启发式优化算法
❶ 优化算法是什么
智能优化算法是一种启发式优化算法,包括遗传算法、蚁群算法、禁忌搜索算法、模拟退火算法、粒子群算法等。·智能优化算法一般是针对具体问题设计相关的算法,理论要求弱,技术性强。一般,我们会把智能算法与最优化算法进行比较,相比之下,智能算法速度快,应用性强。
群体智能优化算法是一类基于概率的随机搜索进化算法,各个算法之间存在结构、研究内容、计算方法等具有较大的相似性。
各个群体智能算法之间最大不同在于算法更新规则上,有基于模拟群居生物运动长更新的(如PSO,AFSA与SFLA),也有根据某种算法机理设置更新规则(如ACO)。
(1)启发式优化算法扩展阅读:
优化算法有很多,关键是针对不同的优化问题,例如可行解变量的取值(连续还是离散)、目标函数和约束条件的复杂程度(线性还是非线性)等,应用不同的算法。 对于连续和线性等较简单的问题,可以选择一些经典算法,例如梯度、Hessian 矩阵、拉格朗日乘数、单纯形法、梯度下降法等;而对于更复杂的问题,则可考虑用一些智能优化算法。
❷ 元启发式算法和启发式算法有什么区别
启发式算法与元启发式算法对区别在于是否存在“随机因素”。 对一个同样的问题,启发式算法(heuristics)只要给定了一个输入,那么算法执行的步骤就固定下来了,输出也因此固定,多次运算结果保持一致。
而元启发式算法(meta-heuristics)里面包括了随机因素,如GA中的交叉因子,模拟退火中的metropolis准则,这些随机因素也使得算法有一定概率跳出局部最优解而去尝试全局最优解,因此元启发式算法在固定的输入下,而输出是不固定的。
启发式算法(Heuristic Algorigthm)是一种基于直观或经验构造的算法,在可接受的花费(指计算时间、计算空间等)给出待解决优化问题的每一实例的一个可行解,该可行解与与最优解的偏离程度一般不可以事先预计。
启发式算法是一种技术,这种算法可以在可接受的计算费用内找到最好的解,但不一定能保证所得到解的可行性及最优性,甚至大多数情况下无法阐述所得解与最优解之间的近似程度。
元启发式算法(MetaHeuristic Algorigthm)是启发式算法的改进,它是随机算法与局部搜索算法相结合的产物,常见的启发式算法包括遗传算法、模拟退火算法、禁忌搜索算法及神经网络算法等。
新兴的元启发式算法有、粒子群优化算法、差分进化算法,蚁群优化算法、萤火虫算法、布谷鸟算法、和声搜索算法、差分进化算法、随机蛙跳算法、细菌觅食算法、蝙蝠算法的算法等。
❸ 近似算法和启发式算法的区别与联系
在计算机科学与运筹学,近似算法是指用来发现近似方法来解决优化问题的算法。近似算法通常与NP-hard问题相关; 由于不可能有效的多项式时间精确算来解决NP-hard问题,所以一个求解多项式时间次优解。与启发式算法不同,通常只能找到合理的解决方案相当快速,需要可证明的解决方案质量和可证明的运行时间范围。理想情况下,近似值最优可达到一个小的常数因子(例如在最优解的5%以内)。近似算法越来越多地用于已知精确多项式时间算法但由于输入大小而过于昂贵的问题。
启发式算法(heuristic algorithm)是相对于最优化算法提出的。一个问题的最优算法求得该问题每个实例的最优解。启发式算法可以这样定义:一个基于直观或经验构造的算法,在可接受的花费(指计算时间和空间)下给出待解决组合优化问题每一个实例的一个可行解,该可行解与最优解的偏离程度一般不能被预计。现阶段,启发式算法以仿自然体算法为主,主要有蚁群算法、模拟退火法、神经网络等。
❹ 什么是智能优化算法
群体智能优化算法是一类基于概率的随机搜索进化算法,各个算法之间存在结构、研究内容、计算方法等具有较大的相似性。因此,群体智能优化算法可以建立一个基本的理论框架模式:
Step1:设置参数,初始化种群;
Step2:生成一组解,计算其适应值;
Step3:由个体最有适应着,通过比较得到群体最优适应值;
Step4:判断终止条件示否满足?如果满足,结束迭代;否则,转向Step2;
各个群体智能算法之间最大不同在于算法更新规则上,有基于模拟群居生物运动步长更新的(如PSO,AFSA与SFLA),也有根据某种算法机理设置更新规则(如ACO)。
(4)启发式优化算法扩展阅读
优化算法有很多,经典算法包括:有线性规划,动态规划等;改进型局部搜索算法包括爬山法,最速下降法等,模拟退火、遗传算法以及禁忌搜索称作指导性搜索法。而神经网络,混沌搜索则属于系统动态演化方法。
优化思想里面经常提到邻域函数,它的作用是指出如何由当前解得到一个(组)新解。其具体实现方式要根据具体问题分析来定。
❺ heuristic optimization是什么意思
heuristic 英[hjuˈrɪstɪk]
美[hjʊˈrɪstɪk]
adj. 启发式的; 探试的,探索的;
[网络] 启发式; 启发; 探索法;
[例句]Therefore, an algorithm in which the heuristic rules combined wit.
为此,文中提出了将启发式规则和模糊逻辑相结合的算法。
[其他] 形近词: touristic
❻ 启发式算法
什么是算法?从枚举到贪心再到启发式(上)
目标 :要优化的东西
决策 :根据目标做出的决策
约束 :进行决策时必须遵循的条件
算例 :问题参数的具体化
枚举法 :将问题所有的解一一枚举出来,挨个去评价,选出最好的那个
1.枚举法能够找到问题的最优解
2.枚举法求解时间随问题规模增长而呈爆炸式增长
贪心法 :利用“构造”的方式生成解,速度相对而言会非常快,同时不会随着问题规模的增长而大幅度增加,是平缓的线性增长
什么是算法?从枚举到贪心再到启发式(下)
启发式算法 :在一个合理的求解资源范围内(合理的时间,合理的内存开销等)求得一个较为满意的解。目前主要包括邻域搜索和群体仿生两大类。
解空间 :所有该问题的解的集合,包括可行解和不可行解
局部搜索 :不完全遍历解空间,只选择一部分进行遍历,进而大大降低搜索需要的资源。为了提高局部搜索的质量,大部分局部搜索算法都会在搜索的时候不断地抓取多个区域进行搜索,直到满足算法终止条件。
邻域 :在邻域结构定义下的解的集合,它是一个相对的概念,即邻域肯定是基于某个解产生的
邻居解 :邻域内某个解的称呼
邻域结构 :定义了一个解的邻域
邻域结构的设计在启发式算法中非常重要,它直接决定了搜索的范围,对最终的搜索结构有着重要的影响,直接决定了最终结果质量的好坏
搜索过程
不断重复步骤2-步骤5,直到满足终止条件,最后输出全局最优解
所有的启发式找到的都是满意解,不能说是最优解(即便真的是),因为它遍历的是解空间的局部。
一般情况下,启发式算法的时间是随着问题规模增长而呈线性增长的
干货 | 想学习优化算法,不知从何学起?
邻域搜索类
迭代局部搜索算法
模拟退火算法
变邻域搜索算法
禁忌搜索
自适应大邻域搜索
群体仿生类
遗传算法
蚁群算法
粒子群算法
人工鱼群算法
算法应用
禁忌搜索算法求解带时间窗的车辆路径问题
基于树表示法的变邻域搜索算法求解考虑后进先出的取派货旅行商问题
变邻域搜索算法求解Max-Mean dispersion problem
遗传算法求解混合流水车间调度问题
❼ 采用准确优化技术和启发式优化技术解决一个问题会存在什么不同
采用准确优化技术和启发式优化技术解决一个问题会存在的不同之处:
①确定性算法和随机性算法是目前求解优化问题的方法。随机性算法一般是对社会行为和自然现象的模拟,具有对优化函数的解析性质要求低的特点,甚至对无显示解析表达式的问题也可以求解,能较好解决优化中的噪声、不可微、高维等问题。
②启发式算法作为随机性算法的一种,其良好的应用更加快了人们对各种优化方法的探索脚步。 近些年来不断有学者将分形应用于优化中来,试图运用分形思想来处理复杂的优化问题。
③其中,分形算法通过对可行域的分形分割来寻优,是一种新颖的确定性算法,但其局限性较大,只适用于低维简单的问题,对于当今社会中高维复杂问题则几乎无能为力,也使得该算法的影响力微乎其微。
④启发式技术是基于特征值扫描技术上的升级,与传统反病毒特征值扫描技术相比,优点在于对未知病毒的防御.是特征值识别技术质的飞跃。
(7)启发式优化算法扩展阅读
启发式:简化虚拟机和简化行为判断引擎的结合 Heuristic(启发式技术=启发式扫描+启发式监控) 重点在于特征值识别技术上的更新、解决单一特征码比对的缺陷.目的不在于检测所有的未知病毒,只是对特征值扫描技术的补充.主要针对:木马、间谍、后门、下载者、已知病毒(PE病毒)的变种。
一、启发式发展方向
现代启发式算法的研究,在理论方面还处于不断发展中,新思想和新方法仍不断出现。分析目前的现状和发展方向,其发展方向有如下几个方面:
①整理归纳分散的研究成果,建立统一的算法体系结构。
②在现有的数学方法(模式定理、编码策略、马尔可夫链理论、维数分析理论、复制遗传算法理论、二次动力系统理论、傅立叶分析理论、分离函数理论、Walsh函数分析理论)的基础上寻求新的数学工具。
③开发新的混合式算法及开展现有算法改进方面的研究。
④研究高效并行或分布式优化算法。
二、启发式算法算法机制特点
现代启发式算法在优化机制方面存在一定的差异,但在优化流程上却具有较大的相似性,均是一种“邻域搜索”结构。算法都是从一个(一组)初始解出发,在算法的关键参数的控制下通过邻域函数产生若干邻域解,按准则(确定性、概率性或混沌方式)更新当前状态,而后按关键参数修改准则调整关键参数,一直优化到最优结果。
❽ 启发式算法介绍 启发式算法简介
1、启发式算法(heuristic algorithm)是相对于最优化算法提出的。一个问题的最优算法求得该问题每个实例的最优解。
2、启发式算法可以这样定义:一个基于直观或经验构造的算法,在可接受的花费(指计算时间和空间)下给出待解决组合优化问题每一个实例的一个可行解,该可行解与最优解的偏离程度一般不能被预计。现阶段,启发式算法以仿自然体算法为主,主要有蚁群算法、模拟退火法、神经网络等。
❾ 有关启发式算法(Heuristic Algorithm)的一些总结
节选自维基网络:
启发法 ( heuristics ,源自古希腊语的εὑρίσκω,又译作:策略法、助发现法、启发力、捷思法)是指 依据有限的知识 (或“不完整的信息”)在短时间内找到问题解决方案的一种技术。
它是一种依据 关于系统的有限认知 和 假说 从而得到关于此系统的结论的分析行为。由此得到的解决方案有可能会偏离最佳方案。通过与最佳方案的对比,可以确保启发法的质量。
计算机科学的两大基础目标,就是 发现可证明其运行效率良好 且可 得最佳解或次佳解 的算法。
而启发式算法则 试图一次提供一个或全部目标 。例如它常能发现很不错的解, 但也没办法证明它不会得到较坏的解 ; 它通常可在合理时间解出答案,但也没办法知道它是否每次都可以这样的速度求解。
有时候人们会发现在某些特殊情况下,启发式算法会得到很坏的答案或效率极差, 然而造成那些特殊情况的数据结构,也许永远不会在现实世界出现 。
因此现实世界中启发式算法很常用来解决问题。启发式算法处理许多实际问题时通常可以在合理时间内得到不错的答案。
有一类的 通用启发式策略称为元启发式算法(metaheuristic) ,通常使用随机数搜索技巧。他们可以应用在非常广泛的问题上,但不能保证效率。
节选自网络:
启发式算法可以这样定义:一个 基于直观或经验构造 的算法, 在 可接受的花费(指计算时间和空间)下给出待解决组合优化问题每一个实例的一个可行解 , 该可行解与最优解的偏离程度一般不能被预计。 现阶段,启发式算法以仿自然体算法为主,主要有蚁群算法、模拟退火法、神经网络等。
目前比较通用的启发式算法一般有模拟退火算法(SA)、遗传算法(GA)、蚁群算法(ACO)。
模拟退火算法(Simulated Annealing, SA)的思想借鉴于固体的退火原理,当固体的温度很高的时候,内能比较大,固体的内部粒子处于快速无序运动,当温度慢慢降低的过程中,固体的内能减小,粒子的慢慢趋于有序,最终,当固体处于常温时,内能达到最小,此时,粒子最为稳定。模拟退火算法便是基于这样的原理设计而成。
求解给定函数的最小值:其中,0<=x<=100,给定任意y的值,求解x为多少的时候,F(x)最小?
遗传算法(Genetic Algorithm, GA)起源于对生物系统所进行的计算机模拟研究。它是模仿自然界生物进化机制发展起来的随机全局搜索和优化方法,借鉴了达尔文的进化论和孟德尔的遗传学说。其本质是一种 高效、并行、全局搜索 的方法,能在搜索过程中自动获取和积累有关搜索空间的知识,并 自适应 地控制搜索过程以求得最佳解。
给定一组五个基因,每一个基因可以保存一个二进制值 0 或 1。这里的适应度是基因组中 1 的数量。如果基因组内共有五个 1,则该个体适应度达到最大值。如果基因组内没有 1,那么个体的适应度达到最小值。该遗传算法希望 最大化适应度 ,并提供适应度达到最大的个体所组成的群体。
想象有一只蚂蚁找到了食物,那么它就需要将这个食物待会蚂蚁穴。对于这只蚂蚁来说,它并不知道应该怎么回到蚂蚁穴。
这只蚂蚁有可能会随机选择一条路线,这条路可能路程比较远,但是这只蚂蚁在这条路上留下了记号(一种化学物质,信息素)。如果这只蚂蚁继续不停地搬运食物的时候,有其它许多蚂蚁一起搬运的话,它们总会有运气好的时候走到更快返回蚂蚁穴的路线。当蚂蚁选择的路线越优,相同时间内蚂蚁往返的次数就会越多,这样就在这条路上留下了更多的信息素。
这时候,蚂蚁们就会选择一些路径上信息素越浓的,这些路径就是较优的路径。当蚂蚁们不断重复这个过程,蚂蚁们就会更多地向更浓的信息素的路径上偏移,这样最终会确定一条路径,这条路径就是最优路径。