当前位置:首页 » 操作系统 » 查找算法平均

查找算法平均

发布时间: 2023-01-13 04:21:49

❶ 散列表的平均查找长度怎么计算

对于含有n个数据元素的查找表,查找成功的平均查找长度为:ASL=∑PiCi (i=1,2,3,…,n),可以简单以数学上的期望来这么理解。其中:Pi 为查找表中第i个数据元素的概率,Ci为找到第i个数据元素时已经比较过的次数。

在查找表中查找不到待查元素,但是找到待查元素应该在表中存在的位置的平均查找次数称为查找不成功时的平均查找长度,不成功。

(1)查找算法平均扩展阅读

散列表的查找过程基本上和造表过程相同。一些关键码可通过散列函数转换的地址直接找到,另一些关键码在散列函数得到的地址上产生了冲突,需要按处理冲突的方法进行查找。在介绍的三种处理冲突的方法中,产生冲突后的查找仍然是给定值与关键码进行比较的过程。所以,对散列表查找效率的量度,依然用平均查找长度来衡量。

查找过程中,关键码的比较次数,取决于产生冲突的多少,产生的冲突少,查找效率就高,产生的冲突多,查找效率就低。因此,影响产生冲突多少的因素,也就是影响查找效率的因素。影响产生冲突多少有以下三个因素:

1、散列函数是否均匀;

2、处理冲突的方法;

3、散列表的装填因子。

散列表的装填因子定义为:α= 填入表中的元素个数 / 散列表的长度

α是散列表装满程度的标志因子。由于表长是定值,α与“填入表中的元素个数”成正比,所以,α越大,填入表中的元素较多,产生冲突的可能性就越大;α越小,填入表中的元素较少,产生冲突的可能性就越小。

实际上,散列表的平均查找长度是装填因子α的函数,只是不同处理冲突的方法有不同的函数。

参考资料来源:网络-平均查找长度

参考资料来源:网络-散列表

❷ 衡量一个查找算法的效率

衡量一个查找算法的效率是平均查找长度。
因为衡量查找算法效率的主要标准是平均查找长度,即查找过程中关键字的平均比较次数,所以衡量一个查找算法的效率是平均查找长度。
效率字典中释义为单位时间内完成的工作量。是指最有效地使用社会资源以满足人类的愿望和需要。

❸ 查找的平均长度

为确定记录在查找表中的位置,需和给定值进行比较的关键字个数的期望值称为查找算法在查找成功时的平均查找长度(Average Search Length)。
对于含有n个数据元素的查找表,查找成功的平均查找长度为:ASL=∑PiCi (i=1,2,3,…,n)。其中:Pi 为查找表中第i个数据元素的概率,Ci为找到第i个数据元素时已经比较过的次数。

这题目应该选C

❹ 折半查找算法的平均查询长度为多少

首先,折半查找可以借助于一个二叉树来描述。
为了简化讨论,则把这棵树近似看成满二叉树,设二叉树的高度为h(h>1)
则,根据二叉树的性质,它有最大节点数n=2^h-1,
则h=log2(n+1) (2是底数)。那么二叉树的第j层节点数为:2^(j-1)
假定每个元素的查找概率相等,则,pi=1/n (pi为第i个节点的查找概率)
那么平均查找长度为 1/n*(1*2^0+2*2^1+3*2^2+……+j*2^(j-1))
则经过化简计算,得平均查找长度为:((n+1)/n ) *log2(n+1)-1 (其中对数中的2为底数:即log以2为底(n+1)的对数)
注 : 当n很大时 ,可近似为 log2(n+1)-1
其中 1*2^0+2*2^1+3*2^2+……+j*2^(j-1)的求法如下:
设 S = 1*2^0 + 2*2^1+3*2^2 +……+ j*2^(j-1) ,
则 2S = 1*2^1+2*2^2 +……+ (j-1)*2^(j-1) + j*2^j
则 2S - S = -( 2^0 + 2^1 + 2 ^2 + …… + 2 ^(j-1)) + j *2^j
即 S = - (2^j-1)+j*2^j
带入化简即可。

❺ 衡量查找算法效率的主要标准是什么

平均查找长度。据知乎查询衡量查找算法效率的主要标准是平均查找长度。查找就是在由一组记录组成的集合中寻找关键字值等于给定值的某个记录,或是寻找属性值符合特定条件的某些记录。

❻ 常见查找和排序算法

查找成功最多要n 次,平均(n+1)/2次, 时间复杂度为O(n)
优点:既适用顺序表也适用单链表,同时对表中元素顺序无要求,给插入带来方便,只需插入表尾即可。
缺点:速度较慢。

