当前位置:首页 » 操作系统 » linux中断数

linux中断数

发布时间: 2023-01-13 14:39:26

linux内核中断之中断申请接口

本文基于 RockPI 4A 单板Linux4.4内核介绍中断申请的常用接口函数。

1、文件

2、定义

说明:

1)、 irq :要申请的中断号,可通过 platform_get_irq() 获取,见“Linux内核中断之获取中断号”。

2)、 handler :中断处理函数,发生中断时,先处理中断处理函数,然后返回 IRQ_WAKE_THREAD 唤醒中断处理线程。中断处理函数尽可能简单。

中断处理函数定义: typedef irqreturn_t (*irq_handler_t)(int, void *);

中断返回值如下:

3)、 thread_fn :中断处理线程,该参数可为NULL。类似于中断处理函数的下半部分。

4)、 irqflags :中断类型标志。

定义文件: include/linux/interrupt.h ,内容如下:

5)、 devname :中断名称,可使用 cat /proc/interrupts 命令查看。

6)、 dev_id :设备ID,该值唯一。

在使用共享中断时(即设置 IRQF_SHARED ),必须传入 dev_id ,在中断处理和释放函数中都会使用该参数。

注:

1、 request_threaded_irq() 函数可替代 request_irq 加 tasklet 或 workqueue 的方式。

2、对应的中断释放函数为: void free_irq(unsigned int, void *) ,需要和中断申请函数成对出现。

1、文件

2、定义

说明:

1)、 __must_check :指调用函数一定要处理函数的返回值,否则编译器会给出警告。

2)、 request_irq() 函数本质上是中断处理线程 thread_fn 为空的 request_threaded_irq() 函数。

对应的中断释放函数为: void free_irq(unsigned int, void *) ,需要和中断申请函数成对出现。

1、文件

2、定义

说明

devm_request_threaded_irq() 本质上还是使用 request_threaded_irq() 函数实现中断申请。

两者区别:

1)多了一个 dev 参数;

2)在设备驱动卸载时,中断会自动释放;

3)如果想单独释放中断,可使用 void devm_free_irq(struct device *dev, unsigned int irq, void *dev_id) 函数。

1、文件

2、定义

devm_request_irq() 函数本质上是中断处理线程 thread_fn 为空的 devm_request_threaded_irq() 函数。

1、获取中断号

2、申请中断

3、中断处理函数

4、中断处理线程

5、查看中断

⑵ Linux-怎么理解软中断

中断是系统用来响应硬件设备请求的一种机制,它会打断进程的正常调度和执行,然后调用内核中的中断处理程序来响应设备的请求。

你可能要问了,为什么要有中断呢?我可以举个生活中的例子,让感受一下中断的魅力。

比如你订了一份外卖,但是不确定外卖什么时候送到,也没有别的方法了解外卖的进度,但是,配送员送外卖是不等人的,到了你这儿没人取的话,就直接走人了,所以你只能苦苦等着,时不时去门口看看外卖送到没,而不能干其他事情。

不过呢,如果在订外卖的时候,你就跟配送员约定好,让他送到后给你打个电话,那你就不用苦苦等待了,就可以去忙别的事情,直到电话一响,接电话、取外卖就可以了。

这里的“打电话”,其实就是一个中断。没接到电话的时候,你可以做其他的事情;只有接到了电话(也就是发生中断),你才要进行另一个动作:取外卖。

这个例子你就可以发现, 中断其实是一种异步的事件处理机制,可以提高系统的并发处理能力。

由于中断处理程序会打断其他进程的运行,所以, 为了减少对正常进程运行调度的影响,中断处理程序就需要尽可能快地运行。 如果中断本身要做的事情不多,那么处理起来也不会有太大问题;但如果中断要处理的事情很多,中断服务程序就有可能要运行很长时间。

