当前位置:首页 » 操作系统 » q学习算法

q学习算法

发布时间: 2022-12-29 08:45:04

1. 初学者如何学算法

先看看两本书,一本数据结构,一本离散数学。。。看完以后你就会。。。。

2. 学习编程算法的必要性和意义

我觉得学习算法就是两点:
1、算法的思想很好,非常好,学习算法主要是学习它的思想,以后能做到举一反三,而不是生搬硬套,对于解决大型分析问题有很好的训练效果,而且而且置信度也高
2、装逼利器,算法说出来生涩难懂,但是你理解后,这个算法的思想感觉不是一般的low,但是!别人还是会觉得你回这个算法很厉害,一定的装逼是提高自我修养的一种途径
推荐你的书:[游戏编程中的人工智能技术]

3. 算法怎么学

贪心算法的定义:

贪心算法是指在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,只做出在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关。

解题的一般步骤是:

1.建立数学模型来描述问题;

2.把求解的问题分成若干个子问题;

3.对每一子问题求解,得到子问题的局部最优解;

4.把子问题的局部最优解合成原来问题的一个解。

如果大家比较了解动态规划,就会发现它们之间的相似之处。最优解问题大部分都可以拆分成一个个的子问题,把解空间的遍历视作对子问题树的遍历,则以某种形式对树整个的遍历一遍就可以求出最优解,大部分情况下这是不可行的。贪心算法和动态规划本质上是对子问题树的一种修剪,两种算法要求问题都具有的一个性质就是子问题最优性(组成最优解的每一个子问题的解,对于这个子问题本身肯定也是最优的)。动态规划方法代表了这一类问题的一般解法,我们自底向上构造子问题的解,对每一个子树的根,求出下面每一个叶子的值,并且以其中的最优值作为自身的值,其它的值舍弃。而贪心算法是动态规划方法的一个特例,可以证明每一个子树的根的值不取决于下面叶子的值,而只取决于当前问题的状况。换句话说,不需要知道一个节点所有子树的情况,就可以求出这个节点的值。由于贪心算法的这个特性,它对解空间树的遍历不需要自底向上,而只需要自根开始,选择最优的路,一直走到底就可以了。

话不多说,我们来看几个具体的例子慢慢理解它:

1.活动选择问题

这是《算法导论》上的例子,也是一个非常经典的问题。有n个需要在同一天使用同一个教室的活动a1,a2,…,an,教室同一时刻只能由一个活动使用。每个活动ai都有一个开始时间si和结束时间fi 。一旦被选择后,活动ai就占据半开时间区间[si,fi)。如果[si,fi]和[sj,fj]互不重叠,ai和aj两个活动就可以被安排在这一天。该问题就是要安排这些活动使得尽量多的活动能不冲突的举行。例如下图所示的活动集合S,其中各项活动按照结束时间单调递增排序。

关于贪心算法的基础知识就简要介绍到这里,希望能作为大家继续深入学习的基础。

4. 程序员必须掌握哪些算法

  1. 集束搜索(又名定向搜索,BeamSearch)——最佳优先搜索算法的优化。

  2. A*搜寻算法——图形搜索算法,是最佳优先搜索的范例,从给定起点到给定终点计算出路径。

  3. 数据压缩——采取特定编码方案,使用更少的字节数(或是其他信息承载单元)对信息编码的过程,又叫来源编码。

  4. 离散微分算法(Discretedifferentiation)

  5. 哈希算法(Hashing)

  6. 堆排序(Heaps)

  7. 合并排序(MergeSort)

  8. 梯度下降(Gradientdescent)——一种数学上的最优化算法。

  9. 牛顿法(Newton'smethod)——求非线性方程(组)零点的一种重要的迭代法。

  10. 欧几里得算法(Euclideanalgorithm)——计算两个整数的最大公约数。最古老的算法之一,出现在公元前300前欧几里得的《几何原本》。

  11. Buchberger算法——一种数学算法,可将其视为针对单变量最大公约数求解的欧几里得算法和线性系统中高斯消元法的泛化。

  12. 动态规划算法(DynamicProgramming)——展示互相覆盖的子问题和最优子架构算法。

  13. Diffie-Hellman密钥交换算法——一种加密协议,允许双方在事先不了解对方的情况下,在不安全的通信信道中,共同建立共享密钥。该密钥以后可与一个对称密码一起,加密后续通讯。

  14. Dijkstra算法——针对没有负值权重边的有向图,计算其中的单一起点最短算法。

  15. 二分查找(BinarySearch)——在线性数组中找特定值的算法,每个步骤去掉一半不符合要求的数据。

  16. 合并查找算法(Union-find)——给定一组元素,该算法常常用来把这些元素分为多个分离的、彼此不重合的组。

  17. 期望-最大算法(Expectation-maximizationalgorithm,又名EM-Training)——在统计计算中,期望-最大算法在概率模型中寻找可能性最大的参数估算值,其中模型依赖于未发现的潜在变量。

