当前位置:首页 » 操作系统 » dsa数字签名算法

dsa数字签名算法

发布时间: 2023-01-12 12:42:31

A. java的signature类提供了哪些算法

Signature 类用来为应用程序提供数字签名算法功能。数字签名用于确保数字数据的验证和完整性。
在所有算法当中,数字签名可以是 NIST 标准的 DSA,它使用 DSA 和 SHA-1。可以将使用 SHA-1 消息摘要算法的 DSA 算法指定为 SHA1withDSA。如果使用 RSA,对消息摘要算法则会有多种选择,因此,可以将签名算法指定为 MD2withRSA、MD5withRSA 或 SHA1withRSA。因为没有默认的算法名称,所以必须为其指定名称。
Signature 对象可用来生成和验证数字签名。

B. 你必须了解的,区块链数字签名机制

       区块链使用Hash函数实现了交易信息和地址信息的不可篡改,保证了数据传输过程中的完整性,但是Hash函数无法实现交易信息的 不可否认性 (又称拒绝否认性、抗抵赖性,指网络通信双方在信息交互过程中, 确信参与者本身和所提供的信息真实同一性 ,即所有参与者不可否认或抵赖本人的真实身份,以及提供信息的原样性和完成的操作与承诺)。区块链使用公钥加密技术中的数字签名机制保证信息的不可否认性。

       数字签名主要包括签名算法和验证算法。在签名算法中,签名者用其私钥对电子文件进行签名运算,从而得到电子文件的签名密文;在验证算法中,验证者利用签名者的公钥,对电子文件的签名密文进行验证运算,根据验证算法的结果判断签名文件的合法性。在签名过程中,只有签名者知道自己的私钥,不知道其私钥的任何人员无法伪造或正确签署电子文件;在验证过程中,只有合法的签名电子文件能有效通过验证,任何非法的签名文件都不能满足其验证算法。

       常用的数字签名算法包括RSA数字签名、DSA数字签名、ECDSA数字签名、Schnorr数字签名等算法。

      我们以RSA数字签名来介绍:可能人们要问RSA签名和加密有什么 区别 呢?加密和签名都是为了安全性考虑,但略有不同。常有人问加密和签名是用私钥还是公钥?其实都是对加密和签名的作用有所混淆。简单的说, 加密 是为了 防止信息被泄露 ,而 签名 是为了 防止信息被篡改 。

      例子:A收到B发的消息后,需要进行回复“收到”-- RSA签名过程 :

      首先: A生成一对密钥(公钥和私钥),私钥不公开,A自己保留。公钥为公开的,任何人可以获取。

      然后: A用自己的私钥对消息加签,形成签名,并将加签的消息和消息本身一起传递给B。

      最后: B收到消息后,在获取A的公钥进行验签,如果验签出来的内容与消息本身一致,证明消息是A回复的。

       在这个过程中,只有2次传递过程,第一次是A传递加签的消息和消息本身给B,第二次是B获取A的公钥,即使都被敌方截获,也没有危险性,因为只有A的私钥才能对消息进行签名,即使知道了消息内容,也无法伪造带签名的回复给B,防止了消息内容的篡改。

综上所述,来源于书本及网络,让我们了解的有直观的认识。

C. 在数字签名算法DSA中,如果Alice签名时秘密随即选取的k被泄露,那么将会发生什么问题

签名可以理解为用alice的私钥对需要签名的数据进行加密的过程。由于私钥只有本人持有且加密过的内容只能由对应的公钥解开,所以对方用alice的公开密钥解密就可以知道是不是由alice本人签发。

所以你的问题不正确,alice不能用随机选取的key签名,而只能用自己的私钥签名。
如果私钥泄露了,那持有这把私钥的人就可以冒用alice的身份。另外,持有了私钥,就可以解开别人给alice发送的私信(用alice的公钥加密的信息)。

D. 密码加密的算法有哪些

主要分为 对称加密算法 和 非对称加密算法两类

对称加密算法:使用单个密钥对数据进行加密或解密,其特点是计算量小,加密效率高.
代表 DES 算法

非对称加密算法:此算法均有两个密钥(公用密钥和私有密钥),只有二者搭配使用才能完成加密和解密的全过程.
代表 DSA算法, 数字签名算法(DSA) , MD5算法 , 安全散列算法(SHA)