特别是,中断处理程序在响应中断时,还会临时关闭中断。这就会导致上一次中断处理完成之前,其他中断都不能响应,也就是说中断有可能会丢失。

那么还是以取外卖为例。假如你订了 2 份外卖,一份主食和一份饮料,并且是由 2 个不同的配送员来配送。这次你不用时时等待着,两份外卖都约定了电话取外卖的方式。但是,问题又来了。

当第一份外卖送到时,配送员给你打了个长长的电话,商量发票的处理方式。与此同时,第二个配送员也到了,也想给你打电话。

但是很明显,因为电话占线(也就是关闭了中断响应),第二个配送员的电话是打不通的。所以,第二个配送员很可能试几次后就走掉了(也就是丢失了一次中断)。

如果你弄清楚了“取外卖”的模式,那对系统的中断机制就很容易理解了。事实上,为了解决中断处理程序执行过长和中断丢失的问题,Linux 将中断处理过程分成了两个阶段,也就是 上半部和下半部:

比如说前面取外卖的例子,上半部就是你接听电话,告诉配送员你已经知道了,其他事儿见面再说,然后电话就可以挂断了;下半部才是取外卖的动作,以及见面后商量发票处理的动作。

这样,第一个配送员不会占用你太多时间,当第二个配送员过来时,照样能正常打通你的电话。

除了取外卖,我再举个最常见的网卡接收数据包的例子,让你更好地理解。

网卡接收到数据包后,会通过 硬件中断 的方式,通知内核有新的数据到了。这时,内核就应该调用中断处理程序来响应它。你可以自己先想一下,这种情况下的上半部和下半部分别负责什么工作呢?

对上半部来说,既然是快速处理,其实就是要把网卡的数据读到内存中,然后更新一下硬件寄存器的状态(表示数据已经读好了),最后再发送一个 软中断 信号,通知下半部做进一步的处理。

而下半部被软中断信号唤醒后,需要从内存中找到网络数据,再按照网络协议栈,对数据进行逐层解析和处理,直到把它送给应用程序。

所以,这两个阶段你也可以这样理解:

实际上,上半部会打断 CPU 正在执行的任务,然后立即执行中断处理程序。而下半部以内核线程的方式执行,并且每个 CPU 都对应一个软中断内核线程,名字为 “ksoftirqd/CPU 编号”,比如说, 0 号 CPU 对应的软中断内核线程的名字就是 ksoftirqd/0。

不过要注意的是,软中断不只包括了刚刚所讲的硬件设备中断处理程序的下半部,一些内核自定义的事件也属于软中断,比如内核调度和 RCU 锁(Read-Copy Update 的缩写,RCU 是 Linux 内核中最常用的锁之一)等。

不知道你还记不记得,前面提到过的 proc 文件系统。它是一种内核空间和用户空间进行通信的机制,可以用来查看内核的数据结构,或者用来动态修改内核的配置。其中:

运行下面的命令,查看 /proc/softirqs 文件的内容,你就可以看到各种类型软中断在不同 CPU 上的累积运行次数:

在查看 /proc/softirqs 文件内容时,你要特别注意以下这两点。
第一,要注意软中断的类型,也就是这个界面中第一列的内容。从第一列你可以看到,软中断包括了 10 个类别,分别对应不同的工作类型。比如 NET_RX 表示网络接收中断,而 NET_TX 表示网络发送中断。

第二,要注意同一种软中断在不同 CPU 上的分布情况,也就是同一行的内容。正常情况下,同一种中断在不同 CPU 上的累积次数应该差不多。比如这个界面中,NET_RX 在 CPU0 和 CPU1 上的中断次数基本是同一个数量级,相差不大。

不过你可能发现,TASKLET 在不同 CPU 上的分布并不均匀。TASKLET 是最常用的软中断实现机制,每个 TASKLET 只运行一次就会结束 ,并且只在调用它的函数所在的 CPU 上运行。

因此,使用 TASKLET 特别简便,当然也会存在一些问题,比如说由于只在一个 CPU 上运行导致的调度不均衡,再比如因为不能在多个 CPU 上并行运行带来了性能限制。

另外,刚刚提到过,软中断实际上是以内核线程的方式运行的,每个 CPU 都对应一个软中断内核线程,这个软中断内核线程就叫做 ksoftirqd/CPU 编号。那要怎么查看这些线程的运行状况呢?

