抗asic算法
⑴ fpga和asic开发流程的区别
1、FPGA——现场可编程门阵列
FPGA(Field-ProgrammableGateArray),即现场可编程门阵列,它是在PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。
ASIC具有高性能、低功耗的优势,但它们包含的任何算法——除了那些在软件内部处理器内核执行的——其余都是“冻结的”。所以这个时候我们就需要现场可编程门阵列(FPGA)了。早期的FPGA器件的架构相对简单——只是一系列通过可编程互连的可编程模块。
⑵ 一文了解以太坊挖矿算法及算力规模2020-09-09
以太坊网络中,想要获得以太坊,也要通过挖矿来实现。当前以太坊也是采用POW共识机制,但是与比特币的POW挖矿有点不一样,以太坊挖矿难度是可以调节的。以太坊系统有一个特殊的公式用来计算之后的每个块的难度。如果某个区块比前一个区块验证的更快,以太坊协议就会增加区块的难度。通过调整区块难度,就可以调整验证区块所需的时间。
以太坊采用的是Ethash 加密算法,在挖矿的过程中,需要读取内存并存储 DAG 文件。由于每一次读取内寸的带宽都是有限的,而现有的计算机技术又很难在这个问题上有质的突破,所以无论如何提高计算机的运算效率,内存读取效率仍然不会有很大的改观。因此,从某种意义上来说,以太坊的Ethash加密算法具有“抗ASIC性”。
加密算法的不同,导致了比特币和以太坊的挖矿设备、算力规模差异很大。
目前,比特币挖矿设备主要是专业化程度非常高的ASIC 矿机,单台矿机的算力最高达到了 112T/s(神马M30S++矿机),全网算力的规模达到139.92EH/s。
以太坊的挖矿设备主要是显卡矿机和定制GPU矿机,专业化的ASIC矿机非常少,一方面是因为以太坊挖矿算法的“抗 ASIC 性”提高了研发ASIC矿机的门槛,另一方面是因为以太坊升级到2.0之后共识机制会转型为PoS,矿机无法继续挖。
和ASIC矿机相比,显卡矿机在算力上相差了2个量级。目前,主流的显卡矿机(8卡)算力约为420MH/s,比较领先的定制GPU矿机算力约在500M~750M,以太坊全网算力约为235.39TH/s。
从过去两年的时间维度上看,以太坊的全网算力增长相对缓慢。
以太坊协议规定,难度的动态调整方式是使全网创建新区块的时间间隔为15秒,网络用15秒时间创建区块链,这样一来,因为时间太快,系统的同步性就大大提升,恶意参与者很难在如此短的时间发动51%(也就是半数以上)的算力去修改历史数据。
⑶ ASIC码是怎么回事要详解
详情请参考:http://ke..com/view/15482.htm?fr=ala0_1_1
ASCII网络名片
ASCII(American Standard Code for Information Interchange,美国信息互换标准代码)是基于拉丁字母的一套电脑编码系统。它主要用于显示现代英语和其他西欧语言。它是现今最通用的单字节编码系统,并等同于国际标准ISO/IEC 646。
目录[隐藏]
字符集简史
ASCII国际问题
扩展ASCII
双字节字符集
键盘常用ASCII码
ASCII码的算法:
美国信息交换标准代码
( American Standard Code for Information Interchange, ASCII )
在计算机中,所有的数据在存储和运算时都要使用二进制数表示(因为计算机用高电平和低电平分别表示1和0),例如,象a、b、c、d这样的52个字母(包括大写)、以及0、1等数字还有一些常用的符号(例如*、#、@等)在计算机中存储时也要使用二进制数来表示,而具体用哪些二进制数字表示哪个符号,当然每个人都可以约定自己的一套(这就叫编码),而大家如果要想互相通信而不造成混乱,那么大家就必须使用相同的编码规则,于是美国有关的标准化组织就出台了所谓的ASCII编码,统一规定了上述常用符号用哪些二进制数来表示。
美国标准信息交换代码是由美国国家标准学会(American National Standard Institute , ANSI )制定的,标准的单字节字符编码方案,用于基于文本的数据。起始于50年代后期,在1967年定案。它最初是美国国家标准,供不同计算机在相互通信时用作共同遵守的西文字符编码标准,它已被国际标准化组织(International Organization for Standardization, ISO)定为国际标准,称为ISO 646标准。适用于所有拉丁文字字母。