E. 数据在网络上传输为什么要加密现在常用的数据加密算法主要有哪些

数据传输加密技术的目的是对传输中的数据流加密,通常有线路加密与端—端加密两种。线路加密侧重在线路上而不考虑信源与信宿,是对保密信息通过各线路采用不同的加密密钥提供安全保护。

端—端加密指信息由发送端自动加密,并且由TCP/IP进行数据包封装,然后作为不可阅读和不可识别的数据穿过互联网,当这些信息到达目的地,将被自动重组、解密,而成为可读的数据。

数据存储加密技术的目的是防止在存储环节上的数据失密,数据存储加密技术可分为密文存储和存取控制两种。前者一般是通过加密算法转换、附加密码、加密模块等方法实现;后者则是对用户资格、权限加以审查和限制,防止非法用户存取数据或合法用户越权存取数据。

常见加密算法

1、DES(Data Encryption Standard):对称算法,数据加密标准,速度较快,适用于加密大量数据的场合;

2、3DES(Triple DES):是基于DES的对称算法,对一块数据用三个不同的密钥进行三次加密,强度更高;

3、RC2和RC4:对称算法,用变长密钥对大量数据进行加密,比 DES 快;

4、IDEA(International Data Encryption Algorithm)国际数据加密算法,使用 128 位密钥提供非常强的安全性;

5、RSA:由 RSA 公司发明,是一个支持变长密钥的公共密钥算法,需要加密的文件块的长度也是可变的,非对称算法; 算法如下:

首先, 找出三个数,p,q,r,其中 p,q 是两个不相同的质数,r 是与 (p-1)(q-1) 互为质数的数。

p,q,r这三个数便是 private key。接着,找出 m,使得 rm == 1 mod (p-1)(q-1).....这个 m 一定存在,因为 r 与 (p-1)(q-1) 互质,用辗转相除法就可以得到了。再来,计算 n = pq.......m,n 这两个数便是 public key。

6、DSA(Digital Signature Algorithm):数字签名算法,是一种标准的 DSS(数字签名标准),严格来说不算加密算法;

7、AES(Advanced Encryption Standard):高级加密标准,对称算法,是下一代的加密算法标准,速度快,安全级别高,在21世纪AES 标准的一个实现是 Rijndael 算法。

8、BLOWFISH,它使用变长的密钥,长度可达448位,运行速度很快;

9、MD5:严格来说不算加密算法,只能说是摘要算法;

对MD5算法简要的叙述可以为:MD5以512位分组来处理输入的信息,且每一分组又被划分为16个32位子分组,经过了一系列的处理后,算法的输出由四个32位分组组成,将这四个32位分组级联后将生成一个128位散列值。

(5)dsa数字签名算法扩展阅读

数据加密标准

传统加密方法有两种,替换和置换。上面的例子采用的就是替换的方法:使用密钥将明文中的每一个字符转换为密文中的一个字符。而置换仅将明文的字符按不同的顺序重新排列。单独使用这两种方法的任意一种都是不够安全的,但是将这两种方法结合起来就能提供相当高的安全程度。

数据加密标准(Data Encryption Standard,简称DES)就采用了这种结合算法,它由IBM制定,并在1977年成为美国官方加密标准。

DES的工作原理为:将明文分割成许多64位大小的块,每个块用64位密钥进行加密,实际上,密钥由56位数据位和8位奇偶校验位组成,因此只有56个可能的密码而不是64个。

每块先用初始置换方法进行加密,再连续进行16次复杂的替换,最后再对其施用初始置换的逆。第i步的替换并不是直接利用原始的密钥K,而是由K与i计算出的密钥Ki。

DES具有这样的特性,其解密算法与加密算法相同,除了密钥Ki的施加顺序相反以外。

参考资料来源:网络-加密算法

参考资料来源:网络-数据加密

F. 常见加密算法原理及概念

在安全领域,利用密钥加密算法来对通信的过程进行加密是一种常见的安全手段。利用该手段能够保障数据安全通信的三个目标:

而常见的密钥加密算法类型大体可以分为三类:对称加密、非对称加密、单向加密。下面我们来了解下相关的算法原理及其常见的算法。

对称加密算法采用单密钥加密,在通信过程中,数据发送方将原始数据分割成固定大小的块,经过密钥和加密算法逐个加密后,发送给接收方;接收方收到加密后的报文后,结合密钥和解密算法解密组合后得出原始数据。由于加解密算法是公开的,因此在这过程中,密钥的安全传递就成为了至关重要的事了。而密钥通常来说是通过双方协商,以物理的方式传递给对方,或者利用第三方平台传递给对方,一旦这过程出现了密钥泄露,不怀好意的人就能结合相应的算法拦截解密出其加密传输的内容。

