mmaplinux
‘壹’ 在linux系统下使用内存技术,检测堆越界错误
一般使用c或cpp编程时,堆栈越界访问(read/write)往往会引起很多意想不到的错误,比如延后的进程崩溃等。因此,如果有一种方法,可以让越界访问立即触发系统错误(让进程抛出异常而终止,再生成coremp文件),就可以立即检测出内存越界行为,并将对这种隐藏的错误,及时作出反应,以免在生产环境下造成更大的损失。
我们知道,在windows系统下面,我们可以使用VirtualAlloc系列函数,通过申请2页内存,并设置某页的保护参数(比如,可读,可写等),就可以实现类似的保护机制。这样,当我们对新增加的类(数据结构),就可以重载operator new/delete,将类的边界设置到一页的边缘,再将相邻页设置为不可读不可写。这样就能有效监测堆越界读写问题。而且可以,设置某个编译宏,比如PROTECT_CLASSX。演示代码如下:
在linux下,则需要借助mmap和mprotect来实现这个机制。具体步骤如下,首先用mmap使用PROT_NONE映射一个特殊文件,比如/dev/zero(或者使用MAP_ANONYMOUS),然后再用mprotect提交内存。上面的例子,可以继续使用,但是只列出来核心的代码,什么重载操作符就不写了,另外,内存映射文件j句柄最好用内存池来hold,最后在close掉。演示代码只说明大致用法,并不能直接拿来用。
下面补充mprotect的用法:
再把mmap函数的用法示例如下:
‘贰’ Android中mmap原理及应用简析
mmap是Linux中常用的系统调用API,用途广泛,Android中也有不少地方用到,比如匿名共享内存,Binder机制等。本文简单记录下Android中mmap调用流程及原理。mmap函数原型如下:
几个重要参数
返回值是void *类型,分配成功后,被映射成虚拟内存地址。
mmap属于系统调用,用户控件间接通过swi指令触发软中断,进入内核态(各种环境的切换),进入内核态之后,便可以调用内核函数进行处理。 mmap->mmap64->__mmap2->sys_mmap2-> sys_mmap_pgoff ->do_mmap_pgoff
而 __NR_mmap在系统函数调用表中对应的减值如下:
通过系统调用,执行swi软中断,进入内核态,最终映射到call.S中的内核函数:sys_mmap2
sys_mmap2最终通过sys_mmap_pgoff在内核态完成后续逻辑。
sys_mmap_pgoff通过宏定义实现
进而调用do_mmap_pgoff:
get_unmapped_area用于为用户空间找一块内存区域,
current->mm->get_unmapped_area一般被赋值为arch_get_unmapped_area_topdown,
先找到合适的虚拟内存(用户空间),几经周转后,调用相应文件或者设备驱动中的mmap函数,完成该设备文件的mmap,至于如何处理处理虚拟空间,要看每个文件的自己的操作了。
这里有个很关键的结构体
它是文件驱动操作的入口,在open的时候,完成file_operations的绑定,open流程跟mmap类似
先通过get_unused_fd_flags获取个未使用的fd,再通过do_file_open完成file结构体的创建及初始化,最后通过fd_install完成fd与file的绑定。
重点看下path_openat:
拿Binder设备文件为例子,在注册该设备驱动的时候,对应的file_operations已经注册好了,
open的时候,只需要根根inode节点,获取到file_operations既可,并且,在open成功后,要回调file_operations中的open函数
open后,就可以利用fd找到file,之后利用file中的file_operations *f_op调用相应驱动函数,接着看mmap。
Binder机制中mmap的最大特点是一次拷贝即可完成进程间通信 。Android应用在进程启动之初会创建一个单例的ProcessState对象,其构造函数执行时会同时完成binder mmap,为进程分配一块内存,专门用于Binder通信,如下。