ASCII 码使用指定的 7 位或 8 位二进制数组合来表示 128 或 256 种可能的字符。标准 ASCII 码也叫基础ASCII码,使用 7 位二进制数来表示所有的大写和小写字母,数字 0 到 9、标点符号, 以及在美式英语中使用的特殊控制字符。其中:
0~31及127(共33个)是控制字符或通信专用字符(其余为可显示字符),如控制符:LF(换行)、CR(回车)、FF(换页)、DEL(删除)、BS(退格)、BEL(振铃)等;通信专用字符:SOH(文头)、EOT(文尾)、ACK(确认)等;ASCII值为 8、9、10 和 13 分别转换为退格、制表、换行和回车字符。它们并没有特定的图形显示,但会依不同的应用程序,而对文本显示有不同的影响。
32~126(共95个)是字符(32sp是空格),其中48~57为0到9十个阿拉伯数字;
65~90为26个大写英文字母,97~122号为26个小写英文字母,其余为一些标点符号、运算符号等。
同时还要注意,在标准ASCII中,其最高位(b7)用作奇偶校验位。所谓奇偶校验,是指在代码传送过程中用来检验是否出现错误的一种方法,一般分奇校验和偶校验两种。奇校验规定:正确的代码一个字节中1的个数必须是奇数,若非奇数,则在最高位b7添1;偶校验规定:正确的代码一个字节中1的个数必须是偶数,若非偶数,则在最高位b7添1。
后128个称为扩展ASCII码,目前许多基于x86的系统都支持使用扩展(或“高”)ASCII。扩展 ASCII 码允许将每个字符的第 8 位用于确定附加的 128 个特殊符号字符、外来语字母和图形符号。以下为标准ASCII表:
Bin Dec Hex 缩写/字符 解释
00000000 0 00 NUL(null) 空字符
00000001 1 01 SOH(start of handling) 标题开始
00000010 2 02 STX (start of text) 正文开始
00000011 3 03 ETX (end of text) 正文结束
00000100 4 04 EOT (end of transm-ission) 传输结束
00000101 5 05 ENQ (enquiry) 请求
00000110 6 06 ACK (acknow-ledge) 收到通知
00000111 7 07 BEL (bell) 响铃
00001000 8 08 BS (backsp-ace) 退格
00001001 9 09 HT (horizon-tal tab) 水平制表符
00001010 10 0A LF (NL line feed, new line) 换行键
00001011 11 0B VT (vertical tab) 垂直制表符
00001100 12 0C FF (NP form feed, new page) 换页键
00001101 13 0D CR (carriage return) 回车键
00001110 14 0E SO (shift out) 不用切换
00001111 15 0F SI (shift in) 启用切换
00010000 16 10 DLE (data link escape) 数据链路转义
00010001 17 11 DC1 (device control 1) 设备控制1
00010010 18 12 DC2 (device control 2) 设备控制2
00010011 19 13 DC3 (device control 3) 设备控制3
00010100 20 14 DC4 (device control 4) 设备控制4
00010101 21 15 NAK (negati-ve acknowl-edge) 拒绝接收
00010110 22 16 SYN (synchr-onous idle) 同步空闲
00010111 23 17 ETB (end of trans. block) 传输块结束
00011000 24 18 CAN (cancel) 取消
00011001 25 19 EM (end of medium) 介质中断
00011010 26 1A SUB (substit-ute) 替补
00011011 27 1B ESC (escape) 溢出
00011100 28 1C FS (file separat-or) 文件分割符
00011101 29 1D GS (group separat-or) 分组符
00011110 30 1E RS (record separat-or) 记录分离符
00011111 31 1F US (unit separat-or) 单元分隔符
00100000 32 20 空格
00100001 33 21 !
