个活结点处,并使这个活结点成为当前的扩展结点。回溯法即以这种工作方式递归地在解空间中搜索,直至找到所要求的解或解空间中已没有活结点时为止。
3.运用回溯法解题通常包含以下三个步骤:
a.针对所给问题,定义问题的解空间;
b.确定易于搜索的解空间结构;
c.以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索;
#include<iostream>
using namespace std;
class Knap
{
friend int Knapsack(int p[],int w[],int c,int n );
public:
void print()
{
for(int m=1;m<=n;m++)
{
cout<<bestx[m]<<" ";
}
cout<<endl;
};
private:
int Bound(int i);
void Backtrack(int i);
int c;//背包容量
int n; //物品数
int *w;//物品重量数组
int *p;//物品价值数组
int cw;//当前重量
int cp;//当前价值
int bestp;//当前最优值
int *bestx;//当前最优解
int *x;//当前解
};
int Knap::Bound(int i)
{
//计算上界
int cleft=c-cw;//剩余容量
int b=cp;
//以物品单位重量价值递减序装入物品
while(i<=n&&w[i]<=cleft)
{
cleft-=w[i];
b+=p[i];
i++;
}
//装满背包
if(i<=n)
b+=p[i]/w[i]*cleft;
return b;
}
void Knap::Backtrack(int i)
{
if(i>n)
{
if(bestp<cp)
{
for(int j=1;j<=n;j++)
bestx[j]=x[j];
bestp=cp;
}
return;
}
if(cw+w[i]<=c) //搜索左子树
{
x[i]=1;
cw+=w[i];
cp+=p[i];
Backtrack(i+1);
cw-=w[i];
cp-=p[i];
}
if(Bound(i+1)>bestp)//搜索右子树
{
x[i]=0;
Backtrack(i+1);
}
}
class Object
{
friend int Knapsack(int p[],int w[],int c,int n);
public:
int operator<=(Object a)const
{
return (d>=a.d);
}
private:
int ID;
float d;
};
int Knapsack(int p[],int w[],int c,int n)
{
//为Knap::Backtrack初始化
int W=0;
int P=0;
int i=1;
Object *Q=new Object[n];
for(i=1;i<=n;i++)
{
Q[i-1].ID=i;
Q[i-1].d=1.0*p[i]/w[i];
P+=p[i];
W+=w[i];
}
if(W<=c)
return P;//装入所有物品
//依物品单位重量排序
float f;
for( i=0;i<n;i++)
for(int j=i;j<n;j++)
{
if(Q[i].d<Q[j].d)
{
f=Q[i].d;
Q[i].d=Q[j].d;
Q[j].d=f;
}
}
Knap K;
K.p = new int[n+1];
K.w = new int[n+1];
K.x = new int[n+1];
K.bestx = new int[n+1];
K.x[0]=0;
K.bestx[0]=0;
for( i=1;i<=n;i++)
{
K.p[i]=p[Q[i-1].ID];
K.w[i]=w[Q[i-1].ID];
}
K.cp=0;
K.cw=0;
K.c=c;
K.n=n;
K.bestp=0;
//回溯搜索
K.Backtrack(1);
K.print();
delete [] Q;
delete [] K.w;
delete [] K.p;
return K.bestp;
}
void main()
{
int *p;
int *w;
int c=0;
int n=0;
int i=0;
char k;
cout<<"0-1背包问题——回溯法 "<<endl;