改进:在表尾设置一个岗哨,这样不用去循环判断数组下标是否越界,因为最后必然成立。

适用条件:

二分查找的判定树不仅是二叉排序树,而且是一棵理想平衡树。 时间复杂度为O(lbn)

循环实现

递归实现

待排序的元素需要实现 Java 的 Comparable 接口,该接口有 compareTo() 方法,可以用它来判断两个元素的大小关系。

从数组中选择最小元素,将它与数组的第一个元素交换位置。再从数组剩下的元素中选择出最小的元素,将它与数组的第二个元素交换位置。不断进行这样的操作,直到将整个数组排序。

选择排序需要 ~N2/2 次比较和 ~N 次交换,==它的运行时间与输入无关==,这个特点使得它对一个已经排序的数组也需要这么多的比较和交换操作。

从左到右不断 交换相邻逆序的元素 ,在一轮的循环之后,可以让未排序的最大元素上浮到右侧。

在一轮循环中,如果没有发生交换,那么说明数组已经是有序的,此时可以直接退出。

每次都 将当前元素插入到左侧已经排序的数组中 ,使得插入之后左侧数组依然有序。

对于数组 {3, 5, 2, 4, 1},它具有以下逆序:(3, 2), (3, 1), (5, 2), (5, 4), (5, 1), (2, 1), (4, 1),插入排序每次只能交换相邻元素,令逆序数量减少 1,因此插入排序需要交换的次数为逆序数量。

==插入排序的时间复杂度取决于数组的初始顺序,如果数组已经部分有序了,那么逆序较少,需要的交换次数也就较少,时间复杂度较低==。

对于大规模的数组,插入排序很慢,因为它只能交换相邻的元素,每次只能将逆序数量减少 1。希尔排序的出现就是为了解决插入排序的这种局限性,它通过交换不相邻的元素,每次可以将逆序数量减少大于 1。

希尔排序使用插入排序对间隔 h 的序列进行排序。通过不断减小 h,最后令 h=1,就可以使得整个数组是有序的。

希尔排序的运行时间达不到平方级别,使用递增序列 1, 4, 13, 40, ... 的希尔排序所需要的比较次数不会超过 N 的若干倍乘于递增序列的长度。后面介绍的高级排序算法只会比希尔排序快两倍左右。

归并排序的思想是将数组分成两部分,分别进行排序,然后归并起来。

归并方法将数组中两个已经排序的部分归并成一个。

将一个大数组分成两个小数组去求解。

因为每次都将问题对半分成两个子问题,这种对半分的算法复杂度一般为 O(NlogN)。

先归并那些微型数组,然后成对归并得到的微型数组。

取 a[l] 作为切分元素,然后从数组的左端向右扫描直到找到第一个大于等于它的元素,再从数组的右端向左扫描找到第一个小于它的元素,交换这两个元素。不断进行这个过程,就可以保证左指针 i 的左侧元素都不大于切分元素,右指针 j 的右侧元素都不小于切分元素。当两个指针相遇时,将切分元素 a[l] 和 a[j] 交换位置。

快速排序是原地排序,不需要辅助数组,但是递归调用需要辅助栈。

快速排序最好的情况下是每次都正好将数组对半分,这样递归调用次数才是最少的。这种情况下比较次数为 CN=2CN/2+N,复杂度为 O(NlogN)。

最坏的情况下,第一次从最小的元素切分,第二次从第二小的元素切分,如此这般。因此最坏的情况下需要比较 N2/2。为了防止数组最开始就是有序的,在进行快速排序时需要随机打乱数组。

因为快速排序在小数组中也会递归调用自己,对于小数组,插入排序比快速排序的性能更好,因此在小数组中可以切换到插入排序。

最好的情况下是每次都能取数组的中位数作为切分元素,但是计算中位数的代价很高。一种折中方法是取 3 个元素,并将大小居中的元素作为切分元素。

对于有大量重复元素的数组,可以将数组切分为三部分,分别对应小于、等于和大于切分元素。

三向切分快速排序对于有大量重复元素的随机数组可以在线性时间内完成排序。

快速排序的 partition() 方法,会返回一个整数 j 使得 a[l..j-1] 小于等于 a[j],且 a[j+1..h] 大于等于 a[j],此时 a[j] 就是数组的第 j 大元素。