第一个参数是分配地址,为0意味着让系统自动分配,流程跟之前分子类似,先在用户空间找到一块合适的虚拟内存,之后,在内核空间也找到一块合适的虚拟内存,修改两个控件的页表,使得两者映射到同一块物力内存。
Linux的内存分用户空间跟内核空间,同时页表有也分两类,用户空间页表跟内核空间页表,每个进程有一个用户空间页表,但是系统只有一个内核空间页表。而Binder mmap的关键是:也更新用户空间对应的页表的同时也同步映射内核页表,让两个页表都指向同一块地址,这样一来,数据只需要从A进程的用户空间,直接拷贝拷贝到B所对应的内核空间,而B多对应的内核空间在B进程的用户空间也有相应的映射,这样就无需从内核拷贝到用户空间了。
binder_update_page_range完成了内存分配、页表修改等关键操作:
可以看到,binder一次拷贝的关键是,完成内存的时候,同时完成了内核空间跟用户空间的映射,也就是说,同一份物理内存,既可以在用户空间,用虚拟地址访问,也可以在内核空间用虚拟地址访问。
普通文件的访问方式有两种:第一种是通过read/write系统调访问,先在用户空间分配一段buffer,然后,进入内核,将内容从磁盘读取到内核缓冲,最后,拷贝到用户进程空间,至少牵扯到两次数据拷贝;同时,多个进程同时访问一个文件,每个进程都有一个副本,存在资源浪费的问题。
另一种是通过mmap来访问文件,mmap()将文件直接映射到用户空间,文件在mmap的时候,内存并未真正分配,只有在第一次读取/写入的时候才会触发,这个时候,会引发缺页中断,在处理缺页中断的时候,完成内存也分配,同时也完成文件数据的拷贝。并且,修改用户空间对应的页表,完成到物理内存到用户空间的映射,这种方式只存在一次数据拷贝,效率更高。同时多进程间通过mmap共享文件数据的时候,仅需要一块物理内存就够了。
共享内存是在普通文件mmap的基础上实现的,其实就是基于tmpfs文件系统的普通mmap,有机会再分析,不再啰嗦。
Android中mmap原理及应用简析
仅供参考,欢迎指正
‘叁’ Linux - 用户态内存映射 和 内核态内存映射
操作系统的内存管理,主要分为三个方面。
第一,物理内存的管理,相当于会议室管理员管理会议室。
第二,虚拟地址的管理,也即在项目组的视角,会议室的虚拟地址应该如何组织。
第三,虚拟地址和物理地址如何映射,也即会议室管理员如果管理映射表。
那么虚拟地址和物理地址如何映射呢?
每一个进程都有一个列表vm_area_struct,指向虚拟地址空间的不同的内存块,这个变量的名字叫mmap。
其实内存映射不仅仅是物理内存和虚拟内存之间的映射,还包括将文件中的内容映射到虚拟内存空间。这个时候,访问内存空间就能够访问到文件里面的数据。而仅有物理内存和虚拟内存的映射,是一种特殊情况。
如果我们要申请小块内存,就用brk。brk函数之前已经解析过了,这里就不多说了。如果申请一大块内存,就要用mmap。对于堆的申请来讲,mmap是映射内存空间到物理内存。
另外,如果一个进程想映射一个文件到自己的虚拟内存空间,也要通过mmap系统调用。这个时候mmap是映射内存空间到物理内存再到文件。可见mmap这个系统调用是核心,我们现在来看mmap这个系统调用。
用户态的内存映射机制包含以下几个部分。
物理内存根据NUMA架构分节点。每个节点里面再分区域。每个区域里面再分页。
物理页面通过伙伴系统进行分配。分配的物理页面要变成虚拟地址让上层可以访问,kswapd可以根据物理页面的使用情况对页面进行换入换出。
对于内存的分配需求,可能来自内核态,也可能来自用户态。
对于内核态,kmalloc在分配大内存的时候,以及vmalloc分配不连续物理页的时候,直接使用伙伴系统,分配后转换为虚拟地址,访问的时候需要通过内核页表进行映射。
对于kmem_cache以及kmalloc分配小内存,则使用slub分配器,将伙伴系统分配出来的大块内存切成一小块一小块进行分配。
kmem_cache和kmalloc的部分不会被换出,因为用这两个函数分配的内存多用于保持内核关键的数据结构。内核态中vmalloc分配的部分会被换出,因而当访问的时候,发现不在,就会调用do_page_fault。