00100010 34 22 "
00100011 35 23 #
00100100 36 24 $
00100101 37 25 %
00100110 38 26 &
00100111 39 27 '
00101000 40 28 (
00101001 41 29 )
00101010 42 2A *
00101011 43 2B +
00101100 44 2C ,
00101101 45 2D -
00101110 46 2E .
00101111 47 2F /
00110000 48 30 0
续表
00110001 49 31 1
00110010 50 32 2
00110011 51 33 3
00110100 52 34 4
00110101 53 35 5
00110110 54 36 6
00110111 55 37 7
00111000 56 38 8
00111001 57 39 9
00111010 58 3A :
00111011 59 3B ;
00111100 60 3C <
00111101 61 3D =
00111110 62 3E >
00111111 63 3F ?
01000000 64 40 @
01000001 65 41 A
01000010 66 42 B
01000011 67 43 C
01000100 68 44 D
01000101 69 45 E
01000110 70 46 F
01000111 71 47 G
01001000 72 48 H
01001001 73 49 I
01001010 74 4A J
01001011 75 4B K
01001100 76 4C L
01001101 77 4D M
01001110 78 4E N
01001111 79 4F O
01010000 80 50 P
01010001 81 51 Q
01010010 82 52 R
01010011 83 53 S
01010100 84 54 T
01010101 85 55 U
01010110 86 56 V
01010111 87 57 W
01011000 88 58 X
01011001 89 59 Y
01011010 90 5A Z
01011011 91 5B [
01011100 92 5C \
01011101 93 5D ]
01011110 94 5E ^
01011111 95 5F _
01100000 96 60 `
01100001 97 61 a
01100010 98 62 b
续表
01100011 99 63 c
01100100 100 64 d
01100101 101 65 e
01100110 102 66 f
01100111 103 67 g
01101000 104 68 h
01101001 105 69 i
01101010 106 6A j
01101011 107 6B k
01101100 108 6C l
01101101 109 6D m
01101110 110 6E n
01101111 111 6F o
01110000 112 70 p
01110001 113 71 q
01110010 114 72 r
01110011 115 73 s
01110100 116 74 t
01110101 117 75 u
01110110 118 76 v
01110111 119 77 w
01111000 120 78 x
01111001 121 79 y
01111010 122 7A z
01111011 123 7B {
01111100 124 7C |
01111101 125 7D }
01111110 126 7E ~
01111111 127 7F DEL (delete) 删除
常见ASCII码的大小规则:0~9<A~Z<a~z
1)数字比字母要小。如 “7”<“F”;
2)数字0比数字9要小,并按0到9顺序递增。如 “3”<“8” ;
3)字母A比字母Z要小,并按A到Z顺序递增。如“A”<“Z” ;
4)同个字母的大写字母比小写字母要小32。如“A”<“a” 。
记住几个常见字母的ASCII码大小: “A”为65;“a”为97;“0”为 48。
另外还有128-255的ASCII字符
[编辑本段]字符集简史
6000年前 象形文字
3000年前 字母表
1838年到1854年 Samuel F. B. Morse发明了电报,字母表中的每个字符对应于一系列短的和长的脉冲
1821年到1824年 Louis Braille发明盲文,6位代码,它把字符、常用字母组合、常用单字和标点进行编码。
一个特殊的escape代码表示后续的字符代码应解释为大写。一个特殊的shift代码允许后续代码被解释为数字。
1931年 CCITT标准化Telex代码,包括Baudot #2的代码,都是包括字符和数字的5位代码。
1890年 早期计算机的字符码是从Hollerith卡片,6位字符码系统BCDIC(Binary-Coded Decimal Interchange Code:二进制编码十进制交换编码)
60年代 扩展为8位EBCDIC,IBM大型主机的标准
1967年 美国信息交换标准码(ASCII:American Standard Code for Information Interchange)
在字符长度是6位、7位还是8位的问题上产生了很大的争议。从可靠性的观点来看不应使用替换字符,
因此ASCII不能是6位编码,但由于费用的原因也排除了8位版本的方案(当时每位的储存空间成本仍很昂贵)。
这样,最终的字符码就有26个小写字母、26个大写字母、10个数字、32个符号、33个句柄和一个空格,总共128个字符码。
ASCII现在记录在ANSI X3.4-1986字符集-用于信息交换的7位美国国家标准码(7-Bit ASCII:7-Bit American National
Standard Code for Information Interchange),由美国国家标准协会(American National Standards Institute)发布。
图2-1中所示的ASCII字符码与ANSI文件中的格式相似。
[编辑本段]ASCII国际问题
ASCII是美国标准,所以它不能良好满足其它讲英语国家的需要。例如英国的英镑符号(£)在哪里?