  18. 快速傅里叶变换(FastFouriertransform,FFT)——计算离散的傅里叶变换(DFT)及其反转。

  19. 最大流量算法(Maximumflow)——该算法试图从一个流量网络中找到最大的流。

  20. LLL算法(Lenstra-Lenstra-Lovaszlatticerection)——以格规约(lattice)基数为输入,输出短正交向量基数。

  21. 两次筛法(QuadraticSieve)——现代整数因子分解算法,在实践中,是目前已知第二快的此类算法(仅次于数域筛法NumberFieldSieve)。

  22. RANSAC——是“RANdomSAmpleConsensus”的缩写。该算法根据一系列观察得到的数据,数据中包含异常值,估算一个数学模型的参数值。

  23. 求解线性方程组()——线性方程组是数学中最古老的问题,它们有很多应用,比如在数字信号处理、线性规划中的估算和预测、数值分析中的非线性问题逼近等等。求解线性方程组,可以使用高斯—约当消去法(Gauss-Jordanelimination),或是柯列斯基分解(Choleskydecomposition)。

  24. Q-learning学习算法——这是一种通过学习动作值函数(action-valuefunction)完成的强化学习算法,函数采取在给定状态的给定动作,并计算出期望的效用价值,在此后遵循固定的策略。

  25. Schönhage-Strassen算法——在数学中,Schönhage-Strassen算法是用来完成大整数的乘法的快速渐近算法。其算法复杂度为:O(Nlog(N)log(log(N))),该算法使用了傅里叶变换。

  26. RSA——公钥加密算法。首个适用于以签名作为加密的算法。RSA在电商行业中仍大规模使用,大家也相信它有足够安全长度的公钥。

  27. Strukturtensor算法——应用于模式识别领域,为所有像素找出一种计算方法,看看该像素是否处于同质区域(homogenousregion),看看它是否属于边缘,还是是一个顶点。

  28. 单纯型算法(SimplexAlgorithm)——在数学的优化理论中,单纯型算法是常用的技术,用来找到线性规划问题的数值解。

  29. 奇异值分解(Singularvaluedecomposition,简称SVD)——在线性代数中,SVD是重要的实数或复数矩阵的分解方法,在信号处理和统计中有多种应用,比如计算矩阵的伪逆矩阵(以求解最小二乘法问题)、解决超定线性系统(overdeterminedlinearsystems)、矩阵逼近、数值天气预报等等。

  30. 维特比算法(Viterbialgorithm)——寻找隐藏状态最有可能序列的动态规划算法,这种序列被称为维特比路径,其结果是一系列可以观察到的事件,特别是在隐藏的Markov模型中。

5. 机器学习一般常用的算法有哪些

机器学习是人工智能的核心技术,是学习人工智能必不可少的环节。机器学习中有很多算法,能够解决很多以前难以企的问题,机器学习中涉及到的算法有不少,下面小编就给大家普及一下这些算法。

一、线性回归

一般来说,线性回归是统计学和机器学习中最知名和最易理解的算法之一。这一算法中我们可以用来预测建模,而预测建模主要关注最小化模型误差或者尽可能作出最准确的预测,以可解释性为代价。我们将借用、重用包括统计学在内的很多不同领域的算法,并将其用于这些目的。当然我们可以使用不同的技术从数据中学习线性回归模型,例如用于普通最小二乘法和梯度下降优化的线性代数解。就目前而言,线性回归已经存在了200多年,并得到了广泛研究。使用这种技术的一些经验是尽可能去除非常相似(相关)的变量,并去除噪音。这是一种快速、简单的技术。