对于用户态的内存分配,或者直接调用mmap系统调用分配,或者调用malloc。调用malloc的时候,如果分配小的内存,就用sys_brk系统调用;如果分配大的内存,还是用sys_mmap系统调用。正常情况下,用户态的内存都是可以换出的,因而一旦发现内存中不存在,就会调用do_page_fault。
‘肆’ [转]浅谈Linux下的零拷贝机制
维基上是这么描述零拷贝的:零拷贝描述的是CPU不执行拷贝数据从一个存储区域到另一个存储区域的任务,这通常用于通过网络传输一个文件时以减少CPU周期和内存带宽。
减少甚至完全避免不必要的CPU拷贝,从而让CPU解脱出来去执行其他的任务
减少内存带宽的占用
通常零拷贝技术还能够减少用户空间和操作系统内核空间之间的上下文切换
从Linux系统上看,除了引导系统的BIN区,整个内存空间主要被分成两个部分: 内核空间(Kernel space) 、 用户空间(User space) 。“用户空间”和“内核空间”的空间、操作权限以及作用都是不一样的。
内核空间是Linux自身使用的内存空间,主要提供给程序调度、内存分配、连接硬件资源等程序逻辑使用;
用户空间则是提供给各个进程的主要空间。用户空间不具有访问内核空间资源的权限,因此如果应用程序需要使用到内核空间的资源,则需要通过系统调用来完成:从用户空间切换到内核空间,然后在完成相关操作后再从内核空间切换回用户空间。
① 直接 I/O:对于这种数据传输方式来说,应用程序可以直接访问硬件存储,操作系统内核只是辅助数据传输。这种方式依旧存在用户空间和内核空间的上下文切换,但是硬件上的数据不会拷贝一份到内核空间,而是直接拷贝至了用户空间,因此直接I/O不存在内核空间缓冲区和用户空间缓冲区之间的数据拷贝。
② 在数据传输过程中,避免数据在用户空间缓冲区和系统内核空间缓冲区之间的CPU拷贝,以及数据在系统内核空间内的CPU拷贝。本文主要讨论的就是该方式下的零拷贝机制。
③ -on-write(写时复制技术):在某些情况下,Linux操作系统的内核空间缓冲区可能被多个应用程序所共享,操作系统有可能会将用户空间缓冲区地址映射到内核空间缓存区中。当应用程序需要对共享的数据进行修改的时候,才需要真正地拷贝数据到应用程序的用户空间缓冲区中,并且对自己用户空间的缓冲区的数据进行修改不会影响到其他共享数据的应用程序。所以,如果应用程序不需要对数据进行任何修改的话,就不会存在数据从系统内核空间缓冲区拷贝到用户空间缓冲区的操作。
下面我们通过一个Java非常常见的应用场景:将系统中的文件发送到远端(该流程涉及:磁盘上文件 ——> 内存(字节数组) ——> 传输给用户/网络)来详细展开传统I/O操作和通过零拷贝来实现的I/O操作。
① 发出read系统调用:导致用户空间到内核空间的上下文切换(第一次上下文切换)。通过DMA引擎将文件中的数据从磁盘上读取到内核空间缓冲区(第一次拷贝: hard drive ——> kernel buffer)。
② 将内核空间缓冲区的数据拷贝到用户空间缓冲区(第二次拷贝: kernel buffer ——> user buffer),然后read系统调用返回。而系统调用的返回又会导致一次内核空间到用户空间的上下文切换(第二次上下文切换)。
③ 发出write系统调用:导致用户空间到内核空间的上下文切换(第三次上下文切换)。将用户空间缓冲区中的数据拷贝到内核空间中与socket相关联的缓冲区中(即,第②步中从内核空间缓冲区拷贝而来的数据原封不动的再次拷贝到内核空间的socket缓冲区中。)(第三次拷贝: user buffer ——> socket buffer)。
④ write系统调用返回,导致内核空间到用户空间的再次上下文切换(第四次上下文切换)。通过DMA引擎将内核缓冲区中的数据传递到协议引擎(第四次拷贝: socket buffer ——> protocol engine),这次拷贝是一个独立且异步的过程。
Q: 你可能会问独立和异步这是什么意思?难道是调用会在数据被传输前返回?