cout<<" by zbqplayer "<<endl;
while(k)
{
cout<<"请输入背包容量(c):"<<endl;
cin>>c;
cout<<"请输入物品的个数(n):"<<endl;
cin>>n;
p=new int[n+1];
w=new int[n+1];
p[0]=0;
w[0]=0;
cout<<"请输入物品的价值(p):"<<endl;
for(i=1;i<=n;i++)
cin>>p[i];
cout<<"请输入物品的重量(w):"<<endl;
for(i=1;i<=n;i++)
cin>>w[i];
cout<<"最优解为(bestx):"<<endl;
cout<<"最优值为(bestp):"<<endl;
cout<<Knapsack(p,w,c,n)<<endl;
cout<<"[s] 重新开始"<<endl;
cout<<"[q] 退出"<<endl;
cin>>k;
}
四.分支限界法求解0-1背包问题
1.问题描述:已知有N个物品和一个可以容纳M重量的背包,每种物品I的重量为WEIGHT,一个只能全放入或者不放入,求解如何放入物品,可以使背包里的物品的总效益最大。
2.设计思想与分析:对物品的选取与否构成一棵解树,左子树表示不装入,右表示装入,通过检索问题的解树得出最优解,并用结点上界杀死不符合要求的结点。
#include <iostream.h>
struct good
{
int weight;
int benefit;
int flag;//是否可以装入标记
};
int number=0;//物品数量
int upbound=0;
int curp=0, curw=0;//当前效益值与重量
int maxweight=0;
good *bag=NULL;
void Init_good()
{
bag=new good [number];
for(int i=0; i<number; i++)
{
cout<<"请输入第件"<<i+1<<"物品的重量:";
cin>>bag[i].weight;
cout<<"请输入第件"<<i+1<<"物品的效益:";
cin>>bag[i].benefit;
bag[i].flag=0;//初始标志为不装入背包
cout<<endl;
}
}
int getbound(int num, int *bound_u)//返回本结点的c限界和u限界
{
for(int w=curw, p=curp; num<number && (w+bag[num].weight)<=maxweight; num++)
{
w=w+bag[num].weight;
p=w+bag[num].benefit;
}
*bound_u=p+bag[num].benefit;
return ( p+bag[num].benefit*((maxweight-w)/bag[num].weight) );
}
void LCbag()
{
int bound_u=0, bound_c=0;//当前结点的c限界和u限界
for(int i=0; i<number; i++)//逐层遍历解树决定是否装入各个物品
{
if( ( bound_c=getbound(i+1, &bound_u) )>upbound )//遍历左子树
upbound=bound_u;//更改已有u限界,不更改标志
if( getbound(i, &bound_u)>bound_c )//遍历右子树
//若装入,判断右子树的c限界是否大于左子树根的c限界,是则装入
{
upbound=bound_u;//更改已有u限界
curp=curp+bag[i].benefit;
curw=curw+bag[i].weight;//从已有重量和效益加上新物品
bag[i].flag=1;//标记为装入
}
}
}
void Display()
{
cout<<"可以放入背包的物品的编号为:";
for(int i=0; i<number; i++)
if(bag[i].flag>0)
cout<<i+1<<" ";
cout<<endl;
delete []bag;
}
D. 用贪心算法解决背包问题
