点过滤算法
‘壹’ 协同过滤算法有哪些 slope
协同过滤算法是这一领域的主流。作为基于内容的算法执行方式,协同过滤在准确性上具有相当的优势,但无法冷启动、同质化和运算效率低使其依然存在很多不足。
协同过滤算法的名称来源于化学上的过滤操作。
原理
利用物质的溶解性差异,将液体和不溶于液体的固体分离开来的一种方法。如用过滤法除去粗食盐中少量的泥沙
过滤实验仪器
漏斗、烧杯、玻璃棒、铁架台(含铁圈)、滤纸。
过滤操作要领
要做到“一贴、二低、三靠”。
一贴
即使滤纸润湿,紧贴漏斗内壁,中间不要留下气泡。(防止气泡减慢过滤速度。)
二低
1.滤纸边缘略低于漏斗边缘。
2.液面低于滤纸边缘。(防止液体过滤不净。)
三靠
1.倾倒时烧杯杯口要紧靠玻璃棒上。
2.玻璃棒下端抵靠在三层滤纸处。
3.漏斗下端长的那侧管口紧靠烧杯内壁。
过滤注意事项
1.烧杯中的混合物在过滤前应用玻璃棒搅拌,然后进行过滤。
2.过滤后若溶液还显浑浊,应再过滤一次,直到溶液变得透明为止。
3.过滤器中的沉淀的洗涤方法:用烧瓶或滴管向过滤器中加蒸馏水,使水面盖没沉淀物,待溶液全部滤出后,重复2~3次。
希望我能帮助你解疑释惑。
‘贰’ 数学滤波算法可以处理三个坐标点吗
滤波算法可以处理三个坐标点的。滤波在三坐标中的应用:
1、粗糙度对测量的影响:测量点也在图中被放大获取到大量的点,表面粗度被认为是,引起“噪点”的原因。
2、探针的机械滤波:
选择探针直径-使用探针测量工件会由于工件表面结构的影响产生机械滤波。
由于探针直径过大精细的工件表面的形状无法捕捉,因此可看作是机械低通滤波。
3、三坐标的滤波:
用同样参数进行低通滤波的扫描线。
如下图所示,描绘出的图形差异并不明显。
4、2 RC滤波:不再使用圆度测量最初的标准化滤波器,但是已被现代滤波计算所取代。
5、高斯滤波:坐标测量技术中标准滤波算法。此滤波方法为标准算法被广泛使用。他使用高斯曲线加权计算测量点得到新的轮廓。
6、样条滤波:基于滤波方程的增强滤波方法(多项式计算),样条滤波更合乎标准,也更优于高斯滤波但并不是标准滤波方法。
(2)点过滤算法扩展阅读:
图像滤波是一种非常重要的图像处理技术,现在大火的卷积神经网络其实也是滤波的一种,都是用卷积核去提取图像的特征模式。不过,传统的滤波,使用的卷积核是固定的参数,是由经验非常丰富的人去手动设计的,也称为手工特征。而卷积神经网络的卷积核参数初始时未知的,根据不同的任务由数据和神经网络反向传播算法去学习得到的参数,更能适应于不同的任务。
自适应中值滤波
中值滤波器是一种常用的非线性滤波器,其基本原理是:选择待处理像素的一个邻域中各像素值的中值来代替待处理的像素。主要功能使某像素的灰度值与周围领域内的像素比较接近,从而消除一些孤立的噪声点,所以中值滤波器能够很好的消除椒盐噪声。不仅如此,中值滤波器在消除噪声的同时,还能有效的保护图像的边界信息,不会对图像造成很大的模糊(相比于均值滤波器)。
中值滤波器的效果受滤波窗口尺寸的影响较大,在消除噪声和保护图像的细节存在着矛盾:滤波窗口较小,则能很好的保护图像中的某些细节,但对噪声的过滤效果就不是很好,因为实际中的噪声不可能只占一个像素位置;反之,窗口尺寸较大有较好的噪声过滤效果,但是会对图像造成一定的模糊。另外,根据中值滤波器原理,如果在滤波窗口内的噪声点的个数大于整个窗口内非噪声像素的个数,则中值滤波就不能很好的过滤掉噪声。
‘叁’ 最近手机广告计价模式很火,到底分为哪些
为了灵活控制广告投放管理,将在推广成本上压缩到最小,点入科技采取了CPC(点击广告)、 CPD(下载分成)两种不同的广告推广样式来满足广告主的效果营销目的。CPC点击,用户点击一次广告条,经过点入系统过滤算法后打开广告内容记为一次有效点击。CPD下载APP程序安装推广模式,较适合影音娱乐类、动漫游戏类、女性时尚类、电子商务类等广告主投放。而CPD下载分成模式则整合了广告收入及广告佣金统一管理服务,使开发者增加受众人群,使广告主投放效果达到最佳,提高整体知名度。更多资讯请到www.dianru.com
‘肆’ 怎么转换淘宝直通车
想要开好淘宝直通车,我们得先了解他的运作原理。首先他是怎么来的呢?