其实用 ps 命令就可以做到,比如执行下面的指令:

注意,这些线程的名字外面都有中括号,这说明 ps 无法获取它们的命令行参数(cmline)。一般来说,ps 的输出中,名字括在中括号里的,一般都是内核线程。

Linux 中的中断处理程序分为上半部和下半部:
上半部对应硬件中断,用来快速处理中断。
下半部对应软中断,用来异步处理上半部未完成的工作。

Linux 中的软中断包括网络收发、定时、调度、RCU 锁等各种类型,可以通过查看 /proc/softirqs 来观察软中断的运行情况。

⑶ Linux几种中断信号的区别:HUP,INT,KILL,TERM,TSTP

Linux的HUP,INT,KILL,TERM,TSTP中断信号区别为:键入不同、对应操作不同、启用不同。

一、键入不同

1、HUP中断信号:HUP中断信号是当用户键入<Ctrl+X>时由终端驱动程序发送的信号。

2、INT中断信号:INT中断信号是当用户键入<Ctrl+I>时由终端驱动程序发送的信号。

3、KILL中断信号:KILL中断信号是当用户键入<Ctrl+Z>时由终端驱动程序发送的信号。

4、TERM中断信号:TERM中断信号是当用户键入<Ctrl+>时由终端驱动程序发送的信号。

5、TSTP中断信号:TSTP中断信号是当用户键入<Ctrl+T>时由终端驱动程序发送的信号。二、对应操作不同

1、HUP中断信号:HUP中断信号的对应操作为让进程挂起,睡眠。

2、INT中断信号:INT中断信号的对应操作为正常关闭所有进程。

3、KILL中断信号:KILL中断信号的对应操作为强制关闭所有进程。

4、TERM中断信号:TERM中断信号的对应操作为正常的退出进程。

5、TSTP中断信号:TSTP中断信号的对应操作为暂时停用进程。

三、启用不同

1、HUP中断信号:HUP中断信号发送后,可以重新被用户再次输入恢复启用进程。

2、INT中断信号:INT中断信号发送后,不可以重新被用户再次输入恢复启用进程。

3、KILL中断信号:KILL中断信号发送后,不可以重新被用户再次输入恢复启用进程。

4、TERM中断信号:TERM中断信号发送后,可以重新被用户再次输入启用进程。

5、TSTP中断信号:TSTP中断信号发送后,可以重新被用户再次输入继续使用进程。

⑷ linux系统中的中断指令是什么

什么是中断
Linux 内核需要对连接到计算机上的所有硬件设备进行管理,毫无疑问这是它的份内事。如果要管理这些设备,首先得和它们互相通信才行,一般有两种方案可实现这种功能:
轮询(polling) 让内核定期对设备的状态进行查询,然后做出相应的处理;中断(interrupt) 让硬件在需要的时候向内核发出信号(变内核主动为硬件主动)。
第一种方案会让内核做不少的无用功,因为轮询总会周期性的重复执行,大量地耗用 CPU 时间,因此效率及其低下,所以一般都是采用第二种方案 。
对于中断的理解我们先看一个生活中常见的例子:QQ。第一种情况:你正在工作,然后你的好友突然给你发送了一个窗口抖动,打断你正在进行的工作。第
二种情况:当然你有时候也会每隔 5 分钟就去检查一下 QQ
看有没有好友找你,虽然这很浪费你的时间。在这里,一次窗口抖动就可以被相当于硬件的中断,而你就相当于 CPU,你的工作就是 CPU
这在执行的进程。而定时查询就被相当于 CPU 的轮询。在这里可以看到:同样作为 CPU 和硬件沟通的方式,中断是硬件主动的方式,较轮询(CPU
主动)更有效些,因为我们都不可能一直无聊到每隔几分钟就去查一遍好友列表。
CPU
有大量的工作需要处理,更不会做这些大量无用功。当然这只是一般情况下。好了,这里又有了一个问题,每个硬件设备都中断,那么如何区分不同硬件呢?不同设
备同时中断如何知道哪个中断是来自硬盘、哪个来自网卡呢?这个很容易,不是每个 QQ 号码都不相同吗?同样的,系统上的每个硬件设备都会被分配一个
IRQ 号,通过这个唯一的 IRQ 号就能区别张三和李四了。
从物理学的角度看,中断是一种电信号,由硬件设备产生,并直接送入中断控制器(如
8259A)的输入引脚上,然后再由中断控制器向处理器发送相应的信号。处理器一经检测到该信号,便中断自己当前正在处理的工作,转而去处理中断。此后,
处理器会通知 OS 已经产生中断。这样,OS
就可以对这个中断进行适当的处理。不同的设备对应的中断不同,而每个中断都通过一个唯一的数字标识,这些值通常被称为中断请求线。