二、Logistic 回归

它是解决二分类问题的首选方法。Logistic 回归与线性回归相似,目标都是找到每个输入变量的权重,即系数值。与线性回归不同的是,Logistic 回归对输出的预测使用被称为 logistic 函数的非线性函数进行变换。logistic 函数看起来像一个大的S,并且可以将任何值转换到0到1的区间内。这非常实用,因为我们可以规定logistic函数的输出值是0和1并预测类别值。像线性回归一样,Logistic 回归在删除与输出变量无关的属性以及非常相似的属性时效果更好。它是一个快速的学习模型,并且对于二分类问题非常有效。

三、线性判别分析(LDA)

在前面我们介绍的Logistic 回归是一种分类算法,传统上,它仅限于只有两类的分类问题。而LDA的表示非常简单直接。它由数据的统计属性构成,对每个类别进行计算。单个输入变量的 LDA包括两个,第一就是每个类别的平均值,第二就是所有类别的方差。而在线性判别分析,进行预测的方法是计算每个类别的判别值并对具备最大值的类别进行预测。该技术假设数据呈高斯分布,因此最好预先从数据中删除异常值。这是处理分类预测建模问题的一种简单而强大的方法。

四、决策树

决策树是预测建模机器学习的一种重要算法。决策树模型的表示是一个二叉树。这是算法和数据结构中的二叉树,没什么特别的。每个节点代表一个单独的输入变量x和该变量上的一个分割点。而决策树的叶节点包含一个用于预测的输出变量y。通过遍历该树的分割点,直到到达一个叶节点并输出该节点的类别值就可以作出预测。当然决策树的有点就是决策树学习速度和预测速度都很快。它们还可以解决大量问题,并且不需要对数据做特别准备。

五、朴素贝叶斯

其实朴素贝叶斯是一个简单但是很强大的预测建模算法。而这个模型由两种概率组成,这两种概率都可以直接从训练数据中计算出来。第一种就是每个类别的概率,第二种就是给定每个 x 的值,每个类别的条件概率。一旦计算出来,概率模型可用于使用贝叶斯定理对新数据进行预测。当我们的数据是实值时,通常假设一个高斯分布,这样我们可以简单的估计这些概率。而朴素贝叶斯之所以是朴素的,是因为它假设每个输入变量是独立的。这是一个强大的假设,真实的数据并非如此,但是,该技术在大量复杂问题上非常有用。所以说,朴素贝叶斯是一个十分实用的功能。

六、K近邻算法

K近邻算法简称KNN算法,KNN 算法非常简单且有效。KNN的模型表示是整个训练数据集。KNN算法在整个训练集中搜索K个最相似实例(近邻)并汇总这K个实例的输出变量,以预测新数据点。对于回归问题,这可能是平均输出变量,对于分类问题,这可能是众数类别值。而其中的诀窍在于如何确定数据实例间的相似性。如果属性的度量单位相同,那么最简单的技术是使用欧几里得距离,我们可以根据每个输入变量之间的差值直接计算出来其数值。当然,KNN需要大量内存或空间来存储所有数据,但是只有在需要预测时才执行计算。我们还可以随时更新和管理训练实例,以保持预测的准确性。

七、Boosting 和 AdaBoost

首先,Boosting 是一种集成技术,它试图集成一些弱分类器来创建一个强分类器。这通过从训练数据中构建一个模型,然后创建第二个模型来尝试纠正第一个模型的错误来完成。一直添加模型直到能够完美预测训练集,或添加的模型数量已经达到最大数量。而AdaBoost 是第一个为二分类开发的真正成功的 boosting 算法。这是理解 boosting 的最佳起点。现代 boosting 方法建立在 AdaBoost 之上,最显着的是随机梯度提升。当然,AdaBoost 与短决策树一起使用。在第一个决策树创建之后,利用每个训练实例上树的性能来衡量下一个决策树应该对每个训练实例付出多少注意力。难以预测的训练数据被分配更多权重,而容易预测的数据分配的权重较少。依次创建模型,每一个模型在训练实例上更新权重,影响序列中下一个决策树的学习。在所有决策树建立之后,对新数据进行预测,并且通过每个决策树在训练数据上的精确度评估其性能。所以说,由于在纠正算法错误上投入了太多注意力,所以具备已删除异常值的干净数据十分重要。

八、学习向量量化算法(简称 LVQ)