对称加密算法拥有着算法公开、计算量小、加密速度和效率高得特定,但是也有着密钥单一、密钥管理困难等缺点。

常见的对称加密算法有:
DES:分组式加密算法,以64位为分组对数据加密,加解密使用同一个算法。
3DES:三重数据加密算法,对每个数据块应用三次DES加密算法。
AES:高级加密标准算法,是美国联邦政府采用的一种区块加密标准,用于替代原先的DES,目前已被广泛应用。
Blowfish:Blowfish算法是一个64位分组及可变密钥长度的对称密钥分组密码算法,可用来加密64比特长度的字符串。

非对称加密算法采用公钥和私钥两种不同的密码来进行加解密。公钥和私钥是成对存在,公钥是从私钥中提取产生公开给所有人的,如果使用公钥对数据进行加密,那么只有对应的私钥才能解密,反之亦然。
下图为简单非对称加密算法的常见流程:

发送方Bob从接收方Alice获取其对应的公钥,并结合相应的非对称算法将明文加密后发送给Alice;Alice接收到加密的密文后,结合自己的私钥和非对称算法解密得到明文。这种简单的非对称加密算法的应用其安全性比对称加密算法来说要高,但是其不足之处在于无法确认公钥的来源合法性以及数据的完整性。
非对称加密算法具有安全性高、算法强度负复杂的优点,其缺点为加解密耗时长、速度慢,只适合对少量数据进行加密,其常见算法包括:
RSA :RSA算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但那时想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥,可用于加密,也能用于签名。
DSA :数字签名算法,仅能用于签名,不能用于加解密。
DSS :数字签名标准,技能用于签名,也可以用于加解密。
ELGamal :利用离散对数的原理对数据进行加解密或数据签名,其速度是最慢的。

单向加密算法常用于提取数据指纹,验证数据的完整性。发送者将明文通过单向加密算法加密生成定长的密文串,然后传递给接收方。接收方在收到加密的报文后进行解密,将解密获取到的明文使用相同的单向加密算法进行加密,得出加密后的密文串。随后将之与发送者发送过来的密文串进行对比,若发送前和发送后的密文串相一致,则说明传输过程中数据没有损坏;若不一致,说明传输过程中数据丢失了。单向加密算法只能用于对数据的加密,无法被解密,其特点为定长输出、雪崩效应。常见的算法包括:MD5、sha1、sha224等等,其常见用途包括:数字摘要、数字签名等等。

密钥交换IKE(Internet Key Exchange)通常是指双方通过交换密钥来实现数据加密和解密,常见的密钥交换方式有下面两种:
1、公钥加密,将公钥加密后通过网络传输到对方进行解密,这种方式缺点在于具有很大的可能性被拦截破解,因此不常用;
2、Diffie-Hellman,DH算法是一种密钥交换算法,其既不用于加密,也不产生数字签名。DH算法的巧妙在于需要安全通信的双方可以用这个方法确定对称密钥。然后可以用这个密钥进行加密和解密。但是注意,这个密钥交换协议/算法只能用于密钥的交换,而不能进行消息的加密和解密。双方确定要用的密钥后,要使用其他对称密钥操作加密算法实际加密和解密消息。DH算法通过双方共有的参数、私有参数和算法信息来进行加密,然后双方将计算后的结果进行交换,交换完成后再和属于自己私有的参数进行特殊算法,经过双方计算后的结果是相同的,此结果即为密钥。
如:

在整个过程中,第三方人员只能获取p、g两个值,AB双方交换的是计算后的结果,因此这种方式是很安全的。

公钥基础设施是一个包括硬件、软件、人员、策略和规程的集合,用于实现基于公钥密码机制的密钥和证书的生成、管理、存储、分发和撤销的功能,其组成包括:签证机构CA、注册机构RA、证书吊销列表CRL和证书存取库CB。
PKI采用证书管理公钥,通过第三方可信任CA中心,把用户的公钥和其他用户信息组生成证书,用于验证用户的身份。
公钥证书是以数字签名的方式声明,它将公钥的值绑定到持有对应私钥的个人、设备或服务身份。公钥证书的生成遵循X.509协议的规定,其内容包括:证书名称、证书版本、序列号、算法标识、颁发者、有效期、有效起始日期、有效终止日期、公钥 、证书签名等等的内容。