谷歌的创始人拉里佩奇说了一段故事,说谷歌的广告改进,源于 CEO 的一次发飙。
他搜索一个日本摩托车品牌型号“川崎 h1b”,但是出现的广告,和他搜索的内容完全不相关,是一些美国移民广告。然后,他就把一些搜索和广告不匹配的结果打印出来,贴到大家都能看到的台球室墙壁上,写上几个大字:“这些广告糟透了”。
接下来,谷歌搜索算法小组,并不负责广告业务,利用业余时间调整广告算法,明确广告的排序核心,不是看商家愿意出多少钱,而是以广告信息对用户的价值为标准,这就成就了谷歌广告后面几十亿业务的衍生。
目前,直通车其实的算法核心,学习的就是谷歌的广告算法,通俗点说,就是如果你的产品和用户搜索词匹配度高,你就可以少花钱,如果匹配弱,那么花再多钱也难排到前面。而这样匹配结果,直通车用了一个新的词语表示,就是质量得分。
因此,直通车里衍生两种玩法:
一种是欺骗直通车,虽然直通车算法判断你宝贝相关度不高,但是你用假的用户反馈,让它认为你的宝贝和用户匹配度高。比如:在类目匹配的情况下,人为刷点击和数据,让直通车误认为高相关,然后质量得分提高,降低出价;
这种方法,刚开始肯定有效,但是只要方法被更多的卖家使用后,淘宝就会对应的针对这种所谓的“黑车技术”典型行为,找到共性,建立数据模型,制定反恶意点击过滤算法,让这些作弊方法失效。
所以,我们看到的这些所谓的黑技术,都很难长久,还容易被处罚。
第二种是顺势而为,深挖产品购买用户。同一个产品可能有不同人群需求,比如买深海鱼油的,有老人,小孩,女人等等,人群不同需求可能也不同。找到最匹配的人群,通过搜索引流词和成交词的反馈,找到单产品最有效的引流成交词,然后主图,标题和卖点优化集中火力去打这一个人群,促成高点击和转化,比如这个深海鱼油,我们只展示给女人看,主打女性美容保养功效。
所以,这种打法需要在操作直通车的时候,遵循三高原理:
1. 高精准词。往往围绕着主成交词扩展,比如这款深海鱼油的软化血管是主成交词,我们找到这个功能的主人群是老人,然后在行业热词榜里找到所有与老人和软化血管相关词作直通车投放,测试词和产品是否高精准,
‘伍’ 有谁知道3D彩票过滤的算法,最好举个例子!