学习向量量化也是机器学习其中的一个算法。可能大家不知道的是,K近邻算法的一个缺点是我们需要遍历整个训练数据集。学习向量量化算法(简称 LVQ)是一种人工神经网络算法,它允许你选择训练实例的数量,并精确地学习这些实例应该是什么样的。而学习向量量化的表示是码本向量的集合。这些是在开始时随机选择的,并逐渐调整以在学习算法的多次迭代中最好地总结训练数据集。在学习之后,码本向量可用于预测。最相似的近邻通过计算每个码本向量和新数据实例之间的距离找到。然后返回最佳匹配单元的类别值或作为预测。如果大家重新调整数据,使其具有相同的范围,就可以获得最佳结果。当然,如果大家发现KNN在大家数据集上达到很好的结果,请尝试用LVQ减少存储整个训练数据集的内存要求

6. 深度学习中sarsa算法和Q-learning算法的区别

每每看到胡说八道的就忍不住怒答一波,虽然我可能表述不清晰

  1. sarsa-learning q-learning都是reinforcement learning中用来解决MDP最优化值函数问题的temporal-difference方法,跟DL没啥卵关系,虽然RL可以深度化

  2. 区别在于,在更新Q(S_t, A_t)时,前者Q(S_t+1)的动作A_t+1通过episinon-greedy确定,而后者的A_t+1通过greedy确定;共同点在于S_t选择动作的策略是一样的(episinon-greedy)

  3. episinon-greedy 是一种策略, 比如 epsilon = 0.9 时, 就说明0.9的概率我会按照 Q 表的最优值选择行为, 0.1的概率使用随机选行为. 简单来说,就是在更新Q时,sarsa以概率episinon选择S_t+1状态的最大动作值函数,q-learning直接选最大

7. 机器学习的常见算法

机器学习算法如下:

机器学习(MachineLearning,ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。

揭开神秘的机器学习算法:

我们越来越多地看到机器学习算法在实用和可实现的目标上的价值,例如针对数据寻找可用的模式然后进行预测的机器学习算法。通常,这些机器学习算法预测模型用于操作流程以优化决策过程,但同时它们也可以提供关键的洞察力和信息来报告战略决策。

机器学习算法的基本前提是算法训练,提供特定的输入数据时预测某一概率区间内的输出值。请记住机器学习算法的技巧是归纳而非推断——与概率相关,并非最终结论。构建这些机器学习算法的过程被称之为机器学习算法预测建模。

一旦掌握了这一机器学习算法模型,有时就可以直接对原始数据机器学习算法进行分析,并在新数据中应用该机器学习算法模型以预测某些重要的信息。模型的输出可以是机器学习算法分类、机器学习算法可能的结果、机器学习算法隐藏的关系、机器学习算法属性或者机器学习算法估计值。

机器学习算法技术通常预测的是绝对值,比如标签、颜色、身份或者质量。比如,某个机器学习算法主题是否属于我们试图保留的用户?用户会付费购买吗?用户会积极响应邀约吗?

如果我们关心的是机器学习算法估算值或者连续值,机器学习算法预测也可以用数字表示。输出类型决定了最佳的学习方法,并会影响我们用于判断模型质量的尺度。

8. 常见的深度学习算法主要有哪些

深度学习常见的3种算法有:卷积神经网络、循环神经网络、生成对抗网络。
卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习的代表算法之一。
循环神经网络(Recurrent Neural Network, RNN)是一类以序列数据为输入,在序列的演进方向进行递归且所有节点(循环单元)按链式连接的递归神经网络。
生成对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型,是最近两年十分热门的一种无监督学习算法。

热点内容
云服务器设计制作 发布:2025-05-10 20:06:53 浏览:668
access数据库实用教程 发布:2025-05-10 20:06:06 浏览:341
谷歌怎么收安卓专利 发布:2025-05-10 20:00:55 浏览:449
am27系列存储器 发布:2025-05-10 19:45:48 浏览:668
android支持的视频格式 发布:2025-05-10 19:45:09 浏览:494
模拟器安卓版哪个好用电脑玩 发布:2025-05-10 19:41:00 浏览:16
浪潮服务器配置bmc管理ip 发布:2025-05-10 19:26:31 浏览:469
儿童编程编 发布:2025-05-10 19:05:46 浏览:384
自己在电脑上怎么搭建服务器 发布:2025-05-10 19:05:11 浏览:426
冲锋车里面配置了什么 发布:2025-05-10 18:55:31 浏览:430