用贪心算法解决背包问题,首先要明白,结果不一定是全局最优的。对于贪心法而言,首先步骤是找到最优度量标准,我这里的算法采用的最优度量标准是: 收益p/重量w 的值最大者优先放入背包中,所以有算法如下:void GreedyKnapsack(float * x){ //前置条件:w[i]已按p[i]/w[i]的非增次序排列 float u=m; //u为背包剩余载重量,初始时为m for(int i=0;i<n;i++) x[i]=0; //对解向量x初始化 for(i=0;i<n;i++){ //按最优度量标准选择的分量 if(w[i]>u) break; x[i]=1.0; u=u-w[i]; } if(i<n) x[i]=u/w[i];}
E. 贪心算法解决特殊0-1背包问题
void 0_1_Knapsack(float w[], int n, float c,int x[]) //w[]为每个物品的重量,c为背包容量
{
int i;
for(i=1;i<=n;i++) x[i]=0;
for(i=1;i<=n;i++)
{
if(w[i]>c) break;
x[i]=1;
c-=w[i];
}
}
F. 贪心算法 部分背包问题
这道题是dp的思想啦,动态规划
(1)背包问题最优值的结构
动态规划的逆向思维法的第一步是刻画一个最优值的结构,如果我们能分析出一个问题的最优值包含其子问题的最优值,问题的这种性质称为最优子结构。一个问题的最优子结构性质是该问题可以使用动态规划的显着特征。
对一个负重能力为m的背包,如果我们选择装入一个第 i 种物品,那么原背包问题就转化为负重能力为 m-w[i] 的子背包问题。原背包问题的最优值包含这个子背包问题的最优值。若我们用背包的负重能力来划分状态,令状态变量s[k]表示负重能力为k的背包,那么s[m]的值只取决于s[k](k≤m)的值。因此背包问题具有最优子结构。
(2)递归地定义最优值
动态规划的逆向思维法的第二步是根据各个子问题的最优值来递归地定义原问题的最优值。对背包问题而言,有状态转移方程:
/max{s[k-w[i]]+v[i]}(其中1≤i≤n,且k-w[i]≥0)
s[k]= 若k>0且存在1≤i≤n使k-w[i]≥0,
\ 0 否则。
有了计算各个子问题的最优值的递归式,我们就可以直接编写对应的程序。下述的函数knapsack是输入背包的负重能力k,返回对应的子背包问题的最优值s[k]:
G. C语言 贪心算法求背包问题
是你的冒泡排序出了问题~
你吧 原来的1-2-3号按照东西的价值重新排列现在的1-2-3对应原来的2-1-3了
所以 你输出的时候是按 1-2-3输出的话 就等于第一个是原来的X2 第二个是X1第三个是X3
而且你的冒泡排序用错了 只比较了 P[0]/K[0]和P[1]/K[1] P[1]/K[1]和P[2]/K[2]
周一我去学校帮你重新改改 我家的机器没有C++
周一晚上我会上传答案~我最近正好也要做算法的作业~
#include <stdio.h>
#include <math.h>
#define N 50
float find(float p[N],float w[N],float x[N] ,float M,int n) /*先放单位价值量大的物体,再考虑小的物体*/
{
int i;
float maxprice;
for (i = 0; i < n; i++)
x[i] = 0;
i = 0;
maxprice=0;
while (i < n && w[i] < M)
{
M=M-w[i];
x[i] =w[i]; /* 表示放入数量 */
maxprice=maxprice+p[i];
x[n-1]=M;
i++;
}
if (i < n &&M> 0)
{
maxprice=maxprice+p[i]*x[i]/w[i];
i++;
}
return maxprice;
}
int main()
{
int n,flag=1;
float temp,M,w[N],p[N],x[N];
int a[N],b[N];
int k,j,l=0;
printf(
H. C语言贪心算法 背包问题
if(k!=i)
t=T[i];
T[i]=T[k];
T[k]=t;
交换操作的三步要用{}括起来,不然只有t=T[i];是if的执行语句
I. Pascal贪心算法,求解答!
这道题用贪心不大好吧
记得老师以前说过
这种题用DP
这道题是最简单的01背包
我给你发个资料
那个,发不了啊,上传失败
你给我qq吧
P01: 01背包问题
题目
有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
基本思路
这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。