‘陆’ 推荐系统(一):基于物品的协同过滤算法
协同过滤(collaborative filtering)算法是最经典、最常用的推荐算法。其基本思想是收集用户偏好,找到相似的用户或物品,然后计算并推荐。
基于物品的协同过滤算法的核心思想就是:给用户推荐那些和他们之前喜欢的物品相似的物品。主要可分为两步:
(1) 计算物品之间的相似度,建立相似度矩阵。
(2) 根据物品的相似度和用户的历史行为给用户生成推荐列表。
相似度的定义有多种方式,下面简要介绍其中几种:
其中,分母 是喜欢物品 的用户数,而分子 是同时喜欢物品 和物品 的用户数。因此,上述公式可以理解为喜欢物品 的用户中有多少比例的用户也喜欢物品 。
上述公式存在一个问题。如果物品 很热门, 就会很大,接近1。因此,该公式会造成任何物品都会和热门的物品有很大的相似度,为了避免推荐出热门的物品,可以用下面的公式:
这个公式惩罚了物品 的权重,因此减轻了热门物品会和很多物品相似的可能性。
另外为减小活跃用户对结果的影响,考虑IUF(nverse User Frequence) ,即用户活跃度对数的倒数的参数,认为活跃用户对物品相似度的贡献应该小于不活跃的用户。
为便于计算,还需要进一步将相似度矩阵归一化 。
其中 表示用户 对物品 的评分。 在区间 内,越接近1表示相似度越高。
表示空间中的两个点,则其欧几里得距离为:
当 时,即为平面上两个点的距离,当表示相似度时,可采用下式转换:
距离越小,相似度越大。
一般表示两个定距变量间联系的紧密程度,取值范围为[-1,1]
其中 是 和 的样品标准差
将用户行为数据按照均匀分布随机划分为M份,挑选一份作为测试集,将剩下的M-1份作为训练集。为防止评测指标不是过拟合的结果,共进行M次实验,每次都使用不同的测试集。然后将M次实验测出的评测指标的平均值作为最终的评测指标。
对用户u推荐N个物品(记为 ),令用户u在测试集上喜欢的物品集合为 ,召回率描述有多少比例的用户-物品评分记录包含在最终的推荐列表中。
准确率描述最终的推荐列表中有多少比例是发生过的用户-物品评分记录。
覆盖率反映了推荐算法发掘长尾的能力,覆盖率越高,说明推荐算法越能够将长尾中的物品推荐给用户。分子部分表示实验中所有被推荐给用户的物品数目(集合去重),分母表示数据集中所有物品的数目。
采用GroupLens提供的MovieLens数据集, http://www.grouplens.org/node/73 。本章使用中等大小的数据集,包含6000多用户对4000多部电影的100万条评分。该数据集是一个评分数据集,用户可以给电影评1-5分5个不同的等级。本文着重研究隐反馈数据集中TopN推荐问题,因此忽略了数据集中的评分记录。
该部分定义了所需要的主要变量,集合采用字典形式的数据结构。
读取原始CSV文件,并划分训练集和测试集,训练集占比87.5%,同时建立训练集和测试集的用户字典,记录每个用户对电影评分的字典。
第一步循环读取每个用户及其看过的电影,并统计每部电影被看过的次数,以及电影总数;第二步计算矩阵C,C[i][j]表示同时喜欢电影i和j的用户数,并考虑对活跃用户的惩罚;第三步根据式\ref{similarity}计算电影间的相似性;第四步进行归一化处理。
针对目标用户U,找到K部相似的电影,并推荐其N部电影,如果用户已经看过该电影则不推荐。
产生推荐并通过准确率、召回率和覆盖率进行评估。
结果如下所示,由于数据量较大,相似度矩阵为 维,计算速度较慢,耐心等待即可。
[1]. https://blog.csdn.net/m0_37917271/article/details/82656158
[2]. 推荐系统与深度学习. 黄昕等. 清华大学出版社. 2019.
[3]. 推荐系统算法实践. 黄美灵. 电子工业出版社. 2019.
[4]. 推荐系统算法. 项亮. 人民邮电出版社. 2012.
[5]. 美团机器学习实践. 美团算法团队. 人民邮电出版社. 2018.