CA证书认证的流程如下图,Bob为了向Alice证明自己是Bob和某个公钥是自己的,她便向一个Bob和Alice都信任的CA机构申请证书,Bob先自己生成了一对密钥对(私钥和公钥),把自己的私钥保存在自己电脑上,然后把公钥给CA申请证书,CA接受申请于是给Bob颁发了一个数字证书,证书中包含了Bob的那个公钥以及其它身份信息,当然,CA会计算这些信息的消息摘要并用自己的私钥加密消息摘要(数字签名)一并附在Bob的证书上,以此来证明这个证书就是CA自己颁发的。Alice得到Bob的证书后用CA的证书(自签署的)中的公钥来解密消息摘要,随后将摘要和Bob的公钥发送到CA服务器上进行核对。CA在接收到Alice的核对请求后,会根据Alice提供的信息核对Bob的证书是否合法,如果确认合法则回复Alice证书合法。Alice收到CA的确认回复后,再去使用从证书中获取的Bob的公钥加密邮件然后发送给Bob,Bob接收后再以自己的私钥进行解密。

G. 什么是古典加密算法

古典加密算法分为替代算法和置换移位法。

1.替代算法
替代算法指的是明文的字母由其他字母或数字或符号所代替。最着名的替代算法是恺撒密码。凯撒密码的原理很简单,其实就是单字母替换。我们看一个简单的例子:

明文:abcdefghijklmnopq

密文:defghijklmnopqrst

若明文为student,对应的密文则为vwxghqw 。在这个一一对应的算法中,恺撒密码将字母表用了一种顺序替代的方法来进行加密,此时密钥为3,即每个字母顺序推后3个。由于英文字母为26个,因此恺撒密码仅有26个可能的密钥,非常不安全。

为了加强安全性,人们想出了更进一步的方法:替代时不是有规律的,而是随机生成一个对照表。

明文:abcdefghijklmnopqrstuvwxyz

密文:xnyahpogzqwbtsflrcvmuekjdI

此时,若明文为student,对应的密文则为 vmuahsm 。这种情况下,解密函数是上面这个替代对照表的一个逆置换。

不过,有更好的加密手段,就会有更好的解密手段。而且无论怎样的改变字母表中的字母顺序,密码都有可能被人破解。由于英文单词中各字母出现的频度是不一样的,通过对字母频度的统计就可以很容易的对替换密码进行破译。为了抗击字母频度分析,随后产生了以置换移位法为主要加密手段的加密方法。

2.置换移位法
使用置换移位法的最着名的一种密码称为维吉尼亚密码。它以置换移位为基础的周期替换密码。

前面介绍的替代算法中,针对所有的明文字母,密钥要么是一个唯一的数,要么则是完全无规律可寻的。在维吉尼亚密码中,加密密钥是一个可被任意指定的字符串。加密密钥字符依次逐个作用于明文信息字符。明文信息长度往往会大于密钥字符串长度,而明文的每一个字符都需要有一个对应的密钥字符,因此密钥就需要不断循环,直至明文每一个字符都对应一个密钥字符。对密钥字符,我们规定密钥字母a,b,c,d……y,z对应的数字n为:0,1,2,3……24,25。每个明文字符首先找到对应的密钥字符,然后根据英文字母表按照密钥字符对应的数字n向后顺序推后n个字母,即可得到明文字符对应的密文字符。

如果密钥字为deceptive , 明文为 wearediscoveredsaveyourself,则加密的过程为:

明文: wearediscoveredsaveyourself

密钥: deceptivedeceptivedeceptive

密文: zicvtwqngrzgvtwavzhcqyglmgj

对明文中的第一个字符w,对应的密钥字符为d,它对应需要向后推3个字母,w,x,y,z,因此其对应的密文字符为z。上面的加密过程中,可以清晰的看到,密钥deceptive被重复使用。

古典密码体制将数学的方法引入到密码分析和研究中。这为现代加密技术的形成和发展奠定了坚实的基础。

H. 数字签名算法的三个条件是什么

数字签名算法至少应该满足三个条件:

  1. 接收者能够核实发送者对报文的签名;

  2. 发送者事后不能抵赖对其报文的签名;