用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}。
这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”;如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f [i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。
注意f[i][v]有意义当且仅当存在一个前i件物品的子集,其费用总和为v。所以按照这个方程递推完毕后,最终的答案并不一定是f[N] [V],而是f[N][0..V]的最大值。如果将状态的定义中的“恰”字去掉,在转移方程中就要再加入一项f[i][v-1],这样就可以保证f[N] [V]就是最后的答案。至于为什么这样就可以,由你自己来体会了。
优化空间复杂度
以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到O(V)。
先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。那么,如果只用一个数组f [0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i -1][v-c[i]]的值。伪代码如下:
for i=1..N
for v=V..0
f[v]=max{f[v],f[v-c[i]]+w[i]};
其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相当于我们的转移方程f[i][v]=max{f[i-1][v],f[i- 1][v-c[i]]},因为现在的f[v-c[i]]就相当于原来的f[i-1][v-c[i]]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[i][v]由f[i][v-c[i]]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。
总结
01背包问题是最基本的背包问题,它包含了背包问题中设计状态、方程的最基本思想,另外,别的类型的背包问题往往也可以转换成01背包问题求解。故一定要仔细体会上面基本思路的得出方法,状态转移方程的意义,以及最后怎样优化的空间复杂度。
P02: 完全背包问题
题目
有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
基本思路
这个问题非常类似于01背包问题,所不同的是每种物品有无限件。也就是从每种物品的角度考虑,与它相关的策略已并非取或不取两种,而是有取0件、取1件、取2件……等很多种。如果仍然按照解01背包时的思路,令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值。仍然可以按照每种物品不同的策略写出状态转移方程,像这样:f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k*c[i]<=v}。这跟01背包问题一样有O(N*V)个状态需要求解,但求解每个状态的时间则不是常数了,求解状态f[i][v]的时间是O(v/c[i]),总的复杂度是超过O(VN)的。
将01背包问题的基本思路加以改进,得到了这样一个清晰的方法。这说明01背包问题的方程的确是很重要,可以推及其它类型的背包问题。但我们还是试图改进这个复杂度。
一个简单有效的优化
完全背包问题有一个很简单有效的优化,是这样的:若两件物品i、j满足c[i]<=c[j]且w[i]>=w[j],则将物品j去掉,不用考虑。这个优化的正确性显然:任何情况下都可将价值小费用高得j换成物美价廉的i,得到至少不会更差的方案。对于随机生成的数据,这个方法往往会大大减少物品的件数,从而加快速度。然而这个并不能改善最坏情况的复杂度,因为有可能特别设计的数据可以一件物品也去不掉。
转化为01背包问题求解
既然01背包问题是最基本的背包问题,那么我们可以考虑把完全背包问题转化为01背包问题来解。最简单的想法是,考虑到第i种物品最多选V/c [i]件,于是可以把第i种物品转化为V/c[i]件费用及价值均不变的物品,然后求解这个01背包问题。这样完全没有改进基本思路的时间复杂度,但这毕竟给了我们将完全背包问题转化为01背包问题的思路:将一种物品拆成多件物品。