⑸ Linux内核中断之获取中断号

Linux内核中可使用 platform_get_irq() 函数获取 dts 文件中设置的中断号。

函数原型: int platform_get_irq(struct platform_device *dev, unsigned int num)

定义文件: driversaseplatform.c

中断号获取函数 platform_get_irq() 调用流程如下:

rk3399 使用的是 GICv3 ,对应 irq_domain->name 。

文件: drivers/irqchip/irq-gic-v3.c 。

translate() 函数实现如下:

以 RockPI 4A 单板 Debian 系统Linux 4.4内核中的获取 HDMI 中断号为例。

1、查找中断号

从手册“Rockchip RK3399 TRM V1.3 Part1.pdf”中,可以查到 HDMI_IRQ 中断号,即55。

2、 dts 配置

文件: arch/arm64/boot/dts/rockchip/rk3399.dtsi

hdmi 使用的是 GIC_SPI 中断,按照 gic_irq_domain_translate() 函数中处理,需要将中断号55减去32,得到 dts 中的中断号23。

注: interrupts = <中断类型 中断号 中断触发类型 中断分区(对应哪个CPU cluster,PPI类型中断特有)>

3、驱动函数

文件: driversgpudrm ockchipdw_hdmi-rockchip.c

此时, irq 返回值为55。

后续会介绍 GIC 和中断注册等实现函数。

⑹ 《Linux设备驱动程序》(十六)-中断处理

设备与处理器之间的工作通常来说是异步,设备数据要传递给处理器通常来说有以下几种方法:轮询、等待和中断。

让CPU进行轮询等待总是不能让人满意,所以通常都采用中断的形式,让设备来通知CPU读取数据。

2.6内核的函数参数与现在的参数有所区别,这里都主要介绍概念,具体实现方法需要结合具体的内核版本。

request_irq函数申请中断,返回0表示申请成功,其他返回值表示申请失败,其具体参数解释如下:

flags 掩码可以使用以下几个:

快速和慢速处理例程 :现代内核中基本没有这两个概念了,使用SA_INTERRUPT位后,当中断被执行时,当前处理器的其他中断都将被禁止。通常不要使用SA_INTERRUPT标志位,除非自己明确知道会发生什么。

共享中断 :使用共享中断时,一方面要使用SA_SHIRQ位,另一个是request_irq中的dev_id必须是唯一的,不能为NULL。这个限制的原因是:内核为每个中断维护了一个共享处理例程的列表,例程中的dev_id各不相同,就像设备签名。如果dev_id相同,在卸载的时候引起混淆(卸载了另一个中断),当中断到达时会产生内核OOP消息。

共享中断需要满足以下一个条件才能申请成功:

当不需要使用该中断时,需要使用free_irq释放中断。

通常我们会在模块加载的时候申请安装中断处理例程,但书中建议:在设备第一次打开的时候安装,在设备最后一次关闭的时候卸载。

如果要查看中断触发的次数,可以查看 /proc/interrupts 和 /proc/stat。

书中讲述了如何自动检测中断号,在嵌入式开发中通常都是查看原理图和datasheet来直接确定。

自动检测的原理如下:驱动程序通知设备产生中断,然后查看哪些中断信号线被触发了。Linux提供了以下方法来进行探测:

探测工作耗时较长,建议在模块加载的时候做。

中断处理函数和普通函数其实差不多,唯一的区别是其运行的中断上下文中,在这个上下文中有以下注意事项:

中断处理函数典型用法如下:

中断处理函数的参数和返回值含义如下:

返回值主要有两个:IRQ_NONE和IRQ_HANDLED。

对于中断我们是可以进行开启和关闭的,Linux中提供了以下函数操作单个中断的开关:

该方法可以在所有处理器上禁止或启用中断。

需要注意的是:

如果要关闭当前处理器上所有的中断,则可以调用以下方法:

local_irq_save 会将中断状态保持到flags中,然后禁用处理器上的中断;如果明确知道中断没有在其他地方被禁用,则可以使用local_irq_disable,否则请使用local_irq_save。

locat_irq_restore 会根据上面获取到flags来恢复中断;local_irq_enable 会无条件打开所有中断。

在中断中需要做一些工作,如果工作内容太多,必然导致中断处理所需的时间过长;而中断处理又要求能够尽快完成,这样才不会影响正常的系统调度,这两个之间就产生了矛盾。

现在很多操作系统将中断分为两个部分来处理上面的矛盾:顶半部和底半部。

顶半部就是我们用request_irq来注册的中断处理函数,这个函数要求能够尽快结束,同时在其中调度底半部,让底半部在之后来进行后续的耗时工作。

顶半部就不再说明了,就是上面的中断处理函数,只是要求能够尽快处理完成并返回,不要处理耗时工作。

底半部通常使用tasklet或者工作队列来实现。

tasklet的特点和注意事项:

工作队列的特点和注意事项:

⑺ Linux中断补充

在系统结构中,CPU工作的模式有两种,一种是中断,由各种设备发起;一种是轮询,由CPU主动发起。
中断IRQ:
中断允许让设备(如键盘,串口卡,并口等设备)表明它们需要CPU。一旦CPU接收了中断请求,CPU就会暂时停止执行正在运行的程序,并且调用一个称为中断处理器或中断服务程序(interrupt service routine)的特定程序。CPU处理完中断后,就会恢复执行之前被中断的程序。
中断分类:
硬中断+软中断
硬中断:
①非屏蔽中断:不能被屏蔽,硬件发生的错误:内存错误,风扇故障,温度传感器故障等。
②可屏蔽中断:可被CPU忽略或延迟处理。当缓存控制器的外部针脚被触发的时候就会产生这种类型的中断,而中断屏蔽寄存器就会将这样的中断屏蔽掉。我们可以将一个比特位设置为0,来禁用在此针脚触发的中断。
软中断:
是软件实现的中断,也就是程序运行时其他程序对它的中断;而硬中断是硬件实现的中断,是程序运行时设备对它的中断。

CPU之间的中断处理(IPI)
处理器间中断允许一个CPU向系统其他的CPU发送中断信号,处理器间中断(IPI)不是通过IRQ线传输的,而是作为信号直接放在连接所有CPU本地APIC的总线上。
CALL_FUNCTION_VECTOR (向量0xfb)

发往所有的CPU,但不包括发送者,强制这些CPU运行发送者传递过来的函数,相应的中断处理程序叫做call_function_interrupt(),例如,地址存放在群居变量call_data中来传递的函数,可能强制其他所有的CPU都停止,也可能强制它们设置内存类型范围寄存器的内容。通常,这种中断发往所有的CPU,但通过smp_call_function()执行调用函数的CPU除外。