  3. 接收者无法伪造对报文的签名。

    数字签名算法是数字签名标准的一个子集,表示了只用作数字签名的一个特定的公钥算法。密钥运行在由SHA-1产生的消息哈希:为了验证一个签名,要重新计算消息的哈希,使用公钥解密签名然后比较结果。缩写为DSA。

    数字签名是电子签名的特殊形式。到目前为止,至少已经有 20 多个国家通过法律 认可电子签名,其中包括欧盟和美国,我国的电子签名法于 2004 年 8 月 28 日第十届全 国人民代表大会常务委员会第十一次会议通过。数字签名在 ISO 7498-2 标准中定义为: “附加在数据单元上的一些数据,或是对数据单元所作的密码变换,这种数据和变换允许数据单元的接收者用以确认数据单元来源和数据单元的完整性,并保护数据,防止被人(例如接收者)进行伪造”。数字签名机制提供了一种鉴别方法,以解决伪造、抵赖、冒充和篡改等问题,利用数据加密技术、数据变换技术,使收发数据双方能够满足两个条件:接收方能够鉴别发送方所宣称的身份;发送方以后不能否认其发送过该数据这一 事实。

    数字签名是密码学理论中的一个重要分支。它的提出是为了对电子文档进行签名,以 替代传统纸质文档上的手写签名,因此它必须具备 5 个特性。

    (1)签名是可信的。

    (2)签名是不可伪造的。

    (3)签名是不可重用的。

    (4)签名的文件是不可改变的。

    (5)签名是不可抵赖的。

    参考链接:数字签名算法_网络

    http://ke..com/view/11763940.htm

I. dsa的签名过程比rsa短

   DSA(用于数字签名算法)的签名生成速度很快,验证速度很慢,加密时更慢,但解密时速度很快,安全性与RSA密钥相等,而密钥长度相等。此为一些重要的话,现在是一些观点。

        RSA算法(可用于加密和数字签名)的安全性基于这样的事实:大整数的因式分解被认为是‘难以破解’(困难的),而DSA安全性基于离散对数问题。今天已知用于分解大整数块的最快算法是通用数字场筛(可以理解为对简单合理筛或二次筛的改进算法),也是解决有限域中的离散对数问题的最快算法,该算法以DSA指定的大素数为模。

        如果你的计算机安装了OpenSSL,请运行。您将看到DSA在生成签名时执行的很快,但在验证具有相同密钥长度的签名时速度要慢得多。通常来说你想要验证得(速度)更快,如果你处理的是一个已签名的文件,(而如果你的)签名只生成一次,这很好,但文件签名最终可能会被用户频繁地验证(这就不好了,因为验证速度很慢)。

J. 带密钥的消息摘要算法——数据签名算法

数字签名算法可以看做是一种带有密钥(公钥+私钥)的消息摘要算法,也就是说,数据签名算法是非对称加密算法和消息摘要算法的结合体。该算法包含签名和验证两项操作,遵循 “私钥签名,公钥验证” 的签名/验证方式。

1、甲方构建密钥对,并能公布公钥给乙方。
2、甲方想乙方发送数据需要附加签名。
3、乙方使用公钥和签名验证数据。

RSA数字签名算法主要可以分为:MD、SHA两类。该算法公钥通常要比私钥短。

RSA数字签名示例:

在实现层面上,可以认为DSA算法实现就是RSA算法实现的精简版。DSA算法仅支持SHA系列消息摘要算法。

DSA数字签名示例:

ECDSA算法相对于传统签名算法具有速度快、强度高、签名短等优点。微软操作系统及办公软件的序列号验证就使用了该算法。

ECDSA算法示例:

热点内容
缓存数据生产服务 发布:2025-05-16 01:08:58 浏览:583
普通电脑服务器图片 发布:2025-05-16 01:04:02 浏览:970
服务器地址和端口如何区分 发布:2025-05-16 01:03:17 浏览:833
重新编目数据库 发布:2025-05-16 00:54:34 浏览:513
android语音控制 发布:2025-05-16 00:53:50 浏览:265
win8windows无法访问 发布:2025-05-16 00:37:53 浏览:894
八种排序算法 发布:2025-05-16 00:37:17 浏览:55
左旋螺纹数控编程实例 发布:2025-05-16 00:11:49 浏览:10
安卓游戏旧版本从哪个软件下载 发布:2025-05-16 00:00:20 浏览:329
连接聚类算法 发布:2025-05-15 23:55:09 浏览:978