更高效的转化方法是:把第i种物品拆成费用为c[i]*2^k、价值为w[i]*2^k的若干件物品,其中k满足c[i]*2^k<V。这是二进制的思想,因为不管最优策略选几件第i种物品,总可以表示成若干个2^k件物品的和。这样把每种物品拆成O(log(V/c[i]))件物品,是一个很大的改进。 但我们有更优的O(VN)的算法。 * O(VN)的算法 这个算法使用一维数组,先看伪代码: <pre class"example"> for i=1..N for v=0..Vf[v]=max{f[v],f[v-c[i]]+w[i]};
你会发现,这个伪代码与P01的伪代码只有v的循环次序不同而已。为什么这样一改就可行呢?首先想想为什么P01中要按照v=V..0的逆序来循环。这是因为要保证第i次循环中的状态f[i][v]是由状态f[i-1][v-c[i]]递推而来。换句话说,这正是为了保证每件物品只选一次,保证在考虑“选入第i件物品”这件策略时,依据的是一个绝无已经选入第i件物品的子结果f[i-1][v-c[i]]。而现在完全背包的特点恰是每种物品可选无限件,所以在考虑“加选一件第i种物品”这种策略时,却正需要一个可能已选入第i种物品的子结果f[i][v-c[i]],所以就可以并且必须采用v= 0..V的顺序循环。这就是这个简单的程序为何成立的道理。
这个算法也可以以另外的思路得出。例如,基本思路中的状态转移方程可以等价地变形成这种形式:f[i][v]=max{f[i-1][v],f[i][v-c[i]]+w[i]},将这个方程用一维数组实现,便得到了上面的伪代码。
总结
完全背包问题也是一个相当基础的背包问题,它有两个状态转移方程,分别在“基本思路”以及“O(VN)的算法“的小节中给出。希望你能够对这两个状态转移方程都仔细地体会,不仅记住,也要弄明白它们是怎么得出来的,最好能够自己想一种得到这些方程的方法。事实上,对每一道动态规划题目都思考其方程的意义以及如何得来,是加深对动态规划的理解、提高动态规划功力的好方法。
P03: 多重背包问题
题目
有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
基本算法
这题目和完全背包问题很类似。基本的方程只需将完全背包问题的方程略微一改即可,因为对于第i种物品有n[i]+1种策略:取0件,取1件……取n[i]件。令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值,则:f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k<=n[i]}。复杂度是O(V*∑n[i])。
转化为01背包问题
另一种好想好写的基本方法是转化为01背包求解:把第i种物品换成n[i]件01背包中的物品,则得到了物品数为∑n[i]的01背包问题,直接求解,复杂度仍然是O(V*∑n[i])。
但是我们期望将它转化为01背包问题之后能够像完全背包一样降低复杂度。仍然考虑二进制的思想,我们考虑把第i种物品换成若干件物品,使得原问题中第i种物品可取的每种策略——取0..n[i]件——均能等价于取若干件代换以后的物品。另外,取超过n[i]件的策略必不能出现。
方法是:将第i种物品分成若干件物品,其中每件物品有一个系数,这件物品的费用和价值均是原来的费用和价值乘以这个系数。使这些系数分别为 1,2,4,...,2^(k-1),n[i]-2^k+1,且k是满足n[i]-2^k+1>0的最大整数。例如,如果n[i]为13,就将这种物品分成系数分别为1,2,4,6的四件物品。
分成的这几件物品的系数和为n[i],表明不可能取多于n[i]件的第i种物品。另外这种方法也能保证对于0..n[i]间的每一个整数,均可以用若干个系数的和表示,这个证明可以分0..2^k-1和2^k..n[i]两段来分别讨论得出,并不难,希望你自己思考尝试一下。
这样就将第i种物品分成了O(log n[i])种物品,将原问题转化为了复杂度为O(V*∑logn[i])的01背包问题,是很大的改进。
O(VN)的算法
多重背包问题同样有O(VN)的算法。这个算法基于基本算法的状态转移方程,但应用单调队列的方法使每个状态的值可以以均摊O(1)的时间求解。由于用单调队列优化的DP已超出了NOIP的范围,故本文不再展开讲解。我最初了解到这个方法是在楼天成的“男人八题”幻灯片上。
小结