RESCHEDULE_VECTOR (向量0xfc)

当一个CPU接收这种类型的中断时,相应的处理程序限定自己来应答中断,当从中断返回时,所有的重新调度都自动运行。

INVALIDATE_TLB_VECTOR (向量0xfd)

发往所有的CPU,但不包括发送者,强制它们的转换后援缓冲器TLB变为无效。相应的处理程序刷新处理器的某些TLB表项。

⑻ linux中断函数里如何判断上升下降

中断服务函数里判断。根据查询今日头条得知,linux中断函数里在中断服务函数里判断上升下降。中断函数是在发生中断时间后,主程序自动进入中断函数运行,运行结束后在退出中断函数,返回到进入中断函数之前的运行状态。

⑼ Linux中断与定时器

所谓中断是指CPU在执行程序的过程中,出现了某些突发事件急待处理,CPU必须暂停当前程序的执行,转去处理突发事件,处理完毕后又返回原程序被中断的位置继续执行。根据中断的来源,中断可分为内部中断和外部中断,内部中断的中断源来自CPU内部(软件中断指令、溢出、除法错误等,例如,操作系统从用户态切换到内核态需借助CPU内部的软件中断),外部中断的中断源来自CPU外部,由外设提出请求。根据中断是否可以屏蔽,中断可分为可屏蔽中断与不可屏蔽中断(NMI),可屏蔽中断可以通过设置中断控制器寄存器等方法被屏蔽,屏蔽后,该中断不再得到响应,而不可屏蔽中断不能被屏蔽。
根据中断入口跳转方法的不同,中断可分为向量中断和非向量中断。采用向量中断的CPU通常为不同的中断分配不同的中断号,当检测到某中断号的中断到来后,就自动跳转到与该中断号对应的地址执行。不同中断号的中断有不同的入口地址。非向量中断的多个中断共享一个入口地址,进入该入口地址后,再通过软件判断中断标志来识别具体是哪个中断。也就是说,向量中断由硬件提供中断服务程序入口地址,非向量中断由软件提供中断服务程序入口地址。
嵌入式系统以及x86PC中大多包含可编程中断控制器(PIC),许多MCU内部就集成了PIC。如在80386中,PIC是两片i8259A芯片的级联。通过读写PIC的寄存器,程序员可以屏蔽/使能某中断及获得中断状态,前者一般通过中断MASK寄存器完成,后者一般通过中断PEND寄存器完成。定时器在硬件上也依赖中断来实现,典型的嵌入式微处理器内可编程间隔定时器(PIT)的工作原理,它接收一个时钟输入,当时钟脉冲到来时,将目前计数值增1并与预先设置的计数值(计数目标)比较,若相等,证明计数周期满,并产生定时器中断且复位目前计数值。

⑽ 4-5 Linux 中断进程 --- kill (kill -2 实验)

1、信号:传递给 Liunx 的事件发生通知机制。

2、kill -l:显示所有信号。一共有62个信号(没有32、33)。

3、常用的信号有:

kill -2 PID —— 正常中断进程(Ctrl + C 一样)。程序在结束之前,能够保存相关数据,然后再退出。

kill -9 PID —— 强制杀死一个进程。

kill -15 PID —— 正常方式终止一个程序。中断进程时应首先用 -15,以便于其能够预先清理临时文件和释放资源。-9 作为最后手段,应对那些失控的进程。