拉丁语字母表重音符号
使用斯拉夫字母表的希腊语、希伯来语、阿拉伯语和俄语。
汉字系统的中国象形汉字,日本和朝鲜。
1967年,国际标准化组织(ISO:International Standards Organization)推荐一个ASCII的变种,
代码0x40、0x5B、0x5C、0x5D、0x7B、0x7C和0x7D“为国家使用保留”,而代码0x5E、0x60和0x7E标为
“当国内要求的特殊字符需要8、9或10个空间位置时,可用于其它图形符号”。这显然不是一个最佳的国际解决方案,
因为这并不能保证一致性。但这却显示了人们如何想尽办法为不同的语言来编码的。
[编辑本段]扩展ASCII
1981年 IBM PC ROM256个字符的字符集,即IBM扩展字符集
1985年11 Windows字符集被称作“ANSI字符集”,遵循了ANSI草案和ISO标准(ANSI/ISO 8859-1-1987,简“Latin 1”。
ANSI字符集的最初版本:
1987年4月代码页437,字符的映像代码,出现在MS-DOS 3.3
[编辑本段]双字节字符集
双字节字符集(DBCS:double-byte character set),解决中国、日本和韩国的象形文字符和ASCII的某种兼容性。
DBCS从256代码开始,就像ASCII一样。与任何行为良好的代码页一样,最初的128个代码是ASCII。
然而,较高的128个代码中的某些总是跟随着第二个字节。
这两个字节一起(称作首字节和跟随字节)定义一个字符,通常是一个复杂的象形文字。
[编辑本段]键盘常用ASCII码
ESC键 VK_ESCAPE (27)
回车键: VK_RETURN (13)
TAB键: VK_TAB (9)
Caps Lock键: VK_CAPITAL (20)
Shift键: VK_SHIFT (16)
Ctrl键: VK_CONTROL (17)
Alt键: VK_MENU (18)
空格键: VK_SPACE (32)
退格键: VK_BACK (8)
左徽标键: VK_LWIN (91)
右徽标键: VK_LWIN (92)
鼠标右键快捷键:VK_APPS (93)
Insert键: VK_INSERT (45)
Home键: VK_HOME (36)
Page Up: VK_PRIOR (33)
PageDown: VK_NEXT (34)
End键: VK_END (35)
Delete键: VK_DELETE (46)
方向键(←): VK_LEFT (37)
方向键(↑): VK_UP (38)
方向键(→): VK_RIGHT (39)
方向键(↓): VK_DOWN (40)
F1键: VK_F1 (112)
F2键: VK_F2 (113)
F3键: VK_F3 (114)
F4键: VK_F4 (115)
F5键: VK_F5 (116)
F6键: VK_F6 (117)
F7键: VK_F7 (118)
F8键: VK_F8 (119)
F9键: VK_F9 (120)
F10键: VK_F10 (121)
F11键: VK_F11 (122)
F12键: VK_F12 (123)
Num Lock键: VK_NUMLOCK (144)
小键盘0: VK_NUMPAD0 (48)
小键盘1: VK_NUMPAD0 (49)
小键盘2: VK_NUMPAD0 (50)
小键盘3: VK_NUMPAD0 (51)
小键盘4: VK_NUMPAD0 (52)
小键盘5: VK_NUMPAD0 (53)
小键盘6: VK_NUMPAD0 (54)
小键盘7: VK_NUMPAD0 (55)
小键盘8: VK_NUMPAD0 (56)
小键盘9: VK_NUMPAD0 (57)
小键盘.: VK_DECIMAL (46)
小键盘*: VK_MULTIPLY (42)
小键盘+: VK_ADD (43)
小键盘-: VK_SUBTRACT (45)
小键盘/: VK_DIVIDE (47)
Pause Break键: VK_PAUSE (19)
Scroll Lock键: VK_SCROLL (145)
[编辑本段]ASCII码的算法:
A在ascii中定义为01000001,也就是十进制65,有了这个标准后,当我们输入A时,计算机就可以通过ascii码知道输入的字符的二进制编码是01000001。而没有这样的标准,我们就必须自己想办法告诉计算机我们输入了一个A;没有这样的标准,我们在别的机器上就需要重新编码以告诉计算机我们要输入A。ascii码指的不是十进制,是二进制。只是用十进制表示习惯一点罢了,比如在ascii码中,A的二进制编码为01000001,如果用十进制表示是65,用十六进制表示就是41H。
⑷ FPGA,SoC,DSP,ASIC区别和应用
1、DSP(digital
signal
processor)看它的名字就知道是专业做数字信号处理的。DSP是一种独特的微处理器(采用哈佛结构,内部结构已经固定),有自己的完整指令系统,通过指令和数据工作(这个也是CPU和ARM等的工作方式),开发遵循嵌入式软件的设计原则,更注重于算法的实现。
2、FPGA,是ASIC的一种,属于硬件设计的范畴
。区别在于ASIC是硬件全定制
,FPGA是硬件半定制
。
ASIC(Application
Specific
Integrated
Circuits)是专用集成电路,指应特定用户要求和特定电子系统的需要而设计、制造的集成电路,里面的电路结构式固定不可变的。
而FPGA内部是集成的可以由用户来配置的基础数字逻辑模块(如寄存器、连接线、输入输出模块等),用户可以通过编程等方式,将这些基础数字逻辑模块组合成一个电路,从而达到目标功能。相当于是给你一堆原始逻辑与非门,你自己去拼积木吧。所以FPGA更灵活。
3、SoC是片上系统,指在一个芯片中实现用户定义的系统。
SoC与FPGA之间:由于FPGA内部也可实现软核(CPU),所以这时FPGA也算是SoC了。
SoC与ASIC之间:严格意义上来讲,SoC也可以是ASIC,当某一SoC结构稳定后,可作为ASIC来批量生产。一般来讲,SoC带有CPU和一些外设。ASIC一般是指IP核的设计,也就是某一功能模块,如USB,DDR控制器等。
⑸ 比特币矿机是如何通过计算挖币的
中本聪打造比特币的时候,希望比特币是一个去中心化的货币,不仅使用、交易如此,挖矿也应该如此。但是事与愿违,随着比特币等加密货币的价值越来越高,挖矿成为了一个产业,竞争越来越激烈,对挖矿算力的追求越来越高,所以从普通电脑挖矿,进化出了ASIC矿机与GPU矿机。
用ASIC矿机挖矿的币,算法几乎都为SHA256,而用GPU挖矿的算法则不同,例如BTG的算法是Equihash,BCD的算法是optimized X13。虽然不是绝对,但可以简单的认为,SHA256算法的币,一般都是用ASIC矿机挖。其他算法的币则基本都使用GPU矿机。也有例外,scrypt算法的莱特币以前用GPU矿机挖,但后来scrypt算法也被ASIC芯片攻克,比如蚂蚁矿机L3+,就是用来挖莱特币的ASIC矿机。
ASIC矿机,是指采用ASIC芯片作为算力核心的矿机。其中ASIC是Application Specific Integrated Circuit的缩写,是一种专门为某种特定用途设计的电子电路(芯片)。有矿机厂专门为计算比特币的SHA256算法而设计了ASIC芯片,使用它们的矿机就是ASIC矿机。由于ASIC芯片只为特定计算打造,所以效率可以比CPU这种通用计算芯片要高很多。举个例子,当前主流的蚂蚁矿机S9就是ASIC矿机,使用了189片ASIC芯片,算力达到了13.5TH/s,功耗仅为1350W。作为对比,当前电脑显卡旗舰GTX1080Ti挖比特币的算力,就算优化的好基本也不会超过60MH/s。相差了数万倍,非常悬殊。
而GPU矿机,是指使用GPU显卡作为算力核心的矿机。诸如以太坊、比特币钻石等加密货币用的是图形算法,所以用显卡计算的速度会最高。相对于ASIC矿机,GPU矿机更被大众熟知,因为说白了它就是一台加强了显卡配置的电脑。
GPU矿机的目的是赚钱,所以要追求功耗比与最大收益,所以选择要注重性价比,一般中高端定位的显卡,比如AMD RX560、RX570的功耗比高,是GPU矿机的好选择。而GTX1080Ti、AMD Vega64这样旗舰虽然单卡性能最强,但售价与功耗算下来并不划算。
另外,ASIC矿机也有一些比较奇葩的产品,比如烧猫的USB矿机,是个比U盘略微大一些的东东,功耗也只有2.25W,是目前最小的比特币矿机。
以上引用挖币网—“矿机分类介绍”,专业名词较多,希望对您有帮助,谢谢!
⑹ 什么是缺省路由器什么是ASIC
什么是缺省路由器:路由算法有动静之分,静态路由是一种特殊的路由,它是由管理员手工设定的。手工配置所有的路由虽然可以使网络正常运转,但是也会带来一些局限性。网络拓扑发生变化之后,静态路由不会自动改变,必须有网络管理员的介入。
缺省路由是静态路由的一种,也是由管理员设置的。在没有找到目标网络的路由表项时,路由器将信息发送到缺省路由器。而动态的算法,顾名思义,是由路由器自动计算出的路由,常说的RIP、OSPF等都是动态算法的典型代表。
另外,还可以将路由算法分为DV和LS两种。DV(Distance Vector,距离向量)算法将当前路由器的路由信息传送给相邻路由器,相邻路由器将这些信息加入自身的路由表。而LS(Link State,链路状态)算法将链路状态信息传给域内所有的路由器,接收路由器利用这些信息构建网络拓扑图,并利用图论中的最短路径优先算法决定路由。
什么是ASIC::Australian Securities and Investments Commission. One of three Australian Government bodies (the others being the Australian Prudential Regulation Authority and the Reserve Bank of Australia) that regulates financial services. ASIC is the national regulator of Australia's companies. ASIC has responsibility for market protection and consumer integrity issues across the financial system.
⑺ 比特币和以太坊挖矿有什么区别
比特币采用的是SHA-256加密算法发,在挖矿的时候,比拼的是算力。为了提高算力,比特币经历了CPU挖矿、GPU挖矿、FPGA挖矿和现在的ASIC矿机挖矿四个阶段,专业化程度越来越高。
以太坊采用的是Ethash加密算法,在挖矿的过程中,需要读取内存并存储DAG文件。由于每一次读取内存的带宽都是有限的,而现有的计算机技术又很难在这个问题上有质的突破,所以无论如何提高计算机的运算效率,内存读取效率仍然不会有很大的改观。因此从某种意义上来说,以太坊的Ethash加密算法具有“抗ASIC性”.
加密算法的不同,导致了比特币和以太坊的挖矿设备、算力规模差异很大。
目前,比特币挖矿的、设备主要是专业化程度非常高的ASIC矿机,单台矿机的算力最高达到了110T/s,全网算力的规模在120EH/s以上。
以太坊的挖矿设备主要是显卡矿机,专业化的ASIC矿机非常少,一方面是因为以太坊挖矿算法的“抗ASIC性”提高了研发ASIC矿机的门槛,另一方面是因为以太坊升级到2.0之后共识机制会转型为PoS,矿机无法继续挖矿。
和ASIC矿机相比,显卡矿机在啊算力上相差了2个量级。目前,主流的显卡矿机(8卡)算力约为420MH/s,以太坊全网算力约为230TH/s.
从过去两年的时间维度上看,比特币的全网算力增长迅速,以太坊的全网算力增长相对缓慢。
比特币的ASIC矿机被几大矿机厂商所垄断,矿工只能从市场上购买;以太坊的显卡矿机,虽然也有专门的矿机厂商生产制造,矿工还可以根据自己的需求DIY,从市场上购买配件然后自己组装。