这里我们看到了将一个算法的复杂度由O(V*∑n[i])改进到O(V*∑log n[i])的过程,还知道了存在应用超出NOIP范围的知识的O(VN)算法。希望你特别注意“拆分物品”的思想和方法,自己证明一下它的正确性,并用尽量简洁的程序来实现。
P04: 混合三种背包问题
问题
如果将P01、P02、P03混合起来。也就是说,有的物品只可以取一次(01背包),有的物品可以取无限次(完全背包),有的物品可以取的次数有一个上限(多重背包)。应该怎么求解呢?
01背包与完全背包的混合
考虑到在P01和P02中最后给出的伪代码只有一处不同,故如果只有两类物品:一类物品只能取一次,另一类物品可以取无限次,那么只需在对每个物品应用转移方程时,根据物品的类别选用顺序或逆序的循环即可,复杂度是O(VN)。伪代码如下:
for i=1..N
if 第i件物品是01背包
for v=V..0
f[v]=max{f[v],f[v-c[i]]+w[i]};
else if 第i件物品是完全背包
for v=0..V
f[v]=max{f[v],f[v-c[i]]+w[i]};
再加上多重背包
如果再加上有的物品最多可以取有限次,那么原则上也可以给出O(VN)的解法:遇到多重背包类型的物品用单调队列解即可。但如果不考虑超过NOIP范围的算法的话,用P03中将每个这类物品分成O(log n[i])个01背包的物品的方法也已经很优了。
小结
有人说,困难的题目都是由简单的题目叠加而来的。这句话是否公理暂且存之不论,但它在本讲中已经得到了充分的体现。本来01背包、完全背包、多重背包都不是什么难题,但将它们简单地组合起来以后就得到了这样一道一定能吓倒不少人的题目。但只要基础扎实,领会三种基本背包问题的思想,就可以做到把困难的题目拆分成简单的题目来解决。
P05: 二维费用的背包问题
问题
二维费用的背包问题是指:对于每件物品,具有两种不同的费用;选择这件物品必须同时付出这两种代价;对于每种代价都有一个可付出的最大值(背包容量)。问怎样选择物品可以得到最大的价值。设这两种代价分别为代价1和代价2,第i件物品所需的两种代价分别为a[i]和b[i]。两种代价可付出的最大值(两种背包容量)分别为V和U。物品的价值为w[i]。
算法
费用加了一维,只需状态也加一维即可。设f[i][v][u]表示前i件物品付出两种代价分别为v和u时可获得的最大价值。状态转移方程就是:f[i][v][u]=max{f[i-1][v][u],f[i-1][v-a[i]][u-b[i]]+w[i]}。如前述方法,可以只使用二维的数组:当每件物品只可以取一次时变量v和u采用顺序的循环,当物品有如完全背包问题时采用逆序的循环。当物品有如多重背包问题时拆分物品。
物品总个数的限制
有时,“二维费用”的条件是以这样一种隐含的方式给出的:最多只能取M件物品。这事实上相当于每件物品多了一种“件数”的费用,每个物品的件数费用均为1,可以付出的最大件数费用为M。换句话说,设f[v][m]表示付出费用v、最多选m件时可得到的最大价值,则根据物品的类型(01、完全、多重)用不同的方法循环更新,最后在f[0..V][0..M]范围内寻找答案。
另外,如果要求“恰取M件物品”,则在f[0..V][M]范围内寻找答案。
小结
事实上,当发现由熟悉的动态规划题目变形得来的题目时,在原来的状态中加一纬以满足新的限制是一种比较通用的方法。希望你能从本讲中初步体会到这种方法。
P06: 分组的背包问题
问题
有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。这些物品被划分为若干组,每组中的物品互相冲突,最多选一件。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
算法
这个问题变成了每组物品有若干种策略:是选择本组的某一件,还是一件都不选。也就是说设f[k][v]表示前k组物品花费费用v能取得的最大权值,则有f[k][v]=max{f[k-1][v],f[k-1][v-c[i]]+w[i]|物品i属于第k组}。
使用一维数组的伪代码如下:
for 所有的组k
for 所有的i属于组k
for v=V..0
f[v]=max{f[v],f[v-c[i]]+w[i]}
另外,显然可以对每组中的物品应用P02中“一个简单有效的优化”。
小结
分组的背包问题将彼此互斥的若干物品称为一个组,这建立了一个很好的模型。不少背包问题的变形都可以转化为分组的背包问题(例如P07),由分组的背包问题进一步可定义“泛化物品”的概念,十分有利于解题。
P07: 有依赖的背包问题