A: 事实上调用的返回并不保证数据被传输;它甚至不保证传输的开始。它只是意味着将我们要发送的数据放入到了一个待发送的队列中,在我们之前可能有许多数据包在排队。除非驱动器或硬件实现优先级环或队列,否则数据是以先进先出的方式传输的。
总的来说,传统的I/O操作进行了4次用户空间与内核空间的上下文切换,以及4次数据拷贝。其中4次数据拷贝中包括了2次DMA拷贝和2次CPU拷贝。
Q: 传统I/O模式为什么将数据从磁盘读取到内核空间缓冲区,然后再将数据从内核空间缓冲区拷贝到用户空间缓冲区了?为什么不直接将数据从磁盘读取到用户空间缓冲区就好?
A: 传统I/O模式之所以将数据从磁盘读取到内核空间缓冲区而不是直接读取到用户空间缓冲区,是为了减少磁盘I/O操作以此来提高性能。因为OS会根据局部性原理在一次read()系统调用的时候预读取更多的文件数据到内核空间缓冲区中,这样当下一次read()系统调用的时候发现要读取的数据已经存在于内核空间缓冲区中的时候只要直接拷贝数据到用户空间缓冲区中即可,无需再进行一次低效的磁盘I/O操作(注意:磁盘I/O操作的速度比直接访问内存慢了好几个数量级)。
Q: 既然系统内核缓冲区能够减少磁盘I/O操作,那么我们经常使用的BufferedInputStream缓冲区又是用来干啥的?
A: BufferedInputStream的作用是会根据情况自动为我们预取更多的数据到它自己维护的一个内部字节数据缓冲区中,这样做能够减少系统调用的次数以此来提供性能。
总的来说内核空间缓冲区的一大用处是为了减少磁盘I/O操作,因为它会从磁盘中预读更多的数据到缓冲区中。而BufferedInputStream的用处是减少“系统调用”。
DMA(Direct Memory Access) ———— 直接内存访问 :DMA是允许外设组件将I/O数据直接传送到主存储器中并且传输不需要CPU的参与,以此将CPU解放出来去完成其他的事情。
而用户空间与内核空间之间的数据传输并没有类似DMA这种可以不需要CPU参与的传输工具,因此用户空间与内核空间之间的数据传输是需要CPU全程参与的。所有也就有了通过零拷贝技术来减少和避免不必要的CPU数据拷贝过程。
① 发出sendfile系统调用,导致用户空间到内核空间的上下文切换(第一次上下文切换)。通过DMA引擎将磁盘文件中的内容拷贝到内核空间缓冲区中(第一次拷贝: hard drive ——> kernel buffer)。然后再将数据从内核空间缓冲区拷贝到内核中与socket相关的缓冲区中(第二次拷贝: kernel buffer ——> socket buffer)。
② sendfile系统调用返回,导致内核空间到用户空间的上下文切换(第二次上下文切换)。通过DMA引擎将内核空间socket缓冲区中的数据传递到协议引擎(第三次拷贝: socket buffer ——> protocol engine)
总的来说,通过sendfile实现的零拷贝I/O只使用了2次用户空间与内核空间的上下文切换,以及3次数据的拷贝。其中3次数据拷贝中包括了2次DMA拷贝和1次CPU拷贝。
Q: 但通过是这里还是存在着一次CPU拷贝操作,即,kernel buffer ——> socket buffer。是否有办法将该拷贝操作也取消掉了?