--------------------------------------------------------------------------------

1)、kill -2 中断后台运行的进程。

红色下划线:sleep 10000 & —— 后台运行延时 10000 秒的命令,进程 ID 为1516。

ps -j —— 以作业格式列出进程信息,可以看到 1516 sleep 命令的进程。

(PID:进程 ID、PGID:线程组 ID、SID:会话 ID、TTY:进程运行的终端,标识那个终端控制。(pts远程终端、tty系统终端)、TIME:进程运行的时间 和 CMD:命令的名称和参数)。

jobs -l —— 列出后台运行的命令,可以看到 1516 sleep 命令正在后台运行。

黄色下划线:kill -2 1516 —— 中断1516 进程。执行成功后,按 Enter 回车系统会给出提示Interrupt 提示(中断进程)。

蓝色方框:ps -j 已查询不到 1516 sleep 的进程。jobs -l 也没有后台运行的命令。

2)、kill -2 配合 fg 查看中断挂起的进程。

红色下划线:前台执行 sleep 10000 (延时10000秒)后 ctrl + z 挂起。

黄色下划线:ps -j 查看进程,可以看到 1344 sleep 进程。jobs -l 查看后台进程 1344 的状态是stopped 暂停状态。

蓝色下划线:kill -2 1344 中断 1344 进程。

绿色下划线:ps -j 查看进程,仍有 1344 sleep 进程。jobs -l 查看后台进程 1344 的状态是stopped 暂停状态。

暂时这样看,好像 kill -2 并没有起到中断进程的作用。

然而,用 fg 把后台的命令调至前台运行时可以发现 1344 sleep 已经被中断。

红色下划线:fg 把已经执行了 kill -2, 状态为 stopped 的1344 sleep命令调至前台执行。系统也反馈已经调至前台执行。(此时,实际上已经执行了 kill -2 中断了进程)

黄色方框:ps -j 已经没有了 1344 sleep 的进程。

蓝色方框:jobs -l 后台也没有指令。

3)、kill -2 配合 bg 查看中断挂起的进程。

通过上面的思路,kill -2 配合 bg 实验看看效果。同样的首先挂起一个命令,状态为 stopped 暂停。然后用 bg 命令恢复执行。

前面的步骤都是一样,挂起一个命令。通过 ps 和 jobs 查看进程和后台确认有 1379 的进程,状态为 stopped 暂停。然后执行 kill-2 中断进程,再次通过ps 和 jobs 查看进程和后台命令。确认状态为 stopped  1379 的进程仍然存在。

此时,用 bg 恢复运行挂起的命令,系统提示 sleep 命令已恢复在后台运行。然而通过 ps -j 查看进程会发现 sleep 已经被中断。jobs -l 查看后台也没有了运行的 sleep 命令了。

从实验上看:

1、后台命令运行时(Running),执行 kill -2 可以中断进程。

2、挂起命令,处于暂停状态时(Stopped),执行 kill -2 后通过 ps 还可以查询到进程, jobs还可以查询到后台命令,状态仍然是 Stopped 暂停状态。实际上,用 fg 把暂停的后台进程调至前台运行时,系统反馈 sleep 命令调至前台运行。而再用 ps 查询不到进程,已经中断了进程。用 jobs 已经查询不到后台命令。

3、挂起命令,处于暂停状态时(Stopped),执行 kill -2 后通过 ps 还可以查询到进程, jobs还可以查询到后台命令,状态仍然是 Stopped 暂停状态。用 bg 把暂停的后台命令恢复运行时,系统反馈 sleep 命令在后台运行。再用 ps 查询进程已经中断,用 jobs 已经查询不到后台命令。

热点内容
怎么才能编译本书 发布:2025-05-16 10:27:47 浏览:757
ssd服务器电脑 发布:2025-05-16 10:26:25 浏览:827
水果忍者源码 发布:2025-05-16 10:26:22 浏览:472
python中ord函数 发布:2025-05-16 10:14:25 浏览:340
电脑启动后无法连接服务器 发布:2025-05-16 10:06:39 浏览:984
jar包编译过程 发布:2025-05-16 10:03:37 浏览:679
选举源码 发布:2025-05-16 09:58:59 浏览:749
超级访问陈小春应采儿 发布:2025-05-16 09:43:29 浏览:479
缓存视频合并工具最新版 发布:2025-05-16 09:35:03 浏览:195
花雨庭服务器ip地址和端口 发布:2025-05-16 09:34:58 浏览:240