简化的问题
这种背包问题的物品间存在某种“依赖”的关系。也就是说,i依赖于j,表示若选物品i,则必须选物品j。为了简化起见,我们先设没有某个物品既依赖于别的物品,又被别的物品所依赖;另外,没有某件物品同时依赖多件物品。
算法
这个问题由NOIP2006金明的预算方案一题扩展而来。遵从该题的提法,将不依赖于别的物品的物品称为“主件”,依赖于某主件的物品称为“附件”。由这个问题的简化条件可知所有的物品由若干主件和依赖于每个主件的一个附件集合组成。
按照背包问题的一般思路,仅考虑一个主件和它的附件集合。可是,可用的策略非常多,包括:一个也不选,仅选择主件,选择主件后再选择一个附件,选择主件后再选择两个附件……无法用状态转移方程来表示如此多的策略。(事实上,设有n个附件,则策略有2^n+1个,为指数级。)
考虑到所有这些策略都是互斥的(也就是说,你只能选择一种策略),所以一个主件和它的附件集合实际上对应于P06中的一个物品组,每个选择了主件又选择了若干个附件的策略对应于这个物品组中的一个物品,其费用和价值都是这个策略中的物品的值的和。但仅仅是这一步转化并不能给出一个好的算法,因为物品组中的物品还是像原问题的策略一样多。
再考虑P06中的一句话: 可以对每组中的物品应用P02中“一个简单有效的优化”。这提示我们,对于一个物品组中的物品,所有费用相同的物品只留一个价值最大的,不影响结果。所以,我们可以对主件i的“附件集合”先进行一次01背包,得到费用依次为0..V-c[i]所有这些值时相应的最大价值f'[0..V-c[i]]。那么这个主件及它的附件集合相当于V-c[i]+1个物品的物品组,其中费用为c[i]+k的物品的价值为f'[k]+w[i]。也就是说原来指数级的策略中有很多策略都是冗余的,通过一次01背包后,将主件i转化为 V-c[i]+1个物品的物品组,就可以直接应用P06的算法解决问题了。
更一般的问题
更一般的问题是:依赖关系以图论中“森林”的形式给出(森林即多叉树的集合),也就是说,主件的附件仍然可以具有自己的附件集合,限制只是每个物品最多只依赖于一个物品(只有一个主件)且不出现循环依赖。
解决这个问题仍然可以用将每个主件及其附件集合转化为物品组的方式。唯一不同的是,由于附件可能还有附件,就不能将每个附件都看作一个一般的01 背包中的物品了。若这个附件也有附件集合,则它必定要被先转化为物品组,然后用分组的背包问题解出主件及其附件集合所对应的附件组中各个费用的附件所对应的价值。
事实上,这是一种树形DP,其特点是每个父节点都需要对它的各个儿子的属性进行一次DP以求得自己的相关属性。这已经触及到了“泛化物品”的思想。看完P08后,你会发现这个“依赖关系树”每一个子树都等价于一件泛化物品,求某节点为根的子树对应的泛化物品相当于求其所有儿子的对应的泛化物品之和。
小结
NOIP2006的那道背包问题我做得很失败,写了上百行的代码,却一分未得。后来我通过思考发现通过引入“物品组”和“依赖”的概念可以加深对这题的理解,还可以解决它的推广问题。用物品组的思想考虑那题中极其特殊的依赖关系:物品不能既作主件又作附件,每个主件最多有两个附件,可以发现一个主件和它的两个附件等价于一个由四个物品组成的物品组,这便揭示了问题的某种本质。
我想说:失败不是什么丢人的事情,从失败中全无收获才是。
P08: 泛化物品
定义
考虑这样一种物品,它并没有固定的费用和价值,而是它的价值随着你分配给它的费用而变化。这就是泛化物品的概念。
更严格的定义之。在背包容量为V的背包问题中,泛化物品是一个定义域为0..V中的整数的函数h,当分配给它的费用为v时,能得到的价值就是h(v)。
这个定义有一点点抽象,另一种理解是一个泛化物品就是一个数组h[0..V],给它费用v,可得到价值h[V]。
一个费用为c价值为w的物品,如果它是01背包中的物品,那么把它看成泛化物品,它就是除了h(c)=w其它函数值都为0的一个函数。如果它是完全背包中的物品,那么它可以看成这样一个函数,仅当v被c整除时有h(v)=v/c*w,其它函数值均为0。如果它是多重背包中重复次数最多为n的物品,那么它对应的泛化物品的函数有h(v)=v/c*w仅当v被c整除且v/c<=n,其它情况函数值均为0。
一个物品组可以看作一个泛化物品h。对于一个0..V中的v,若物品组中不存在费用为v的的物品,则h(v)=0,否则h(v)为所有费用为v的物品的最大价值。P07中每个主件及其附件集合等价于一个物品组,自然也可看作一个泛化物品。
泛化物品的和