A: 有的。但这需要底层操作系统的支持。从Linux 2.4版本开始,操作系统底层提供了scatter/gather这种DMA的方式来从内核空间缓冲区中将数据直接读取到协议引擎中,而无需将内核空间缓冲区中的数据再拷贝一份到内核空间socket相关联的缓冲区中。
从Linux 2.4版本开始,操作系统底层提供了带有scatter/gather的DMA来从内核空间缓冲区中将数据读取到协议引擎中。这样一来待传输的数据可以分散在存储的不同位置上,而不需要在连续存储中存放。那么从文件中读出的数据就根本不需要被拷贝到socket缓冲区中去,只是需要将缓冲区描述符添加到socket缓冲区中去,DMA收集操作会根据缓冲区描述符中的信息将内核空间中的数据直接拷贝到协议引擎中。
① 发出sendfile系统调用,导致用户空间到内核空间的上下文切换(第一次上下文切换)。通过DMA引擎将磁盘文件中的内容拷贝到内核空间缓冲区中(第一次拷贝: hard drive ——> kernel buffer)。
② 没有数据拷贝到socket缓冲区。取而代之的是只有相应的描述符信息会被拷贝到相应的socket缓冲区当中。该描述符包含了两方面的信息:a)kernel buffer的内存地址;b)kernel buffer的偏移量。
③ sendfile系统调用返回,导致内核空间到用户空间的上下文切换(第二次上下文切换)。DMA gather 根据socket缓冲区中描述符提供的位置和偏移量信息直接将内核空间缓冲区中的数据拷贝到协议引擎上(第二次拷贝: kernel buffer ——> protocol engine),这样就避免了最后一次CPU数据拷贝。
总的来说,带有DMA收集拷贝功能的sendfile实现的I/O只使用了2次用户空间与内核空间的上下文切换,以及2次数据的拷贝,而且这2次的数据拷贝都是非CPU拷贝。这样一来我们就实现了最理想的零拷贝I/O传输了,不需要任何一次的CPU拷贝,以及最少的上下文切换。
在linux2.6.33版本之前 sendfile指支持文件到套接字之间传输数据,即in_fd相当于一个支持mmap的文件,out_fd必须是一个socket。但从linux2.6.33版本开始,out_fd可以是任意类型文件描述符。所以从linux2.6.33版本开始sendfile可以支持“文件到文件”和“文件到套接字”之间的数据传输。
Q: 对于上面的第三点,如果我们需要对数据进行操作该怎么办了?
A: Linux提供了mmap零拷贝来实现我们的需求。
mmap(内存映射)是一个比sendfile昂贵但优于传统I/O的方法。
① 发出mmap系统调用,导致用户空间到内核空间的上下文切换(第一次上下文切换)。通过DMA引擎将磁盘文件中的内容拷贝到内核空间缓冲区中(第一次拷贝: hard drive ——> kernel buffer)。
② mmap系统调用返回,导致内核空间到用户空间的上下文切换(第二次上下文切换)。接着用户空间和内核空间共享这个缓冲区,而不需要将数据从内核空间拷贝到用户空间。因为用户空间和内核空间共享了这个缓冲区数据,所以用户空间就可以像在操作自己缓冲区中数据一般操作这个由内核空间共享的缓冲区数据。
③ 发出write系统调用,导致用户空间到内核空间的上下文切换(第三次上下文切换)。将数据从内核空间缓冲区拷贝到内核空间socket相关联的缓冲区(第二次拷贝: kernel buffer ——> socket buffer)。
④ write系统调用返回,导致内核空间到用户空间的上下文切换(第四次上下文切换)。通过DMA引擎将内核空间socket缓冲区中的数据传递到协议引擎(第三次拷贝: socket buffer ——> protocol engine)
总的来说,通过mmap实现的零拷贝I/O进行了4次用户空间与内核空间的上下文切换,以及3次数据拷贝。其中3次数据拷贝中包括了2次DMA拷贝和1次CPU拷贝。
FileChannel中大量使用了我们上面所提及的零拷贝技术。
FileChannel的map方法会返回一个MappedByteBuffer。MappedByteBuffer是一个直接字节缓冲器,该缓冲器的内存是一个文件的内存映射区域。map方法底层是通过mmap实现的,因此将文件内存从磁盘读取到内核缓冲区后,用户空间和内核空间共享该缓冲区。
MappedByteBuffer内存映射文件是一种允许Java程序直接从内存访问的一种特殊的文件。我们可以将整个文件或者整个文件的一部分映射到内存当中,那么接下来是由操作系统来进行相关的页面请求并将内存的修改写入到文件当中。我们的应用程序只需要处理内存的数据,这样可以实现非常迅速的I/O操作。
只读模式来说,如果程序试图进行写操作,则会抛出ReadOnlyBufferException异常
读写模式表明,对结果对缓冲区所做的修改将最终广播到文件。但这个修改可能会也可能不会被其他映射了相同文件程序可见。
私有模式来说,对结果缓冲区的修改将不会被广播到文件并且也不会对其他映射了相同文件的程序可见。取而代之的是,它将导致被修改部分缓冲区独自拷贝一份到用户空间。这便是OS的“ on write”原则。
如果操作系统底层支持的话transferTo、transferFrom也会使用相关的零拷贝技术来实现数据的传输。所以,这里是否使用零拷贝必须依赖于底层的系统实现。
转自: https://www.jianshu.com/p/e76e3580e356