‘柒’ 协同过滤的算法细分
这是最早应用协同过滤系统的设计,主要是解决Xerox公司在Palo Alto的研究中心资讯过载的问题。这个研究中心的员工每天会收到非常多的电子邮件却无从筛选分类,于是研究中心便发展这项实验性的邮件系统来帮助员工解决这项问题。 其运作机制大致如下:
个人决定自己的感兴趣的邮件类型;个人旋即随机发出一项资讯需求,可预测的结果是会收到非常多相关的文件;从这些文件中个人选出至少三笔资料是其认为有用、会想要看的;系统便将之记录起来成为个人邮件系统内的过滤器,从此以后经过过滤的文件会最先送达信箱;以上是协同过滤最早的应用,接下来的里程碑为GroupLens。 这个系统主要是应用在新闻的筛选上,帮助新闻的阅听者过滤其感兴趣的新闻内容,阅听者看过内容后给一个评比的分数,系统会将分数记录起来以备未来参考之用,假设前提是阅听者以前感兴趣的东西在未来也会有兴趣阅听,若阅听者不愿揭露自己的身分也可以匿名进行评分。 和Tapestry不同之处有两点,首先,Tapestry专指一个点(如一个网站内、一个系统内)的过滤机制;GroupLens则是跨点跨系统的新闻过滤机制。再来,Tapestry不会将同一笔资料的评比总和起来;GroupLens会将同一笔资料从不同使用者得到的评比加总。
GroupLens具有以下特点:开放性:所有的新闻阅听者皆可使用,虽然系统委托Better Bit Bureau设计给分的系统,但若有不同的评分机制也适用于GroupLens。方便性:给分并不是一件困难的事情且沟通上非常方便,评分结果容易诠释。规模性:有可能发展成大规模的系统,一旦发展成大规模,储存空间与计算成本问题显得相当棘手。隐密性:如果使用者不想让别人知道他是谁,别人就不会知道。由此可以看出,现今网络各个推荐系统的雏形已然形成,在GroupLens之后还有性质相近的MovieLens,电影推荐系统;Ringo,音乐推荐系统;Video Recommender,影音推荐系统;以及Jster,笑话推荐系统等等。乃至于今日的YouTube、aNobii皆是相似性值得网络推荐平台,较不同的是经过时间推移,网络越来越发达,使用者越来越多,系统也发展得越来越严密。 最着名的电子商务推荐系统应属亚马逊网络书店,顾客选择一本自己感兴趣的书籍,马上会在底下看到一行“Customer Who Bought This Item Also Bought”,亚马逊是在“对同样一本书有兴趣的读者们兴趣在某种程度上相近”的假设前提下提供这样的推荐,此举也成为亚马逊网络书店为人所津津乐道的一项服务,各网络书店也跟进做这样的推荐服务如台湾的博客来网络书店。 另外一个着名的例子是Facebook的广告,系统根据个人资料、周遭朋友感兴趣的广告等等对个人提供广告推销,也是一项协同过滤重要的里程碑,和前二者Tapestry、GroupLens不同的是在这里虽然商业气息浓厚同时还是带给使用者很大的方便。 以上为三项协同过滤发展上重要的里程碑,从早期单一系统内的邮件、文件过滤,到跨系统的新闻、电影、音乐过滤,乃至于今日横行互联网的电子商务,虽然目的不太相同,但带给使用者的方便是大家都不能否定的。
‘捌’ 基于用户的系统过滤 什么是推荐算法
什么是推荐算法 推荐算法最早在1992年就提出来了,但是火起来实际上是最近这些年的事情,因为互联网的爆发,有了更大的数据量可以供我们使用,推荐算法才有了很大的用武之地。 最开始,所以我们在网上找资料,都是进yahoo,然后分门别类的点进去,找到你想要的东西,这是一个人工过程,到后来,我们用google,直接搜索自己需要的内容,这些都可以比较精准的找到你想要的东西,但是,如果我自己都不知道自己要找什么肿么办?最典型的例子就是,如果我打开豆瓣找电影,或者我去买说,我实际上不知道我想要买什么或者看什么,这时候推荐系统就可以派上用场了。 