如果面对两个泛化物品h和l,要用给定的费用从这两个泛化物品中得到最大的价值,怎么求呢?事实上,对于一个给定的费用v,只需枚举将这个费用如何分配给两个泛化物品就可以了。同样的,对于0..V的每一个整数v,可以求得费用v分配到h和l中的最大价值f(v)。也即f(v)=max{h(k)+l(v-k)|0<=k<=v}。可以看到,f也是一个由泛化物品h和l决定的定义域为0..V的函数,也就是说,f是一个由泛化物品h和 l决定的泛化物品。
由此可以定义泛化物品的和:h、l都是泛化物品,若泛化物品f满足f(v)=max{h(k)+l(v-k)|0<=k<=v},则称f是h与l的和,即f=h+l。这个运算的时间复杂度是O(V^2)。
泛化物品的定义表明:在一个背包问题中,若将两个泛化物品代以它们的和,不影响问题的答案。事实上,对于其中的物品都是泛化物品的背包问题,求它的答案的过程也就是求所有这些泛化物品之和的过程。设此和为s,则答案就是s[0..V]中的最大值。
背包问题的泛化物品
一个背包问题中,可能会给出很多条件,包括每种物品的费用、价值等属性,物品之间的分组、依赖等关系等。但肯定能将问题对应于某个泛化物品。也就是说,给定了所有条件以后,就可以对每个非负整数v求得:若背包容量为v,将物品装入背包可得到的最大价值是多少,这可以认为是定义在非负整数集上的一件泛化物品。这个泛化物品——或者说问题所对应的一个定义域为非负整数的函数——包含了关于问题本身的高度浓缩的信息。一般而言,求得这个泛化物品的一个子域(例如0..V)的值之后,就可以根据这个函数的取值得到背包问题的最终答案。
综上所述,一般而言,求解背包问题,即求解这个问题所对应的一个函数,即该问题的泛化物品。而求解某个泛化物品的一种方法就是将它表示为若干泛化物品的和然后求之。
小结
本讲可以说都是我自己的原创思想。具体来说,是我在学习函数式编程的 Scheme 语言时,用函数编程的眼光审视各类背包问题得出的理论。这一讲真的很抽象,也许在“模型的抽象程度”这一方面已经超出了NOIP的要求,所以暂且看不懂也没关系。相信随着你的OI之路逐渐延伸,有一天你会理解的。
我想说:“思考”是一个OIer最重要的品质。简单的问题,深入思考以后,也能发现更多。
P09: 背包问题问法的变化
以上涉及的各种背包问题都是要求在背包容量(费用)的限制下求可以取到的最大价值,但背包问题还有很多种灵活的问法,在这里值得提一下。但是我认为,只要深入理解了求背包问题最大价值的方法,即使问法变化了,也是不难想出算法的。
例如,求解最多可以放多少件物品或者最多可以装满多少背包的空间。这都可以根据具体问题利用前面的方程求出所有状态的值(f数组)之后得到。
还有,如果要求的是“总价值最小”“总件数最小”,只需简单的将上面的状态转移方程中的max改成min即可。
J. 贪心算法 部分背包问题
[背包问题]有一个背包,背包容量是M=150。有7个物品,物品可以分割成任意大小。
要求尽可能让装入背包中的物品总价值最大,但不能超过总容量。
物品 A B C D E F G
重量 35 30 60 50 40 10 25
价值 10 40 30 50 35 40 30
分析:
目标函数: ∑pi最大
约束条件是装入的物品总重量不超过背包容量:∑wi<=M( M=150)
(1)根据贪心的策略,每次挑选价值最大的物品装入背包,得到的结果是否最优?
(2)每次挑选所占重量最小的物品装入是否能得到最优解?
(3)每次选取单位重量价值最大的物品,成为解本题的策略。 ?
值得注意的是,贪心算法并不是完全不可以使用,贪心策略一旦经过证明成立后,它就是一种高效的算法。
贪心算法还是很常见的算法之一,这是由于它简单易行,构造贪心策略不是很困难。
可惜的是,它需要证明后才能真正运用到题目的算法中。
一般来说,贪心算法的证明围绕着:整个问题的最优解一定由在贪心策略中存在的子问题的最优解得来的。
对于例题中的3种贪心策略,都是无法成立(无法被证明)的,解释如下:
(1)贪心策略:选取价值最大者。反例:
W=30
物品:A B C
重量:28 12 12
价值:30 20 20
根据策略,首先选取物品A,接下来就无法再选取了,可是,选取B、C则更好。
(2)贪心策略:选取重量最小。它的反例与第一种策略的反例差不多。
(3)贪心策略:选取单位重量价值最大的物品。反例:
W=30
物品:A B C
重量:28 20 10
价值:28 20 10
根据策略,三种物品单位重量价值一样,程序无法依据现有策略作出判断,如果选择A,则答案错误。