可以利用这个特性找出数组的第 k 大的元素。

该算法是线性级别的,假设每次能将数组二分,那么比较的总次数为 (N+N/2+N/4+..),直到找到第 k 个元素,这个和显然小于 2N。

堆中某个节点的值总是大于等于其子节点的值,并且堆是一颗完全二叉树。

堆可以用数组来表示,这是因为堆是完全二叉树,而完全二叉树很容易就存储在数组中。位置 k 的节点的父节点位置为 k/2,而它的两个子节点的位置分别为 2k 和 2k+1。这里不使用数组索引为 0 的位置,是为了更清晰地描述节点的位置关系。

在堆中,当一个节点比父节点大,那么需要交换这个两个节点。交换后还可能比它新的父节点大,因此需要不断地进行比较和交换操作,把这种操作称为上浮。

类似地,当一个节点比子节点来得小,也需要不断地向下进行比较和交换操作,把这种操作称为下沉。一个节点如果有两个子节点,应当与两个子节点中最大那个节点进行交换。

将新元素放到数组末尾,然后上浮到合适的位置。

从数组顶端删除最大的元素,并将数组的最后一个元素放到顶端,并让这个元素下沉到合适的位置。

把最大元素和当前堆中数组的最后一个元素交换位置,并且不删除它,那么就可以得到一个从尾到头的递减序列,从正向来看就是一个递增序列,这就是堆排序。

一个堆的高度为logN,因此在堆中插入元素和删除最大元素的复杂度都为 logN。

对于堆排序,由于要对 N 个节点进行下沉操作,因此复杂度为 NlogN。

堆排序是一种原地排序,没有利用额外的空间。

现代操作系统很少使用堆排序,因为它无法利用局部性原理进行缓存,也就是数组元素很少和相邻的元素进行比较和交换。

计数排序的核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。作为一种线性时间复杂度的排序,==计数排序要求输入的数据必须是有确定范围的整数==。

当输入的元素是 n 个 0 到 k 之间的整数时,它的==运行时间是 O(n + k)==。计数排序不是比较排序,排序的速度快于任何比较排序算法。由于用来计数的数组C的长度取决于待排序数组中数据的范围(等于待排序数组的最大值与最小值的差加上1),这使得计数排序对于数据范围很大的数组,需要大量时间和内存。比较适合用来排序==小范围非负整数数组的数组==。

桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。为了使桶排序更加高效,我们需要做到这两点:

同时,对于桶中元素的排序,选择何种比较排序算法对于性能的影响至关重要。

当输入数据均匀分配到每一个桶时最快,当都分配到同一个桶时最慢。

实间复杂度N*K

快速排序是最快的通用排序算法,它的内循环的指令很少,而且它还能利用缓存,因为它总是顺序地访问数据。它的运行时间近似为 ~cNlogN,这里的 c 比其它线性对数级别的排序算法都要小。

使用三向切分快速排序,实际应用中可能出现的某些分布的输入能够达到线性级别,而其它排序算法仍然需要线性对数时间。

❼ 几种常见的查找算法之比较

二分法平均查找效率是O(logn),但是需要数组是排序的。如果没有排过序,就只好先用O(nlogn)的预处理为它排个序了。而且它的插入比较困难,经常需要移动整个数组,所以动态的情况下比较慢。

哈希查找理想的插入和查找效率是O(1),但条件是需要找到一个良好的散列函数,使得分配较为平均。另外,哈希表需要较大的空间,至少要比O(n)大几倍,否则产生冲突的概率很高。

二叉排序树查找也是O(logn)的,关键是插入值时需要做一些处理使得它较为平衡(否则容易出现轻重的不平衡,查找效率最坏会降到O(n)),而且写起来稍微麻烦一些,具体的算法你可以随便找一本介绍数据结构的书看看。当然,如果你用的是c语言,直接利用它的库类型map、multimap就可以了,它是用红黑树实现的,理论上插入、查找时间都是O(logn),很方便,不过一般会比自己实现的二叉平衡树稍微慢一些。

热点内容
手机怎么修改wifi密码名称 发布:2025-07-05 06:46:13 浏览:378
阿里云服务器bt安装 发布:2025-07-05 06:36:46 浏览:369
数据库组别 发布:2025-07-05 06:15:53 浏览:711
我的世界服务器怎样设置新手装备只能拿一次 发布:2025-07-05 06:15:53 浏览:985
缓存40集电视剧需要多少流量 发布:2025-07-05 05:56:44 浏览:64
iso怎么解压到u盘 发布:2025-07-05 05:49:02 浏览:890
php参数设置 发布:2025-07-05 05:49:00 浏览:995
javacharacter 发布:2025-07-05 05:38:36 浏览:735
服务器pcid地址怎么看 发布:2025-07-05 05:35:40 浏览:384
安卓系统赚钱靠什么 发布:2025-07-05 05:28:06 浏览:159