推荐算法的条件 推荐算法从92年开始,发展到现在也有20年了,当然,也出了各种各样的推荐算法,但是不管怎么样,都绕不开几个条件,这是推荐的基本条件 根据和你共同喜好的人来给你推荐 根据你喜欢的物品找出和它相似的来给你推荐 根据你给出的关键字来给你推荐,这实际上就退化成搜索算法了 根据上面的几种条件组合起来给你推荐 实际上,现有的条件就这些啦,至于怎么发挥这些条件就是八仙过海各显神通了,这么多年沉淀了一些好的算法,今天这篇文章要讲的基于用户的协同过滤算法就是其中的一个,这也是最早出现的推荐算法,并且发展到今天,基本思想没有什么变化,无非就是在处理速度上,计算相似度的算法上出现了一些差别而已。 基于用户的协同过滤算法 我们先做个词法分析基于用户说明这个算法是以用户为主体的算法,这种以用户为主体的算法比较强调的是社会性的属性,也就是说这类算法更加强调把和你有相似爱好的其他的用户的物品推荐给你,与之对应的是基于物品的推荐算法,这种更加强调把和你你喜欢的物品相似的物品推荐给你。 然后就是协同过滤了,所谓协同就是大家一起帮助你啦,然后后面跟个过滤,就是大家是商量过后才把结果告诉你的,不然信息量太大了。。 所以,综合起来说就是这么一个算法,那些和你有相似爱好的小伙伴们一起来商量一下,然后告诉你什么东西你会喜欢。 算法描述 相似性计算 我们尽量不使用复杂的数学公式,一是怕大家看不懂,难理解,二是我是用mac写的blog,公式不好画,太麻烦了。。 所谓计算相似度,有两个比较经典的算法 Jaccard算法,就是交集除以并集,详细可以看看我这篇文章。 余弦距离相似性算法,这个算法应用很广,一般用来计算向量间的相似度,具体公式大家google一下吧,或者看看这里 各种其他算法,比如欧氏距离算法等等。 不管使用Jaccard还是用余弦算法,本质上需要做的还是求两个向量的相似程度,使用哪种算法完全取决于现实情况。 我们在本文中用的是余弦距离相似性来计算两个用户之间的相似度。 与目标用户最相邻的K个用户 我们知道,在找和你兴趣爱好相似的小伙伴的时候,我们可能可以找到几百个,但是有些是好基友,但有些只是普通朋友,那么一般的,我们会定一个数K,和你最相似的K个小伙伴就是你的好基友了,他们的爱好可能和你的爱好相差不大,让他们来推荐东西给你(比如肥皂)是最好不过了。
‘玖’ 基于聚类的协同过滤算法都有哪些
自邀自答,不用谢。这是两种完全不同的算法思想。以二维空间为例,聚类是各个样本往若干个共同中心聚合的过程,计算的是样本点到聚类中心的二维空间距离;而协同过滤是尽量在样本中构造平行相似性,以弥合缺失的样本信息维度。聚类和协同过滤是可以而且应当在解决实际问题中混合使用的。但应该是在解决问题的不同阶段。比如用户兴趣,首先使用聚类方法对人群进行若干大类的划分,然后在一类人群中进行协同过滤。
‘拾’ 协同过滤算法
用户行为数据在网站上最简单的存在形式就是日志,比如用户在电子商务网站中的网页浏览、购买、点击、评分和评论等活动。 用户行为在个性化推荐系统中一般分两种——显性反馈行为(explicit feedback)和隐性反馈 行为(implicit feedback)。显性反馈行为包括用户明确表示对物品喜好的行为。网站中收集显性反馈的主要方式就是评分和喜欢/不喜欢。隐性反馈行为指的是那些不能明确反应用户喜好 的行为。最具代表性的隐性反馈行为就是页面浏览行为。 按照反馈的明确性分,用户行为数据可以分为显性反馈和隐性反馈,但按照反馈的方向分, 又可以分为正反馈和负反馈。正反馈指用户的行为倾向于指用户喜欢该物品,而负反馈指用户的 行为倾向于指用户不喜欢该物品。在显性反馈中,很容易区分一个用户行为是正反馈还是负反馈, 而在隐性反馈行为中,就相对比较难以确定。
在利用用户行为数据设计推荐算法之前,研究人员首先需要对用户行为数据进行分析,了解 数据中蕴含的一般规律,这样才能对算法的设计起到指导作用。
(1) 用户活跃度和物品流行度
(2) 用户活跃度和物品流行度的关系
一般认为,新用户倾向于浏览热门的物品,因为他 们对网站还不熟悉,只能点击首页的热门物品,而老用户会逐渐开始浏览冷门的物品。如果用横坐标表示用户活跃度,纵坐标表示具有某个活跃度的所有用户评过分的物品的平均流行度。图中曲线呈明显下 降的趋势,这表明用户越活跃,越倾向于浏览冷门的物品。
