hadoop算法
Ⅰ hadoop什么意思
hadoop是一款开源软件,主要用于分布式存储和计算,他由HDFS和MapRece计算框架组成的,他们分别是Google的GFS和MapRece的开源实现。由于hadoop的易用性和可扩展性,因此成为最近流行的海量数据处理框架。hadoop这个单词来源于其发明者的儿子为一个玩具大象起的名字。
Ⅱ 如何让Hadoop结合R语言做大数据分析
R语言和Hadoop让我们体会到了,两种技术在各自领域的强大。很多开发人员在计算机的角度,都会提出下面2个问题。问题1: Hadoop的家族如此之强大,为什么还要结合R语言?x0dx0a问题2: Mahout同样可以做数据挖掘和机器学习,和R语言的区别是什么?下面我尝试着做一个解答:问题1: Hadoop的家族如此之强大,为什么还要结合R语言?x0dx0ax0dx0aa. Hadoop家族的强大之处,在于对大数据的处理,让原来的不可能(TB,PB数据量计算),成为了可能。x0dx0ab. R语言的强大之处,在于统计分析,在没有Hadoop之前,我们对于大数据的处理,要取样本,假设检验,做回归,长久以来R语言都是统计学家专属的工具。x0dx0ac. 从a和b两点,我们可以看出,hadoop重点是全量数据分析,而R语言重点是样本数据分析。 两种技术放在一起,刚好是最长补短!x0dx0ad. 模拟场景:对1PB的新闻网站访问日志做分析,预测未来流量变化x0dx0ad1:用R语言,通过分析少量数据,对业务目标建回归建模,并定义指标d2:用Hadoop从海量日志数据中,提取指标数据d3:用R语言模型,对指标数据进行测试和调优d4:用Hadoop分步式算法,重写R语言的模型,部署上线这个场景中,R和Hadoop分别都起着非常重要的作用。以计算机开发人员的思路,所有有事情都用Hadoop去做,没有数据建模和证明,”预测的结果”一定是有问题的。以统计人员的思路,所有的事情都用R去做,以抽样方式,得到的“预测的结果”也一定是有问题的。所以让二者结合,是产界业的必然的导向,也是产界业和学术界的交集,同时也为交叉学科的人才提供了无限广阔的想象空间。问题2: Mahout同样可以做数据挖掘和机器学习,和R语言的区别是什么?x0dx0ax0dx0aa. Mahout是基于Hadoop的数据挖掘和机器学习的算法框架,Mahout的重点同样是解决大数据的计算的问题。x0dx0ab. Mahout目前已支持的算法包括,协同过滤,推荐算法,聚类算法,分类算法,LDA, 朴素bayes,随机森林。上面的算法中,大部分都是距离的算法,可以通过矩阵分解后,充分利用MapRece的并行计算框架,高效地完成计算任务。x0dx0ac. Mahout的空白点,还有很多的数据挖掘算法,很难实现MapRece并行化。Mahout的现有模型,都是通用模型,直接用到的项目中,计算结果只会比随机结果好一点点。Mahout二次开发,要求有深厚的java和Hadoop的技术基础,最好兼有 “线性代数”,“概率统计”,“算法导论” 等的基础知识。所以想玩转Mahout真的不是一件容易的事情。x0dx0ad. R语言同样提供了Mahout支持的约大多数算法(除专有算法),并且还支持大量的Mahout不支持的算法,算法的增长速度比mahout快N倍。并且开发简单,参数配置灵活,对小型数据集运算速度非常快。x0dx0a虽然,Mahout同样可以做数据挖掘和机器学习,但是和R语言的擅长领域并不重合。集百家之长,在适合的领域选择合适的技术,才能真正地“保质保量”做软件。x0dx0ax0dx0a如何让Hadoop结合R语言?x0dx0ax0dx0a从上一节我们看到,Hadoop和R语言是可以互补的,但所介绍的场景都是Hadoop和R语言的分别处理各自的数据。一旦市场有需求,自然会有商家填补这个空白。x0dx0ax0dx0a1). RHadoopx0dx0ax0dx0aRHadoop是一款Hadoop和R语言的结合的产品,由RevolutionAnalytics公司开发,并将代码开源到github社区上面。RHadoop包含三个R包 (rmr,rhdfs,rhbase),分别是对应Hadoop系统架构中的,MapRece, HDFS, HBase 三个部分。x0dx0ax0dx0a2). RHiveRHive是一款通过R语言直接访问Hive的工具包,是由NexR一个韩国公司研发的。x0dx0ax0dx0a3). 重写Mahout用R语言重写Mahout的实现也是一种结合的思路,我也做过相关的尝试。x0dx0ax0dx0a4).Hadoop调用Rx0dx0ax0dx0a上面说的都是R如何调用Hadoop,当然我们也可以反相操作,打通JAVA和R的连接通道,让Hadoop调用R的函数。但是,这部分还没有商家做出成形的产品。x0dx0ax0dx0a5. R和Hadoop在实际中的案例x0dx0ax0dx0aR和Hadoop的结合,技术门槛还是有点高的。对于一个人来说,不仅要掌握linux, Java, Hadoop, R的技术,还要具备 软件开发,算法,概率统计,线性代数,数据可视化,行业背景 的一些基本素质。在公司部署这套环境,同样需要多个部门,多种人才的的配合。Hadoop运维,Hadoop算法研发,R语言建模,R语言MapRece化,软件开发,测试等等。所以,这样的案例并不太多。
Ⅲ 在hadoop集群中,fifo调度算法具有哪些特点
首先介绍了Hadoop平台下作业的分布式运行机制,然后对Hadoop平台自带的4种任务调度器做分析和比较,最后在分析JobTracker类文件的基础上指出了创建自定义任务调度器所需完成的工作。首先Hadoop集群式基于单服务器的,只有一个服务器节点负责调度整个集群的作业运行,主要的具体工作是切分大数据量的作业,指定哪些Worker节点做Map工作、哪些Worker节点做Rece工作、与Worker节点通信并接受其心跳信号、作为用户的访问入口等等。其次,集群中的每个Worker节点相当于一个器官,运行着主节点所指派的具体作业。这些节点会被分为两种类型,一种是接收分块之后的作业并做映射工作。另一种是负责把前面所做的映射工作按照约定的规则做一个统计。Task-Tracker通过运行一个简单循环来定期地发送心跳信号(heartbeat)给JobTracker.这个心跳信号会把TaskTracker是否还在存活告知JobTracker,TaskTracker通过信号指明自己是否已经准备好运行新的任务.一旦TaskTracker已经准备好接受任务,JobTracker就会从作业优先级表中选定一个作业并分配下去.至于到底是执行Map任务还是Rece任务,是由TaskTracker的任务槽所决定的.默认的任务调度器在处理Rece任务之前,会优先填满空闲的Map任务槽.因此,如果TaskTracker满足存在至少一个空闲任务槽时,JobTracker会为它分配Map任务,否则为它选择一个Rece任务.TaskTracker在运行任务的时候,第一步是从共享文件系统中把作业的JAR文件复制过来,从而实现任务文件的本地化.第二步是TaskTracker为任务新建一个本地文件夹并把作业文件解压在此目录中.第三步是由Task-Tracker新建一个TaskRunner实例来运行该任务.Hadoop平台默认的调度方案就是JobQueueTaskScheler,这是一种按照任务到来的时间先后顺序而执行的调度策略.这种方式比较简单,JobTracker作为主控节点,仅仅是依照作业到来的先后顺序而选择将要执行的作业.当然,这有一定的缺陷,由于Hadoop平台是默认将作业运行在整个集群上的,那么如果一个耗时非常大的作业进入执行期,将会导致其余大量作业长时间得不到运行.这种长时间运行的优先级别并不高的作业带来了严重的作业阻塞,使得整个平台的运行效率处在较低的水平.Hadoop平台对这种FIFO(FirstINAndFirstOut)机制所给出的解决法是调用SetJobPriority()方法,通过设置作业的权重级别来做平衡调度.FairScheler是一种“公平”调度器,它的目标是让每个用户能够公平地共享Hadoop集群计算能力.当只有一个作业运行的时候,它会得到整个集群的资源.随着提交到作业表中作业的增多,Hadoop平台会把集群中空闲出来的时间槽公平分配给每个需要执行的作业.这样即便其中某些作业需要较长时间运行,平台仍然有能力让那些短作业在合理时间内完成[3].FairScheler支持资源抢占,当一个资源池在一定时段内没有得到公平共享时,它会终止该资源池所获得的过多的资源,同时把这些释放的资源让给那些资源不足的资源池.Hadoop平台中的CapacityScheler是由Yahoo贡献的,在调度器上,设置了三种粒度的对象:queue,job,task.在该策略下,平台可以有多个作业队列,每个作业队列经提交后,都会获得一定数量的TaskTracker资源.具体调度流程如下.(1)选择queue,根据资源库的使用情况从小到大排序,直到找到一个合适的job.(2)选择job,在当前所选定的queue中,按照作业提交的时间先后以及作业的权重优先级别进行排序,选择合适的job.当然,在job选择时还需要考虑所选作业是否超出目前现有的资源上限,以及资源池中的内存是否够该job的task用等因素.(3)选择task,根据本地节点的资源使用情况来选择合适的task.虽然Hadoop平台自带了几种调度器,但是上述3种调度方案很难满足公司复杂的应用需求.因此作为平台的个性化使用者,往往需要开发自己的调度器.Hadoop的调度器是在JobTracker中加载和调用的,因此开发一个自定义的调度器就必须搞清楚JobTracker类文件的内部机制.作为Hadoop平台的核心组件,JobTracker监控着整个集群的作业运行情况并对资源进行管理调度.每个Task-Tracker每隔3s通过heartbeat向JobTracker汇报自己管理的机器的一些基本信息,包括内存使用量、内存的剩余量以及空闲的slot数目等等[5].一旦JobTracker发现了空闲slot,便会调用调度器中的AssignTask方法为该TaskTracker分配task。
Ⅳ 怎么优化hadoop任务调度算法
首先介绍了Hadoop平台下作业的分布式运行机制,然后对Hadoop平台自带的4种任务调度器做分析和比较,最后在分析JobTracker类文件的基础上指出了创建自定义任务调度器所需完成的工作。
首先Hadoop集群式基于单服务器的,只有一个服务器节点负责调度整个集群的作业运行,主要的具体工作是切分大数据量的作业,指定哪些Worker节点做Map工作、哪些Worker节点做Rece工作、与Worker节点通信并接受其心跳信号、作为用户的访问入口等等。其次,集群中的每个Worker节点相当于一个器官,运行着主节点所指派的具体作业。这些节点会被分为两种类型,一种是接收分块之后的作业并做映射工作。另一种是负责把前面所做的映射工作按照约定的规则做一个统计。
Task-Tracker通过运行一个简单循环来定期地发送心跳信号(heartbeat)给JobTracker.这个心跳信号会把TaskTracker是否还在存活告知JobTracker,TaskTracker通过信号指明自己是否已经准备
好运行新的任务.一旦TaskTracker已经准备好接受任务,JobTracker就会从作业优先级表中选定一个作业并分配下去.至于到底是执行Map任务还是Rece任务,是由TaskTracker的任务槽所决定的.默认的任务调度器在处理Rece任务之前,会优先填满空闲的Map任务槽.因此,如果TaskTracker满足存在至少一个空闲任务槽时,JobTracker会为它分配Map任务,否则为它选择一个Rece任务.TaskTracker在运行任务的时候,第一步是从共享文件系统中把作业的JAR文件复制过来,从而实现任务文件的本地化.第二步是TaskTracker为任务新建一个本地文件夹并把作业文件解压在此目录中.第三步是由Task-Tracker新建一个TaskRunner实例来运行该任务.
Hadoop平台默认的调度方案就是JobQueueTaskScheler,这是一种按照任务到来的时间先后顺序而执行的调度策略.这种方式比较简单,JobTracker作为主控节点,仅仅是依照作业到来的先后顺序而选择将要执行的作业.当然,这有一定的缺陷,由于Hadoop平台是默认将作业运行在整个集群上的,那么如果一个耗时非常大的作业进入执行期,将会导致其余大量作业长时间得不到运行.这种长时间运行的优先级别并不高的作业带来了严重的作业阻塞,使得整个平台的运行效率处在较低的水平.Hadoop平台对这种FIFO(FirstINAndFirstOut)机制所给出的解决办法是调用SetJobPriority()方法,通过设置作业的权重级别来做平衡调度.
FairScheler是一种“公平”调度器,它的目标是让每个用户能够公平地共享Hadoop集群计算能力.当只有一个作业运行的时候,它会得到整个集群的资源.随着提交到作业表中作业的增多,Hadoop平台会把集群中空闲出来的时间槽公平分配给每个需要执行的作业.这样即便其中某些作业需要较长时间运行,平台仍然有能力让那些短作业在合理时间内完成[3].FairScheler支持资源抢占,当一个资源池在一定时段内没有得到公平共享时,它会终止该资源池所获得的过多的资源,同时把这些释放的资源让给那些资源不足的资源池.
Hadoop平台中的CapacityScheler是由Yahoo贡献的,在调度器上,设置了三种粒度的对象:queue,job,task.在该策略下,平台可以有多个作业队列,每个作业队列经提交后,都会获得一定数量的TaskTracker资源.具体调度流程如下.
(1)选择queue,根据资源库的使用情况从小到大排序,直到找到一个合适的job.
(2)选择job,在当前所选定的queue中,按照作业提交的时间先后以及作业的权重优先级别进行排序,选择合适的job.当然,在job选择时还需要考虑所选作业是否超出目前现有的资源上限,以及资源池中的内存是否够该job的task用等因素.
(3)选择task,根据本地节点的资源使用情况来选择合适的task.
虽然Hadoop平台自带了几种调度器,但是上述3种调度方案很难满足公司复杂的应用需求.因此作为平台的个性化使用者,往往需要开发自己的调度器.Hadoop的调度器是在JobTracker中加载和调用的,因此开发一个自定义的调度器就必须搞清楚JobTracker类文件的内部机制.作为Hadoop平台的核心组件,JobTracker监控着整个集群的作业运行情况并对资源进行管理调度.每个Task-Tracker每隔3s通过heartbeat向JobTracker汇报自己管理的机器的一些基本信息,包括内存使用量、内存的剩余量以及空闲的slot数目等等[5].一
旦JobTracker发现了空闲slot,便会调用调度器中的AssignTask方法为该TaskTracker分配task。
Ⅳ 基于hadoop的机器学习算法 有哪些
很多,主要说下监督学习这块的算法哈。欢迎讨论。
svm,支撑向量机,通过找到样本空间中的一个超平面,实现样本的分类,也可以作回归,主要用在文本分类,图像识别等领域,详见:;
lr,逻辑回归,本质也是线性回归,通过拟合拟合样本的某个曲线,然后使用逻辑函数进行区间缩放,但是一般用来分类,主要用在ctr预估、推荐等;
nn,神经网络,通过找到某种非线性模型拟合数据,主要用在图像等;
nb,朴素贝叶斯,通过找到样本所属于的联合分步,然后通过贝叶斯公式,计算样本的后验概率,从而进行分类,主要用来文本分类;
dt,决策树,构建一棵树,在节点按照某种规则(一般使用信息熵)来进行样本划分,实质是在样本空间进行块状的划分,主要用来分类,也有做回归,但更多的是作为弱分类器,用在model embedding中;
rf,随进森林,是由许多决策树构成的森林,每个森林中训练的样本是从整体样本中抽样得到,每个节点需要进行划分的特征也是抽样得到,这样子就使得每棵树都具有独特领域的知识,从而有更好的泛化能力;
gbdt,梯度提升决策树,实际上也是由多棵树构成,和rf不同的是,每棵树训练样本是上一棵树的残差,这体现了梯度的思想,同时最后的结构是用这所有的树进行组合或者投票得出,主要用在推荐、相关性等;
knn,k最近邻,应该是最简单的ml方法了,对于未知标签的样本,看与它最近的k个样本(使用某种距离公式,马氏距离或者欧式距离)中哪种标签最多,它就属于这类;
Ⅵ hadoop的maprece常见算法案例有几种
基本MapRece模式
计数与求和
问题陈述:
有许多文档,每个文档都有一些字段组成。需要计算出每个字段在所有文档中的出现次数或者这些字段的其他什么统计值。例如,给定一个log文件,其中的每条记录都包含一个响应时间,需要计算出平均响应时间。
解决方案:
让我们先从简单的例子入手。在下面的代码片段里,Mapper每遇到指定词就把频次记1,Recer一个个遍历这些词的集合然后把他们的频次加和。
1 class Mapper
2 method Map(docid id, doc d)
3 for all term t in doc d do
4 Emit(term t, count 1)
5
6 class Recer
7 method Rece(term t, counts [c1, c2,...])
8 sum = 0
9 for all count c in [c1, c2,...] do
10 sum = sum + c
11 Emit(term t, count sum)
这种方法的缺点显而易见,Mapper提交了太多无意义的计数。它完全可以通过先对每个文档中的词进行计数从而减少传递给Recer的数据量:
1 class Mapper
2 method Map(docid id, doc d)
3 H = new AssociativeArray
4 for all term t in doc d do
5 H{t} = H{t} + 1
6 for all term t in H do
7 Emit(term t, count H{t})
如果要累计计数的的不只是单个文档中的内容,还包括了一个Mapper节点处理的所有文档,那就要用到Combiner了:
1 class Mapper
2 method Map(docid id, doc d)
3 for all term t in doc d do
4 Emit(term t, count 1)
5
6 class Combiner
7 method Combine(term t, [c1, c2,...])
8 sum = 0
9 for all count c in [c1, c2,...] do
10 sum = sum + c
11 Emit(term t, count sum)
12
13 class Recer
14 method Rece(term t, counts [c1, c2,...])
15 sum = 0
16 for all count c in [c1, c2,...] do
17 sum = sum + c
18 Emit(term t, count sum)
应用:Log 分析, 数据查询
整理归类
问题陈述:
有一系列条目,每个条目都有几个属性,要把具有同一属性值的条目都保存在一个文件里,或者把条目按照属性值分组。 最典型的应用是倒排索引。
解决方案:
解决方案很简单。 在 Mapper 中以每个条目的所需属性值作为 key,其本身作为值传递给 Recer。 Recer 取得按照属性值分组的条目,然后可以处理或者保存。如果是在构建倒排索引,那么 每个条目相当于一个词而属性值就是词所在的文档ID。
应用:倒排索引, ETL
过滤 (文本查找),解析和校验
问题陈述:
假设有很多条记录,需要从其中找出满足某个条件的所有记录,或者将每条记录传换成另外一种形式(转换操作相对于各条记录独立,即对一条记录的操作与其他记录无关)。像文本解析、特定值抽取、格式转换等都属于后一种用例。
解决方案:
非常简单,在Mapper 里逐条进行操作,输出需要的值或转换后的形式。
应用:日志分析,数据查询,ETL,数据校验
分布式任务执行
问题陈述:
大型计算可以分解为多个部分分别进行然后合并各个计算的结果以获得最终结果。
解决方案: 将数据切分成多份作为每个 Mapper 的输入,每个Mapper处理一份数据,执行同样的运算,产生结果,Recer把多个Mapper的结果组合成一个。
案例研究: 数字通信系统模拟
像 WiMAX 这样的数字通信模拟软件通过系统模型来传输大量的随机数据,然后计算传输中的错误几率。 每个 Mapper 处理样本 1/N 的数据,计算出这部分数据的错误率,然后在 Recer 里计算平均错误率。
应用:工程模拟,数字分析,性能测试
排序
问题陈述:
有许多条记录,需要按照某种规则将所有记录排序或是按照顺序来处理记录。
解决方案: 简单排序很好办 – Mappers 将待排序的属性值为键,整条记录为值输出。 不过实际应用中的排序要更加巧妙一点, 这就是它之所以被称为MapRece 核心的原因(“核心”是说排序?因为证明Hadoop计算能力的实验是大数据排序?还是说Hadoop的处理过程中对key排序的环节?)。在实践中,常用组合键来实现二次排序和分组。
MapRece 最初只能够对键排序, 但是也有技术利用可以利用Hadoop 的特性来实现按值排序。想了解的话可以看这篇博客。
按照BigTable的概念,使用 MapRece来对最初数据而非中间数据排序,也即保持数据的有序状态更有好处,必须注意这一点。换句话说,在数据插入时排序一次要比在每次查询数据的时候排序更高效。
应用:ETL,数据分析
非基本 MapRece 模式
迭代消息传递 (图处理)
问题陈述:
假设一个实体网络,实体之间存在着关系。 需要按照与它比邻的其他实体的属性计算出一个状态。这个状态可以表现为它和其它节点之间的距离, 存在特定属性的邻接点的迹象, 邻域密度特征等等。
解决方案:
网络存储为系列节点的结合,每个节点包含有其所有邻接点ID的列表。按照这个概念,MapRece 迭代进行,每次迭代中每个节点都发消息给它的邻接点。邻接点根据接收到的信息更新自己的状态。当满足了某些条件的时候迭代停止,如达到了最大迭代次数(网络半径)或两次连续的迭代几乎没有状态改变。从技术上来看,Mapper 以每个邻接点的ID为键发出信息,所有的信息都会按照接受节点分组,recer 就能够重算各节点的状态然后更新那些状态改变了的节点。下面展示了这个算法:
1 class Mapper
2 method Map(id n, object N)
3 Emit(id n, object N)
4 for all id m in N.OutgoingRelations do
5 Emit(id m, message getMessage(N))
6
7 class Recer
8 method Rece(id m, [s1, s2,...])
9 M = null
10 messages = []
11 for all s in [s1, s2,...] do
12 if IsObject(s) then
13 M = s
14 else // s is a message
15 messages.add(s)
16 M.State = calculateState(messages)
17 Emit(id m, item M)
一个节点的状态可以迅速的沿着网络传全网,那些被感染了的节点又去感染它们的邻居,整个过程就像下面的图示一样:
案例研究: 沿分类树的有效性传递
问题陈述:
这个问题来自于真实的电子商务应用。将各种货物分类,这些类别可以组成一个树形结构,比较大的分类(像男人、女人、儿童)可以再分出小分类(像男裤或女装),直到不能再分为止(像男式蓝色牛仔裤)。这些不能再分的基层类别可以是有效(这个类别包含有货品)或者已无效的(没有属于这个分类的货品)。如果一个分类至少含有一个有效的子分类那么认为这个分类也是有效的。我们需要在已知一些基层分类有效的情况下找出分类树上所有有效的分类。
解决方案:
这个问题可以用上一节提到的框架来解决。我们咋下面定义了名为 getMessage和 calculateState 的方法:
1 class N
2 State in {True = 2, False = 1, null = 0},
3 initialized 1 or 2 for end-of-line categories, 0 otherwise
4 method getMessage(object N)
5 return N.State
6 method calculateState(state s, data [d1, d2,...])
7 return max( [d1, d2,...] )
案例研究:广度优先搜索
问题陈述:需要计算出一个图结构中某一个节点到其它所有节点的距离。
解决方案: Source源节点给所有邻接点发出值为0的信号,邻接点把收到的信号再转发给自己的邻接点,每转发一次就对信号值加1:
1 class N
2 State is distance,
3 initialized 0 for source node, INFINITY for all other nodes
4 method getMessage(N)
5 return N.State + 1
6 method calculateState(state s, data [d1, d2,...])
7 min( [d1, d2,...] )
案例研究:网页排名和 Mapper 端数据聚合
这个算法由Google提出,使用权威的PageRank算法,通过连接到一个网页的其他网页来计算网页的相关性。真实算法是相当复杂的,但是核心思想是权重可以传播,也即通过一个节点的各联接节点的权重的均值来计算节点自身的权重。
1 class N
2 State is PageRank
3 method getMessage(object N)
4 return N.State / N.OutgoingRelations.size()
5 method calculateState(state s, data [d1, d2,...])
6 return ( sum([d1, d2,...]) )
要指出的是上面用一个数值来作为评分实际上是一种简化,在实际情况下,我们需要在Mapper端来进行聚合计算得出这个值。下面的代码片段展示了这个改变后的逻辑 (针对于 PageRank 算法):
1 class Mapper
2 method Initialize
3 H = new AssociativeArray
4 method Map(id n, object N)
5 p = N.PageRank / N.OutgoingRelations.size()
6 Emit(id n, object N)
7 for all id m in N.OutgoingRelations do
8 H{m} = H{m} + p
9 method Close
10 for all id n in H do
11 Emit(id n, value H{n})
12
13 class Recer
14 method Rece(id m, [s1, s2,...])
15 M = null
16 p = 0
17 for all s in [s1, s2,...] do
18 if IsObject(s) then
19 M = s
20 else
21 p = p + s
22 M.PageRank = p
23 Emit(id m, item M)
应用:图分析,网页索引
值去重 (对唯一项计数)
问题陈述: 记录包含值域F和值域 G,要分别统计相同G值的记录中不同的F值的数目 (相当于按照 G分组).
这个问题可以推而广之应用于分面搜索(某些电子商务网站称之为Narrow Search)
Record 1: F=1, G={a, b}
Record 2: F=2, G={a, d, e}
Record 3: F=1, G={b}
Record 4: F=3, G={a, b}
Result:
a -> 3 // F=1, F=2, F=3
b -> 2 // F=1, F=3
d -> 1 // F=2
e -> 1 // F=2
解决方案 I:
第一种方法是分两个阶段来解决这个问题。第一阶段在Mapper中使用F和G组成一个复合值对,然后在Recer中输出每个值对,目的是为了保证F值的唯一性。在第二阶段,再将值对按照G值来分组计算每组中的条目数。
第一阶段:
1 class Mapper
2 method Map(null, record [value f, categories [g1, g2,...]])
3 for all category g in [g1, g2,...]
4 Emit(record [g, f], count 1)
5
6 class Recer
7 method Rece(record [g, f], counts [n1, n2, ...])
8 Emit(record [g, f], null )
第二阶段:
1 class Mapper
2 method Map(record [f, g], null)
3 Emit(value g, count 1)
4
5 class Recer
6 method Rece(value g, counts [n1, n2,...])
7 Emit(value g, sum( [n1, n2,...] ) )
解决方案 II:
第二种方法只需要一次MapRece 即可实现,但扩展性不强。算法很简单-Mapper 输出值和分类,在Recer里为每个值对应的分类去重然后给每个所属的分类计数加1,最后再在Recer结束后将所有计数加和。这种方法适用于只有有限个分类,而且拥有相同F值的记录不是很多的情况。例如网络日志处理和用户分类,用户的总数很多,但是每个用户的事件是有限的,以此分类得到的类别也是有限的。值得一提的是在这种模式下可以在数据传输到Recer之前使用Combiner来去除分类的重复值。
1 class Mapper
2 method Map(null, record [value f, categories [g1, g2,...] )
3 for all category g in [g1, g2,...]
4 Emit(value f, category g)
5
6 class Recer
7 method Initialize
8 H = new AssociativeArray : category -> count
9 method Rece(value f, categories [g1, g2,...])
10 [g1', g2',..] = ExcludeDuplicates( [g1, g2,..] )
11 for all category g in [g1', g2',...]
12 H{g} = H{g} + 1
13 method Close
14 for all category g in H do
15 Emit(category g, count H{g})
应用:日志分析,用户计数
互相关
问题陈述:有多个各由若干项构成的组,计算项两两共同出现于一个组中的次数。假如项数是N,那么应该计算N*N。
这种情况常见于文本分析(条目是单词而元组是句子),市场分析(购买了此物的客户还可能购买什么)。如果N*N小到可以容纳于一台机器的内存,实现起来就比较简单了。
配对法
第一种方法是在Mapper中给所有条目配对,然后在Recer中将同一条目对的计数加和。但这种做法也有缺点:
使用 combiners 带来的的好处有限,因为很可能所有项对都是唯一的
不能有效利用内存
1 class Mapper
2 method Map(null, items [i1, i2,...] )
3 for all item i in [i1, i2,...]
4 for all item j in [i1, i2,...]
5 Emit(pair [i j], count 1)
6
7 class Recer
8 method Rece(pair [i j], counts [c1, c2,...])
9 s = sum([c1, c2,...])
10 Emit(pair[i j], count s)
Stripes Approach(条方法?不知道这个名字怎么理解)
第二种方法是将数据按照pair中的第一项来分组,并维护一个关联数组,数组中存储的是所有关联项的计数。The second approach is to group data by the first item in pair and maintain an associative array (“stripe”) where counters for all adjacent items are accumulated. Recer receives all stripes for leading item i, merges them, and emits the same result as in the Pairs approach.
中间结果的键数量相对较少,因此减少了排序消耗。
可以有效利用 combiners。
可在内存中执行,不过如果没有正确执行的话也会带来问题。
实现起来比较复杂。
一般来说, “stripes” 比 “pairs” 更快
1 class Mapper
2 method Map(null, items [i1, i2,...] )
3 for all item i in [i1, i2,...]
4 H = new AssociativeArray : item -> counter
5 for all item j in [i1, i2,...]
6 H{j} = H{j} + 1
7 Emit(item i, stripe H)
8
9 class Recer
10 method Rece(item i, stripes [H1, H2,...])
11 H = new AssociativeArray : item -> counter
12 H = merge-sum( [H1, H2,...] )
13 for all item j in H.keys()
14 Emit(pair [i j], H{j})
应用:文本分析,市场分析
参考资料:Lin J. Dyer C. Hirst G. Data Intensive Processing MapRece
用MapRece 表达关系模式
在这部分我们会讨论一下怎么使用MapRece来进行主要的关系操作。
筛选(Selection)
1 class Mapper
2 method Map(rowkey key, tuple t)
3 if t satisfies the predicate
4 Emit(tuple t, null)
投影(Projection)
投影只比筛选稍微复杂一点,在这种情况下我们可以用Recer来消除可能的重复值。
1 class Mapper
2 method Map(rowkey key, tuple t)
3 tuple g = project(t) // extract required fields to tuple g
4 Emit(tuple g, null)
5
6 class Recer
Ⅶ hadoop怎么使用算法
实例一、对以下数据进行排序,根据收入减去支出得到最后结余从大到小排序,数据如下:
SortStep运行之后结果为上图根据结余从大到小排序。
代码如下:
[java]view plain
<InfoBean>{
privateStringaccount;
privatedoubleincome;
privatedoubleexpenses;
privatedoublesurplus;
publicvoidset(Stringaccount,doubleincome,doubleexpenses){
this.account=account;
this.income=income;
this.expenses=expenses;
this.surplus=income-expenses;
}
@Override
publicStringtoString(){
returnthis.income+" "+this.expenses+" "+this.surplus;
}
/**
*serialize
*/
publicvoidwrite(DataOutputout)throwsIOException{
out.writeUTF(account);
out.writeDouble(income);
out.writeDouble(expenses);
out.writeDouble(surplus);
}
/**
*deserialize
*/
publicvoidreadFields(DataInputin)throwsIOException{
this.account=in.readUTF();
this.income=in.readDouble();
this.expenses=in.readDouble();
this.surplus=in.readDouble();
}
publicintcompareTo(InfoBeano){
if(this.income==o.getIncome()){
returnthis.expenses>o.getExpenses()?1:-1;
}else{
returnthis.income>o.getIncome()?-1:1;
}
}
publicStringgetAccount(){
returnaccount;
}
publicvoidsetAccount(Stringaccount){
this.account=account;
}
publicdoublegetIncome(){
returnincome;
}
publicvoidsetIncome(doubleincome){
this.income=income;
}
publicdoublegetExpenses(){
returnexpenses;
}
publicvoidsetExpenses(doubleexpenses){
this.expenses=expenses;
}
publicdoublegetSurplus(){
returnsurplus;
}
publicvoidsetSurplus(doublesurplus){
this.surplus=surplus;
}
}
publicclassSumStep{
publicstaticvoidmain(String[]args)throwsException{
Configurationconf=newConfiguration();
Jobjob=Job.getInstance(conf);
job.setJarByClass(SumStep.class);
job.setMapperClass(SumMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(InfoBean.class);
FileInputFormat.setInputPaths(job,newPath(args[0]));
job.setRecerClass(SumRecer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(InfoBean.class);
FileOutputFormat.setOutputPath(job,newPath(args[1]));
job.waitForCompletion(true);
}
<LongWritable,Text,Text,InfoBean>{
privateInfoBeanbean=newInfoBean();
privateTextk=newText();
@Override
protectedvoidmap(LongWritablekey,Textvalue,Contextcontext)
throwsIOException,InterruptedException{
//split
Stringline=value.toString();
String[]fields=line.split(" ");
//getusefulfield
Stringaccount=fields[0];
doubleincome=Double.parseDouble(fields[1]);
doubleexpenses=Double.parseDouble(fields[2]);
k.set(account);
bean.set(account,income,expenses);
context.write(k,bean);
}
}
<Text,InfoBean,Text,InfoBean>{
privateInfoBeanbean=newInfoBean();
@Override
protectedvoidrece(Textkey,Iterable<InfoBean>v2s,Contextcontext)
throwsIOException,InterruptedException{
doublein_sum=0;
doubleout_sum=0;
for(InfoBeanbean:v2s){
in_sum+=bean.getIncome();
out_sum+=bean.getExpenses();
}
bean.set("",in_sum,out_sum);
context.write(key,bean);
}
}
}
publicclassSortStep{
publicstaticvoidmain(String[]args)throwsIOException,ClassNotFoundException,InterruptedException{
Configurationconf=newConfiguration();
Jobjob=Job.getInstance(conf);
job.setJarByClass(SortStep.class);
job.setMapperClass(SortMapper.class);
job.setMapOutputKeyClass(InfoBean.class);
job.setMapOutputValueClass(NullWritable.class);
FileInputFormat.setInputPaths(job,newPath(args[0]));
job.setRecerClass(SortRecer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(InfoBean.class);
FileOutputFormat.setOutputPath(job,newPath(args[1]));
job.waitForCompletion(true);
}
<LongWritable,Text,InfoBean,NullWritable>{
privateInfoBeanbean=newInfoBean();
@Override
protectedvoidmap(LongWritablekey,Textvalue,Contextcontext)
throwsIOException,InterruptedException{
Stringline=value.toString();
String[]fields=line.split(" ");
Stringaccount=fields[0];
doubleincome=Double.parseDouble(fields[1]);
doubleexpenses=Double.parseDouble(fields[2]);
bean.set(account,income,expenses);
context.write(bean,NullWritable.get());
}
}
<InfoBean,NullWritable,Text,InfoBean>{
privateTextk=newText();
@Override
protectedvoidrece(InfoBeanbean,Iterable<NullWritable>v2s,Contextcontext)
throwsIOException,InterruptedException{
Stringaccount=bean.getAccount();
k.set(account);
context.write(k,bean);
}
}
}
Map阶段
<0,"hellotom">
....
context.write("hello->a.txt",1);
context.write("hello->a.txt",1);
context.write("hello->a.txt",1);
context.write("hello->a.txt",1);
context.write("hello->a.txt",1);
context.write("hello->b.txt",1);
context.write("hello->b.txt",1);
context.write("hello->b.txt",1);
--------------------------------------------------------
combiner阶段
<"hello->a.txt",1>
<"hello->a.txt",1>
<"hello->a.txt",1>
<"hello->a.txt",1>
<"hello->a.txt",1>
<"hello->b.txt",1>
<"hello->b.txt",1>
<"hello->b.txt",1>
context.write("hello","a.txt->5");
context.write("hello","b.txt->3");
--------------------------------------------------------
Recer阶段
<"hello",{"a.txt->5","b.txt->3"}>
context.write("hello","a.txt->5b.txt->3");
-------------------------------------------------------
hello"a.txt->5b.txt->3"
tom"a.txt->2b.txt->1"
kitty"a.txt->1"
.......
publicclassInverseIndex{
publicstaticvoidmain(String[]args)throwsException{
Configurationconf=newConfiguration();
Jobjob=Job.getInstance(conf);
//设置jar
job.setJarByClass(InverseIndex.class);
//设置Mapper相关的属性
job.setMapperClass(IndexMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
FileInputFormat.setInputPaths(job,newPath(args[0]));//words.txt
//设置Recer相关属性
job.setRecerClass(IndexRecer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileOutputFormat.setOutputPath(job,newPath(args[1]));
job.setCombinerClass(IndexCombiner.class);
//提交任务
job.waitForCompletion(true);
}
<LongWritable,Text,Text,Text>{
privateTextk=newText();
privateTextv=newText();
@Override
protectedvoidmap(LongWritablekey,Textvalue,
Mapper<LongWritable,Text,Text,Text>.Contextcontext)
throwsIOException,InterruptedException{
Stringline=value.toString();
String[]fields=line.split("");
FileSplitinputSplit=(FileSplit)context.getInputSplit();
Pathpath=inputSplit.getPath();
Stringname=path.getName();
for(Stringf:fields){
k.set(f+"->"+name);
v.set("1");
context.write(k,v);
}
}
}
<Text,Text,Text,Text>{
privateTextk=newText();
privateTextv=newText();
@Override
protectedvoidrece(Textkey,Iterable<Text>values,
Recer<Text,Text,Text,Text>.Contextcontext)
throwsIOException,InterruptedException{
String[]fields=key.toString().split("->");
longsum=0;
for(Textt:values){
sum+=Long.parseLong(t.toString());
}
k.set(fields[0]);
v.set(fields[1]+"->"+sum);
context.write(k,v);
}
}
<Text,Text,Text,Text>{
privateTextv=newText();
@Override
protectedvoidrece(Textkey,Iterable<Text>values,
[java]view plain
此处的输入为SumStep的输出而不是源文件作为输入,当然也可以将两个job合并到一起执行,此处不再讨论。
[java]view plain
实例二、倒排索引,过程如下:
[plain]view plain
代码如下:
[java]view plain
Ⅷ hadoop课程设计
1. 大数据专业课程有哪些
首先我们要了解Java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。
Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据。基础
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
好说完基础了,再说说还需要学习哪些大数据技术,可以按我写的顺序学下去。
Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。
记住学到这里可以作为你学大数据的一个节点。
Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。
Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。
Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。
Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapRece程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。
Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。
2. hadoop视频教程下载
其实这个课程讲的“微博”项目是《HBase in action》中的例子。其中的源代码都放在 github 上面。
3. 请问哪位有《深入浅出Hadoop实战开发》的视频教程
Hadoop是什么,为什么要学习Hadoop?
Hadoop是一个分布式系统基础架构,由Apache基金会开发。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力高速运算和存储。Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。HDFS有着高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上。而且它提供高传输率(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求(requirements)这样可以流的形式访问(streaming access)文件系统中的数据。
Hadoop 是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop 还是可伸缩的,能够处理 PB 级数据。此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。
Hadoop带有用Java 语言编写的框架,因此运行在 Linux 生产平台上是非常理想的。本课程的讲解是采用linux平台进行模拟讲解,完全基于真实场景进行模拟现实
亮点一:技术点全面,体系完善
本课程在兼顾Hadoop课程知识体系完善的前提下,把实际开发中应用最多、最深、最实用的技术抽取出来,通过本课程,你将达到技术的新高点,进入云计算的美好世界。在技术方面你将彻底掌握基本的Hadoop集群;Hadoop HDFS原理;Hadoop HDFS基本的命令;Namenode的工作机制;HDFS基本配置管理;MapRece原理; HBase的系统架构;HBase的表结构;HBase如何使用MapRece;MapRece高级编程;split的实现详解;Hive入门;Hive结合MapRece;Hadoop的集群安装等众多知识点。
亮点二:基础+实战=应用,兼顾学与练
课程每阶段都安排了实战应用项目,以此方便学生能更快的掌握知识点的应用,如在第一阶段,课程结合HDFS应用,讲解了图片服务器的设计、以及如何利用Java API去对HDFS操作、在第二阶段;课程结合HBase实现微博项目的各种功能,使学员可以活学活用。在第三阶段:HBase和MapRece结合时下了实现话单查询与统计系统,在第四阶段,Hive实战部分,通过实战数据统计系统,使学员在最短的时间内掌握Hive的高级应用。
亮点三:讲师丰富的电信集团云平台运作经验
讲师robby拥有丰富的电信集团工作经验,目前负责云平台的各方面工作,并拥有多年的企业内部培训经验。讲课内容完全贴近企业需求,绝不纸上谈兵。
更多技术亮点参考课程大纲:(本大纲以章节形式命名要为防止某些章节1章节内容超过1课时)
第1章节:
> Hadoop背景
> HDFS设计目标
> HDFS不适合的场景
> HDFS架构详尽分析
> MapRece的基本原理
第2章节
> Hadoop的版本介绍
> 安装单机版Hadoop
> 安装Hadoop集群
第3章节
> HDFS命令行基本操作
> Namenode的工作机制
> HDFS基本配置管理
第4章节
> HDFS应用实战:图片服务器(1) - 系统设计
> 应用的环境搭建 php + bootstrap + java
> 使用Hadoop Java API实现向HDFS写入文件
第5章节
> HDFS应用实战:图片服务器(2)
> 使用Hadoop Java API实现读取HDFS中的文件
> 使用Hadoop Java API实现获取HDFS目录列表
> 使用Hadoop Java API实现删除HDFS中的文件
第6章节
> MapRece的基本原理
> MapRece的运行过程
> 搭建MapRece的java开发环境
> 使用MapRece的java接口实现WordCount
第7章节
> WordCount运算过程分析
> MapRece的biner
> 使用MapRece实现数据去重
> 使用MapRece实现数据排序
> 使用MapRece实现数据平均成绩计算
第8章节
> HBase详细介绍
> HBase的系统架构
> HBase的表结构,RowKey,列族和时间戳
> HBase中的Master,Region以及Region Server
第9章节
> 使用HBase实现微博应用(1)
> 用户注册,登陆和注销的设计
> 搭建环境 struts2 + jsp + bootstrap + jquery + HBase Java API
> HBase和用户相关的表结构设计
> 用户注册的实现
第10章节
> 使用HBase实现微博应用(2)
> 使用session实现用户登录和注销
> “关注"功能的设计
> “关注"功能的表结构设计
> “关注"功能的实现
第11章节
> 使用HBase实现微博应用(3)
> “发微博"功能的设计
> “发微博"功能的表结构设计
> “发微博"功能的实现
> 展现整个应用的运行
第12章节
> HBase与MapRece介绍
> HBase如何使用MapRece
第13章节
> HBase应用实战:话单查询与统计(1)
> 应用的整体设计
> 开发环境搭建
> 表结构设计
第14章节
> HBase应用实战:话单查询与统计(2)
> 话单入库单设计与实现
> 话单查询的设计与实现
第15章节
> HBase应用实战:话单查询与统计(3)
> 统计功能设计
> 统计功能实现
第16章节
> 深入MapRece(1)
> split的实现详解
> 自定义输入的实现
> 实例讲解
第17章节
> 深入MapRece(2)
> Rece的partition
> 实例讲解
第18章节
> Hive入门
> 安装Hive
> 使用Hive向HDFS存入结构化数据
> Hive的基本使用
第19章节
> 使用MySql作为Hive的元数据库
> Hive结合MapRece
第20章节
> Hive应用实战:数据统计(1)
> 应用设计,表结构设计
第21章节
> Hive应用实战:数据统计(2)
> 数据录入与统计的实现
4. 哪个课程题库有hadoop的题
这是在一个平衡Hadoop集群中,为数据节点/任务追踪器提供的规格:
在一个磁盘阵列中要有12到24个1~4TB硬盘
2个频率为2~2.5GHz的四核、六核或八核CPU
64~512GB的内存
有保障的千兆或万兆以太网(存储密度越大,需要的网络吞吐量越高)
名字节点角色负责协调集群上的数据存储,作业追踪器协调数据处理(备用的名字节点不应与集群中的名字节点共存,并且运行在与之相同的硬件环境上。)。Cloudera客户购买在RAID1或10配置上有足够功率和级磁盘数的商用机器来运行名字节点和作业追踪器。
NameNode也会直接需要与群集中的数据块的数量成比列的RAM。一个好的但不精确的规则是对于存储在分布式文件系统里面的每一个1百万的数据块,分配1GB的NameNode内存。于在一个群集里面的100个DataNodes而言,NameNode上的64GB的RAM提供了足够的空间来保证群集的增长。我们也把HA同时配置在NameNode和JobTracker上,
这里就是为NameNode/JobTracker/Standby NameNode节点群的技术细节。驱动器的数量或多或少,将取决于冗余数量的需要。
4–6 1TB 硬盘驱动器 采用 一个 JBOD 配置 (1个用于OS, 2个用于文件系统映像[RAID 1], 1个用于Apache ZooKeeper, 1个用于Journal节点)
2 4-/16-/8-核心 CPUs, 至少运行于 2-2.5GHz
64-128GB 随机存储器
Bonded Gigabit 以太网卡 or 10Gigabit 以太网卡
记住, 在思想上,Hadoop 体系设计为用于一种并行环境。
5. 大数据的课程都有哪些
大数据本身属于交叉学科,涵盖计算机、统计学、数学三个学科的专业知识。所以大数据的课程内容,基本上也是围绕着三个学科展开的。
数理统计方面:数学分析、统计学习、高等代数、离散数学、概率与统计等课程是基本配置。
计算机专业课程:数据结构、数据科学、程序设计、算法分析与设计、数据计算智能、数据库系统、计算机系统基础、并行体系结构与编程、非结构化大数据分析等,也是必备课程。
而想要真正找到工作的话,大数据主流技术框架,也要去补充起来,这才是找工作当中能够获得竞争力的加分项。
6. hadoop 集群教程
要教程?不明白你这个啥意思
7. 有哪些好的hadoop学习资料
1."Hadoop.Operations.pdf.zip"//vdisk.weibo/s/vDOQs6xMAQH62
2."Hadoop权威指南(中文版)(带书签).pdf"Hadoop权威指南(中文版)(带书签).pdf
3."[Hadoop权威指南(第2版)].pdf"[Hadoop权威指南(第2版)].pdf
4."hadoop权威指南第3版2012.rar"hadoop权威指南第3版2012.rar
5.《Hadoop技术内幕:深入解析HadoopCommon和HDFS.pdf"《Hadoop技术内幕:深入解析Hadoop Common和HDFS.pdf
6."Hadoop技术内幕:深入解析MapRece架构设计与实现原理.pdf"Hadoop技术内幕:深入解析MapRece架构设计与实现原理.pdf
7."Hadoop实战.pdf"Hadoop实战.pdf
8."Hadoop实战-陆嘉恒(高清完整版).pdf"Hadoop实战-陆嘉恒(高清完整版).pdf
9."Hadoop实战(第2版).pdf"Hadoop实战(第2版).pdf
10."HadoopinAction.pdf"Hadoop in Action.pdf
11"Hadoop in practice.pdf"Hadoop in practice.pdf
12"HadoopThe.Definitive.Guide,3Ed.pdf"Hadoop The.Definitive.Guide,3Ed.pdf
13."O'Reilly.Hadoop.The.Definitive.Guide.3rd.Edition.May.2012.pdf"O'Reilly.Hadoop.The.Definitive.Guide.3rd.Edition.May.2012.pdf
14."hadoop入门实战手册.pdf"hadoop入门实战手册.pdf
15."Hadoop入门手册.chm"Hadoop入门手册.chm
16."windows下配置cygwin、hadoop等并运行maprece及maprece程序讲解.doc"windows下配置cygwin、hadoop等并运行maprece及maprece程序讲解.doc
17"在Windows上安装Hadoop教程.pdf"在Windows上安装Hadoop教程.pdf
18."Hadoop源代码分析(完整版).pdf"Hadoop源代码分析(完整版).pdf
19."hadoop-api.CHM"hadoop-api.CHM
20."HBase-Hadoop@小米.pptx" HBase-Hadoop@小米.pptx
21."但彬-Hadoop平台的大数据整合.pdf"但彬-Hadoop平台的大数据整合.pdf
22."QCon2013-罗李-Hadoop在阿里.pdf"QCon2013-罗李
23."网络hadoop计算技术发展.pdf"网络hadoop计算技术发展.pdf
24."QCon-吴威-基于Hadoop的海量数据平台.pdf"QCon-吴威-基于Hadoop的海量数据平台.pdf
25."8步安装好你的hadoop.docx"8步安装好你的hadoop.docx
26."hadoop运维经验分享.ppsx"hadoop运维经验分享.ppsx
27."PPT集萃:20位Hadoop专家分享大数据技术工具与最佳实践.rar"PPT集萃:20位Hadoop专家分享大数据技术工具与最佳实践.rar
28."Hadoop2.0基本架构和发展趋势.pdf"Hadoop 2.0基本架构和发展趋势.pdf
29."Hadoop与大数据技术大会PPT资料.rar"Hadoop与大数据技术大会PPT资料.rar
30."Hadoop2011云计算大会.rar"Hadoop2011云计算大会.rar
Ⅸ 如何在hadoop上运行 k-means算法
可以自己尝试写一个分布式的kmeans,也可以部署spark,使用spark-mllib里面的kmeans
如果对python比较熟悉,可以使用pyspark的mllib
如果只是hadoop,找找mahout算法包
Ⅹ hadoop上运行算法,节点越多时间越多
这个问题你得先了解 Hadoop一个Job处理时间大概由哪些因素组成:
处理时间 map rece处理的时间
数据传输的时间==》数据的分发,map中间结果的本地写入,rece端远程获取数据的时间
数据分片方面,中间结果的大小
数据的本地性,map和rece在处理本节点的数据时,当然会很快和方面的多了;
综合上面的,可能还有其他的因素,你去考虑下自己的原因吧,
比如很小的数据集,却分了很多的数据片,分配了非常多的map或者rece,这明显是不合理的,很多的时间都浪费在了数据传输的过程,毕竟这个过程是很慢的,相对于计算来说。。。。