仅仅基于用户行为数据设计的推荐算法一般称为协同过滤算法。学术界对协同过滤算法进行了深入研究,提出了很多方法,比如基于邻域的方法(neighborhood-based)、隐语义模型 (latent factor model)、基于图的随机游走算法(random walk on graph)等。在这些方法中, 最着名的、在业界得到最广泛应用的算法是基于邻域的方法,而基于邻域的方法主要包含下面两种算法。
基于用户的协同过滤算法 :这种算法给用户推荐和他兴趣相似的其他用户喜欢的物品
基于物品的协同过滤算法: 这种算法给用户推荐和他之前喜欢的物品相似的物品
基于邻域的算法是推荐系统中最基本的算法,该算法不仅在学术界得到了深入研究,而且在 业界得到了广泛应用。基于邻域的算法分为两大类,一类是基于用户的协同过滤算法,另一类是 基于物品的协同过滤算法。现在我们所说的协同过滤,基本上就就是指基于用户或者是基于物品的协同过滤算法,因此,我们可以说基于邻域的算法即是我们常说的协同过滤算法
(1) 基于用户的协同过滤算法(UserCF)
基于用户的协同过滤算法的基本思想是:在一个在线个性化推荐系统中,当一个用户A需要个性化推荐 时,可以先找到和他有相似兴趣的其他用户,然后把那些用户喜欢的、而用户A没有听说过的物品推荐给A。
Ø 从上面的描述中可以看到,基于用户的协同过滤算法主要包括两个步骤。 第一步:找到和目标用户兴趣相似的用户集合。 第二步: 找到这个集合中的用户喜欢的,且目标用户没有听说过的物品推荐给目标用户。
这里,步骤1的关键是计算两个用户的兴趣相似度,协同过滤算法主要利用行为的相似度计算兴趣的相似度。给定用户u和用户v,令N(u)表示用户u曾经有过正反馈的物品集合,令N(v) 为用户v曾经有过正反馈的物品集合。那么我们可以通过以下方法计算用户的相似度:
基于余弦相似度
(2) 基于物品的协同过滤算法(itemCF)
与UserCF同理
(3) UserCF和itemCF的比 较
首先我们提出一个问题,为什么新闻网站一般使用UserCF,而图书、电商网站一般使用ItemCF呢? 首先回顾一下UserCF算法和ItemCF算法的推荐原理。UserCF给用户推荐那些和他有共同兴 趣爱好的用户喜欢的物品,而ItemCF给用户推荐那些和他之前喜欢的物品类似的物品。从这个算 法的原理可以看到,UserCF的推荐结果着重于反映和用户兴趣相似的小群体的热点,而ItemCF 的推荐结果着重于维系用户的历史兴趣。换句话说,UserCF的推荐更社会化,反映了用户所在的小型兴趣群体中物品的热门程度,而ItemCF的推荐更加个性化,反映了用户自己的兴趣传承。 在新闻网站中,用户的兴趣不是特别细化,绝大多数用户都喜欢看热门的新闻。个性化新闻推荐更加强调抓住 新闻热点,热门程度和时效性是个性化新闻推荐的重点,而个性化相对于这两点略显次要。因 此,UserCF可以给用户推荐和他有相似爱好的一群其他用户今天都在看的新闻,这样在抓住热 点和时效性的同时,保证了一定程度的个性化。同时,在新闻网站中,物品的更新速度远远快于新用户的加入速度,而且 对于新用户,完全可以给他推荐最热门的新闻,因此UserCF显然是利大于弊。
但是,在图书、电子商务和电影网站,比如亚马逊、豆瓣、Netflix中,ItemCF则能极大地发 挥优势。首先,在这些网站中,用户的兴趣是比较固定和持久的。一个技术人员可能都是在购买 技术方面的书,而且他们对书的热门程度并不是那么敏感,事实上越是资深的技术人员,他们看 的书就越可能不热门。此外,这些系统中的用户大都不太需要流行度来辅助他们判断一个物品的 好坏,而是可以通过自己熟悉领域的知识自己判断物品的质量。因此,这些网站中个性化推荐的 任务是帮助用户发现和他研究领域相关的物品。因此,ItemCF算法成为了这些网站的首选算法。 此外,这些网站的物品更新速度不会特别快,一天一次更新物品相似度矩阵对它们来说不会造成 太大的损失,是可以接受的。同时,从技术上考虑,UserCF需要维护一个用户相似度的矩阵,而ItemCF需要维护一个物品 相似度矩阵。从存储的角度说,如果用户很多,那么维护用户兴趣相似度矩阵需要很大的空间, 同理,如果物品很多,那么维护物品相似度矩阵代价较大
下表是对二者的一个全面的表较: